Planar Linkages Following a Prescribed Motion

Christoph Koutschan

(joint work with Matteo Gallet, Zijia Li, Georg Regensburger, Josef Schicho, Nelly Villamizar)

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

25 August 2015
Workshop Linz
Material (paper, pictures, movies) is available at

http://www.koutschan.de/data/link/
Definition. A *linkage* is a mechanism which consists of

- several rigid bodies, called *links*;
- the links are connected by *joints*.

The joints restrict the relative positions of the links.
Linkages

Definition. A linkage is a mechanism which consists of
- several rigid bodies, called links;
- the links are connected by joints.

The joints restrict the relative positions of the links.

Examples: scissors, blackboard, etc.
Definition. A linkage is a mechanism which consists of
- several rigid bodies, called links;
- the links are connected by joints.

The joints restrict the relative positions of the links.

Examples: scissors, blackboard, etc.

Restriction: We consider only planar linkages, i.e., all links move in parallel planes.

There are two different types of joints:
1. revolute (rotational) joints
2. prismatic (translational) joints
Kempe’s Universality Theorem

Goal: For a given planar curve, construct a linkage that draws it.

- Motivation from engineering, dates back to 18th century
- Example: Watt’s linkage ("one of the most ingenious simple pieces of mechanics I have invented")
Kempe’s Universality Theorem

Goal: For a given planar curve, construct a linkage that draws it.

- Motivation from engineering, dates back to 18th century
- Example: Watt’s linkage (“one of the most ingenious simple pieces of mechanics I have invented”)

Theorem. (Kempe 1876)

Let $f \in \mathbb{R}[x, y]$ be a polynomial, and let $B \subseteq \mathbb{R}^2$ be a closed disk. Then there exists a planar linkage which draws the curve

$$B \cap \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = 0\}.$$
Kempe’s Universality Theorem

Goal: For a given planar curve, construct a linkage that draws it.
 ▶ Motivation from engineering, dates back to 18th century
 ▶ Example: Watt’s linkage (“one of the most ingenious simple pieces of mechanics I have invented”)

Theorem. (Kempe 1876)
Let $f \in \mathbb{R}[x, y]$ be a polynomial, and let $B \subseteq \mathbb{R}^2$ be a closed disk. Then there exists a planar linkage which draws the curve

$$B \cap \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = 0\}.$$

▶ Proof of the theorem is constructive.
▶ “parsing algorithm” with input $f(x, y)$
▶ Kempe’s constructions yield very complicated linkages.
▶ Can be applied to any algebraic curve.
Our contribution

1. A new algorithm for constructing linkages.

More general than Kempe's algorithm: Construction of linkages that realize a prescribed motion (drawing a curve is a special case).

Less general than Kempe's algorithm: Our algorithm can only be applied to rational curves.

"Better" than Kempe's algorithm: Our algorithm usually gives much simpler linkages. (158 links/235 joints versus 8 links/10 joints for the ellipse)

2. An algebraic framework to represent motions.

3. Answer to the collision problem.

4. A prototype implementation.
Our contribution

1. A new algorithm for constructing linkages.
 - More general than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)

2. An algebraic framework to represent motions.
 - Our contribution here is a factorization algorithm for motion polynomials.

3. Answer to the collision problem.

4. A prototype implementation.
Our contribution

1. A new algorithm for constructing linkages.
 - **More general** than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)
 - **Less general** than Kempe’s algorithm:
 Our algorithm can only be applied to rational curves.

2. An algebraic framework to represent motions.
 - Our contribution here is a factorization algorithm for motion polynomials.

3. Answer to the collision problem.

4. A prototype implementation.
Our contribution

1. A new algorithm for constructing linkages.
 - **More general** than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)
 - **Less general** than Kempe’s algorithm:
 Our algorithm can only be applied to rational curves.
 - **“Better”** than Kempe’s algorithm:
 Our algorithm usually gives much simpler linkages.
 (158 links/235 joints versus 8 links/10 joints for the ellipse)
Our contribution

1. A new algorithm for constructing linkages.
 ▶ More general than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)
 ▶ Less general than Kempe’s algorithm:
 Our algorithm can only be applied to rational curves.
 ▶ “Better” than Kempe’s algorithm:
 Our algorithm usually gives much simpler linkages.
 (158 links/235 joints versus 8 links/10 joints for the ellipse)

2. An algebraic framework to represent motions.
 ▶ Our contribution here is a factorization algorithm for motion polynomials.
Our contribution

1. A new algorithm for constructing linkages.
 ▶ More general than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)
 ▶ Less general than Kempe’s algorithm:
 Our algorithm can only be applied to rational curves.
 ▶ “Better” than Kempe’s algorithm:
 Our algorithm usually gives much simpler linkages.
 (158 links/235 joints versus 8 links/10 joints for the ellipse)

2. An algebraic framework to represent motions.
 ▶ Our contribution here is a factorization algorithm for motion polynomials.

3. Answer to the collision problem.
Our contribution

1. A new algorithm for constructing linkages.
 - More general than Kempe’s algorithm:
 Construction of linkages that realize a prescribed motion
 (drawing a curve is a special case)
 - Less general than Kempe’s algorithm:
 Our algorithm can only be applied to rational curves.
 - “Better” than Kempe’s algorithm:
 Our algorithm usually gives much simpler linkages.
 (158 links/235 joints versus 8 links/10 joints for the ellipse)

2. An algebraic framework to represent motions.
 - Our contribution here is a factorization algorithm for motion polynomials.

3. Answer to the collision problem.

4. A prototype implementation.
Mathematical model for linkages

1. Self-collisions of the links are not taken into account, i.e., the joints are the only constraints for the motion of the links.

2. Thus the actual shape of the links doesn’t matter, just the position of the joints.

3. Not a single frame of reference for the configuration of a linkage, but each link has its own frame of reference.
Linkages

Link graph: encodes the “topological information” of a linkage.
- Each link corresponds to a vertex.
- Each joint corresponds to an edge.

Example:
Linkages

Link graph: encodes the “topological information” of a linkage.
- Each link corresponds to a vertex.
- Each joint corresponds to an edge.

Definition. A **planar linkage** with revolute joints is a connected undirected graph $G = (V, E)$ without self-loops, together with a map $\rho : E \rightarrow \mathbb{R}^2$.

- The point $\rho(e)$ is the position of the joint e in the “initial configuration” of the linkage.
- W.l.o.g. assume that V is of the form $\{1, \ldots, n\}$.
- Elements of E are given by unordered pairs $\{i, j\} \subseteq V$.

In the following let $L = (G, \rho)$ with $G = (V, E)$ be a linkage.
Positions of links

Notation. We denote by SE_2 the **Special Euclidean group**, i.e., the group of **direct isometries** of the plane.
Positions of links

Notation. We denote by SE_2 the **Special Euclidean group**, i.e., the group of **direct isometries** of the plane.

→ rotations, translations, and composition of these:

$$\sigma \in SE_2 \iff \sigma(x) = Ax + b, \ A \text{ orthogonal, } \det A = 1, \ b \in \mathbb{R}^2.$$
Positions of links

Notation. We denote by SE_2 the Special Euclidean group, i.e., the group of direct isometries of the plane.

→ rotations, translations, and composition of these:

$\sigma \in \text{SE}_2 \iff \sigma(x) = Ax + b, \ A \text{ orthogonal}, \ \det A = 1, \ b \in \mathbb{R}^2$.

Absolute position: Consider a certain configuration of L. Then for any link i, there is a unique $\sigma_i \in \text{SE}_2$ that moves this link from its initial to its actual position.
Positions of links

Notation. We denote by SE_2 the **Special Euclidean group**, i.e., the group of **direct isometries** of the plane.

\rightarrow rotations, translations, and composition of these:

$$\sigma \in \text{SE}_2 \iff \sigma(x) = Ax + b, \ A \text{ orthogonal, } \det A = 1, \ b \in \mathbb{R}^2.$$

Absolute position: Consider a certain configuration of L. Then for any link i, there is a unique $\sigma_i \in \text{SE}_2$ that moves this link from its initial to its actual position.

Relative position: Let $\sigma_i, \sigma_j \in \text{SE}_2$ describe the absolute positions of the links i and j. Then $\sigma_{i,j} := \sigma_i \circ \sigma_j^{-1}$ gives the **relative position** of link i w.r.t. link j.

Positions of links

Notation. We denote by SE_2 the **Special Euclidean group**, i.e., the group of **direct isometries** of the plane.

\rightarrow rotations, translations, and composition of these:

$$\sigma \in \text{SE}_2 \iff \sigma(x) = Ax + b, \ A \text{ orthogonal, } \det A = 1, \ b \in \mathbb{R}^2.$$

Absolute position: Consider a certain configuration of L. Then for any link i, there is a unique $\sigma_i \in \text{SE}_2$ that moves this link from its initial to its actual position.

Relative position: Let $\sigma_i, \sigma_j \in \text{SE}_2$ describe the absolute positions of the links i and j. Then $\sigma_{i,j} := \sigma_i \circ \sigma_j^{-1}$ gives the **relative position** of link i w.r.t. link j.

We then have $\sigma_{i,j} = \sigma_{i,k} \circ \sigma_{k,j}$.

Configurations

Definition. Let \(\{i, j\} \in E \). The set of **virtual relative positions** of link \(i \) w.r.t. link \(j \), denoted \(\text{VRP}(i, j) \), is the subgroup of \(\text{SE}_2 \) of rotations around the point \(\rho(i, j) \).

\[\text{Note that } \text{VRP}(i, j) = \text{VRP}(j, i). \]
Configurations

Definition. Let \(\{i, j\} \in E \). The set of **virtual relative positions** of link \(i \) w.r.t. link \(j \), denoted \(\text{VRP}(i, j) \), is the subgroup of \(\text{SE}_2 \) of rotations around the point \(\rho(i, j) \).

\(\longrightarrow \) Note that \(\text{VRP}(i, j) = \text{VRP}(j, i) \).

Definition. A **configuration** of \(L \) is a collection of relative positions \(\sigma_{i,j} \in \text{VRP}(i, j) \), subject to the constraints:

- If \((i, h_1), (h_1, h_2), \ldots, (h_s, i) \) is a **directed cycle** in \(G \) i.e., \(\{i, h_1\} \in E, \{h_1, h_2\} \in E \) etc.,
- then \(\sigma_{i,h_1} \circ \cdots \circ \sigma_{h_s,i} = \text{id} \).
- (This is the relative position of link \(i \) w.r.t. itself.)
Configurations

Definition. Let \(\{i, j\} \in E \). The set of **virtual relative positions** of link \(i \) w.r.t. link \(j \), denoted \(\text{VRP}(i, j) \), is the subgroup of \(\text{SE}_2 \) of rotations around the point \(\rho(i, j) \).

\[\rightarrow \text{Note that } \text{VRP}(i, j) = \text{VRP}(j, i). \]

Definition. A **configuration** of \(L \) is a collection of relative positions \(\sigma_{i,j} \in \text{VRP}(i, j) \), subject to the constraints:

- If \((i, h_1), (h_1, h_2), \ldots, (h_s, i) \) is a **directed cycle** in \(G \) i.e., \(\{i, h_1\} \in E, \{h_1, h_2\} \in E \) etc.,
- then \(\sigma_{i,h_1} \circ \cdots \circ \sigma_{h_s,i} = \text{id} \).
- (This is the relative position of link \(i \) w.r.t. itself.)

\[\rightarrow \text{The cycle condition also implies that } \sigma_{i,j} = \sigma_{j,i}^{-1}. \]
Configuration space

Definition. The configuration space of a linkage L is the set of all its configurations:

$$\text{Conf}(L) = \left\{ (\sigma_{k,l}) \in \prod_{\{i,j\} \in E} \text{VRP}(i,j) \times \text{VRP}(j,i) : \text{cycle conds} \right\}$$

where \prod is the Cartesian product so that $(\sigma_{k,l})$ is a $2|E|$-tuple.
Definition. The configuration space of a linkage L is the set of all its configurations:

$$\text{Conf}(L) = \left\{ (\sigma_{k,l}) \in \prod_{\{i,j\} \in E} \text{VRP}(i,j) \times \text{VRP}(j,i) : \text{cycle conds} \right\}$$

where \prod is the Cartesian product so that $(\sigma_{k,l})$ is a $2|E|$-tuple.

By identifying $\text{VRP}(i,j)$ with the real projective line $\mathbb{P}_{\mathbb{R}}^1$, $\text{Conf}(L)$ acquires the structure of a projective subvariety of $(\mathbb{P}_{\mathbb{R}}^1)^{2|E|}$.
Definition. The configuration space of a linkage L is the set of all its configurations:

\[\text{Conf}(L) = \left\{ (\sigma_{k,l}) \in \prod_{\{i,j\} \in E} \text{VRP}(i,j) \times \text{VRP}(j,i) : \text{cycle conds} \right\} \]

where \prod is the Cartesian product so that $(\sigma_{k,l})$ is a $2|E|$-tuple.

By identifying $\text{VRP}(i,j)$ with the real projective line $\mathbb{P}_\mathbb{R}^1$, $\text{Conf}(L)$ acquires the structure of a projective subvariety of $(\mathbb{P}_\mathbb{R}^1)^2|E|$.

Definition. The mobility of L is the dimension of $\text{Conf}(L)$.

Configuration space
Recapitulation and outlook

Have: Mathematical model for linkages that uses direct isometries in an essential way.

Want: An *algebraic* representation of direct isometries that allows for simple *computations*.

Outline of solution:

1. Embed SE_2 in the real projective space P^3_R.
2. Interpret the points in P^3_R as elements of some ring K.
3. The multiplication in K will correspond to the group operation \circ in SE_2.
4. Employ the polynomial ring $K[t]$ to describe motions.
Recapitulation and outlook

Have: Mathematical model for linkages that uses direct isometries in an essential way.

Want: An *algebraic* representation of direct isometries that allows for simple *computations*.

Outline of solution:
- Embed \mathbb{SE}_2 in the real projective space \mathbb{P}^3_R.
- Interpret the points in \mathbb{P}^3_R as elements of some ring \mathbb{K}.
- The multiplication in \mathbb{K} will correspond to the group operation \circ in \mathbb{SE}_2.
- Employ the polynomial ring $\mathbb{K}[t]$ to describe *motions*.
Embedding of SE_2 in $\mathbb{P}^3_{\mathbb{R}}$

Definition. The n-dimensional **real projective space** is the set

$$\mathbb{P}^n_{\mathbb{R}} := \left(\mathbb{R}^{n+1} \setminus \{(0, \ldots, 0)\} \right) / \sim,$$

where

$$(x_0, \ldots, x_n) \sim (y_0, \ldots, y_n) :\iff \exists c \in \mathbb{R}^*: (x_0, \ldots, x_n) = c \cdot (y_0, \ldots, y_n).$$
Embedding of SE$_2$ in $\mathbb{P}^3_\mathbb{R}$

Definition. The n-dimensional real projective space is the set

$$\mathbb{P}^n_\mathbb{R} := (\mathbb{R}^{n+1} \setminus \{(0, \ldots, 0)\}) / \sim,$$

where

$$(x_0, \ldots, x_n) \sim (y_0, \ldots, y_n) :\Longleftrightarrow \exists c \in \mathbb{R}^* : (x_0, \ldots, x_n) = c \cdot (y_0, \ldots, y_n).$$

Write a point in $\mathbb{P}^3_\mathbb{R}$ with the coordinates $(x_1 : x_2 : y_1 : y_2)$.

Embedding: We embed SE$_2$ in $\mathbb{P}^3_\mathbb{R}$ as the open subset

$$\mathcal{U} = \mathbb{P}^3_\mathbb{R} \setminus \{(x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_\mathbb{R} \mid x_1^2 + x_2^2 = 0\}.$$

Geometric interpretation: The set \mathcal{U} is the complement of the line $x_1 = x_2 = 0$.
Action

Let $\sigma \in SE_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in U \subset \mathbb{P}_\mathbb{R}^3$.

The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$\frac{1}{x_1^2 + x_2^2} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix}.$$

Remarks:

▶ Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.

▶ Note that this action is compatible with \sim.

▶ The translational part vanishes if $y_1 = y_2 = 0$.

▶ The rotational part depends only on x_1 and x_2.

▶ If $x_2 = 0$ then we have a pure translation.

▶ The identity isometry is given by $(x_1 : 0 : 0 : 0)$.

Exercise. What kind of isometry is given by $(x_1 : x_2 : 0 : 0)$?

Exercise. What kind of isometry is given by $(1 : 0 : y_1 : y_2)$?

Exercise. Which points correspond to the identity isometry?
Action

Let $\sigma \in \text{SE}_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in U \subset \mathbb{P}_\mathbb{R}^3$.

The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$
\frac{1}{x_1^2 + x_2^2} \left[\begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \right].
$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
Action

Let $\sigma \in SE_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in U \subset \mathbb{P}^3_{\mathbb{R}}$. The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} x_1^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix}.$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- Note that this action is compatible with \sim.

Exercise.

What kind of isometry is given by $(x_1 : x_2 : 0 : 0)$?

Exercise.

What kind of isometry is given by $(1 : 0 : y_1 : y_2)$?

Exercise.

Which points correspond to the identity isometry?
Action

Let \(\sigma \in SE_2 \) be given by the point \((x_1 : x_2 : y_1 : y_2) \in U \subset \mathbb{P}_\mathbb{R}^3\). The action of \(\sigma \) on a point \((x, y) \in \mathbb{R}^2\) is given by

\[
\frac{1}{x_1^2 + x_2^2} \begin{bmatrix}
(x_1^2 - x_2^2 & -2x_1x_2) \\
2x_1x_2 & (x_1^2 - x_2^2)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
x_1y_1 - x_2y_2 \\
x_1y_2 + x_2y_1
\end{bmatrix}.
\]

Remarks:

- Note that the points for which \(x_1^2 + x_2^2 = 0\) were excluded.
- Note that this action is compatible with \(\sim\).

Exercise. What kind of isometry is given by \((x_1 : x_2 : 0 : 0)\)?
Action

Let \(\sigma \in \text{SE}_2 \) be given by the point \((x_1 : x_2 : y_1 : y_2) \in \mathcal{U} \subset \mathbb{P}^3_\mathbb{R} \).

The action of \(\sigma \) on a point \((x, y) \in \mathbb{R}^2 \) is given by

\[
\frac{1}{x_1^2 + x_2^2} \begin{pmatrix}
 x_1^2 - x_2^2 & -2x_1x_2 \\
 2x_1x_2 & x_1^2 - x_2^2
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 x_1y_1 - x_2y_2 \\
 x_1y_2 + x_2y_1
\end{pmatrix}.
\]

Remarks:

- Note that the points for which \(x_1^2 + x_2^2 = 0 \) were excluded.
- Note that this action is compatible with \(\sim \).
- The translational part vanishes if \(y_1 = y_2 = 0 \).
Action

Let $\sigma \in \mathbb{SE}_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in \mathcal{U} \subset \mathbb{P}_\mathbb{R}^3$.

The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$
\frac{1}{x_1^2 + x_2^2} \left[\begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \right].
$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- Note that this action is compatible with \sim.
- The translational part vanishes if $y_1 = y_2 = 0$.

Exercise. What kind of isometry is given by $(1 : 0 : y_1 : y_2)$?
Action

Let $\sigma \in \text{SE}_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in \mathcal{U} \subset \mathbb{P}_\mathbb{R}^3$.

The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$
\frac{1}{x_1^2 + x_2^2} \left[\begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \right].
$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- Note that this action is compatible with \sim.
- The translational part vanishes if $y_1 = y_2 = 0$.
- The rotational part depends only on x_1 and x_2.
- If $x_2 = 0$ then we have a pure translation.
Action

Let $\sigma \in SE_2$ be given by the point $(x_1 : x_2 : y_1 : y_2) \in \mathcal{U} \subset \mathbb{P}_\mathbb{R}^3$.

The action of σ on a point $(x, y) \in \mathbb{R}^2$ is given by

$$\frac{1}{x_1^2 + x_2^2} \left[\begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \right].$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- Note that this action is compatible with \sim.
- The translational part vanishes if $y_1 = y_2 = 0$.
- The rotational part depends only on x_1 and x_2.
- If $x_2 = 0$ then we have a pure translation.

Exercise. Which points correspond to the identity isometry?
Action

Let \(\sigma \in SE_2 \) be given by the point \((x_1 : x_2 : y_1 : y_2) \in U \subset \mathbb{P}^3_\mathbb{R}\).

The action of \(\sigma \) on a point \((x, y) \in \mathbb{R}^2\) is given by

\[
\frac{1}{x_1^2 + x_2^2} \begin{bmatrix}
(x_1^2 - x_2^2) - 2x_1x_2 & -2x_1x_2 \\
2x_1x_2 & (x_1^2 - x_2^2)
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
x_1y_1 - x_2y_2 \\
x_1y_2 + x_2y_1
\end{bmatrix}.
\]

Remarks:

- Note that the points for which \(x_1^2 + x_2^2 = 0\) were excluded.
- Note that this action is compatible with \(\sim\).
- The translational part vanishes if \(y_1 = y_2 = 0\).
- The rotational part depends only on \(x_1\) and \(x_2\).
- If \(x_2 = 0\) then we have a pure translation.
- The identity isometry is given by \((x_1 : 0 : 0 : 0)\).
Product

With this action the product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$= (x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2 : x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$
Product

With this action the product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$= (x_1x'_1 - x_2x'_2 : x_1x'_2 + x_2x'_1 : x_1y'_1 + x_2y'_2 + y_1x'_1 - y_2x'_2 : x_1y'_2 - x_2y'_1 + y_1x'_2 + y_2x'_1)$$

Notation 1. Write a point $(x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_{\mathbb{R}}$ as a pair of complex numbers $(z, w) = (x_1 + \iota x_2, y_1 + \iota y_2) \in \mathbb{C}^2$.
Product

With this action the product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$= (x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2 : x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$

Notation 1. Write a point $(x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_{\mathbb{R}}$ as a pair of complex numbers $(z, w) = (x_1 + i x_2, y_1 + i y_2) \in \mathbb{C}^2$.

Using this notation, the product in SE_2 can be rewritten as

$$(z, w) \cdot (z', w') = (z z', \bar{z} w' + z' w)$$

where the bar (\cdot) denotes complex conjugation.
Product (continued)

Notation 1. Write a point \((x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_\mathbb{R}\) as a pair of complex numbers \((z, w) = (x_1 + i x_2, y_1 + i y_2) \in \mathbb{C}^2\).

Using this notation, the product in \(\text{SE}_2\) can be rewritten as

\[(z, w) \cdot (z', w') = (z z', \overline{z} w' + z'w)\]

where the bar \(\overline{(\cdot)}\) denotes complex conjugation.
Product (continued)

Notation 1. Write a point \((x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_\mathbb{R}\) as a pair of complex numbers \((z, w) = (x_1 + \imath x_2, y_1 + \imath y_2) \in \mathbb{C}^2\).

Using this notation, the product in \(SE_2\) can be rewritten as

\[(z, w) \cdot (z', w') = (zz', \overline{z}w' + z'w)\]

where the bar \((\cdot)\) denotes complex conjugation.

Notation 2. Write \((z, w)\) as a dual number \(z + \eta w\) where the symbol \(\eta\) satisfies the relations

\[z \eta = \eta \overline{z} \quad \text{for all} \quad z \in \mathbb{C} \quad \text{and} \quad \eta^2 = 0.\]

Hence: \((z + \eta w) \cdot (z' + \eta w') = zz' + \eta \overline{z}w' + \eta w z' + \eta w \eta w' = zz' + \eta(\overline{z}w' + z'w).\)
Product (continued)

Notation 1. Write a point \((x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_\mathbb{R}\) as a pair of complex numbers \((z, w) = (x_1 + \imath x_2, y_1 + \imath y_2) \in \mathbb{C}^2\).

Using this notation, the product in \(SE_2\) can be rewritten as

\[(z, w) \cdot (z', w') = (z z', \bar{z} w' + z' w)\]

where the bar \(\bar{\cdot}\) denotes complex conjugation.

Notation 2. Write \((z, w)\) as a dual number \(z + \eta w\) where the symbol \(\eta\) satisfies the relations

\[z \eta = \eta \bar{z}\quad \text{for all } z \in \mathbb{C} \quad \text{and} \quad \eta^2 = 0.\]

Hence:

\[(z + \eta w) \cdot (z' + \eta w') = z z' + z \eta w' + \eta w z' + \eta w \eta w' = z z' + \eta(\bar{z} w' + z' w).\]

Notation 3. Denote by \(\mathbb{K}\) the \(\mathbb{R}\)-algebra \(\mathbb{C}[\eta]/\langle \imath \eta + \eta \imath, \eta^2 \rangle\), i.e., the ring of dual complex numbers.
Rational motions and motion polynomials

Intuition: A motion is a family of direct isometries, more precisely, a continuous function $\mathbb{R} \rightarrow \mathbb{SE}_2$.
Rational motions and motion polynomials

Intuition: A motion is a family of direct isometries, more precisely, a continuous function $\mathbb{R} \to \text{SE}_2$.

Definition. A rational motion is a map $\mathbb{R} \to \mathbb{P}^3_\mathbb{R}$ given by four real polynomials $X_1, X_2, Y_1, Y_2 \in \mathbb{R}[t]$ such that $X_1^2 + X_2^2 \neq 0$.

Hence for almost every t this yields a direct isometry in SE_2.
Rational motions and motion polynomials

Intuition: A **motion** is a family of direct isometries, more precisely, a continuous function $\mathbb{R} \to \text{SE}_2$.

Definition. A **rational motion** is a map $\mathbb{R} \to \mathbb{P}^3_{\mathbb{R}}$ given by four real polynomials $X_1, X_2, Y_1, Y_2 \in \mathbb{R}[t]$ such that $X_1^2 + X_2^2 \neq 0$.

Hence for almost every t this yields a direct isometry in SE_2.

Notation. A rational motion is written as a polynomial $P \in \mathbb{K}[t]$

\[P(t) = Z(t) + \eta W(t) \quad Z, W \in \mathbb{C}[t], \]

where $Z = X_1 + \iota X_2$ and $W = Y_1 + \iota Y_2$.

A polynomial in $\mathbb{K}[t]$ is called a **motion polynomial**.
Rational motions and motion polynomials

Intuition: A **motion** is a family of direct isometries, more precisely, a continuous function \(\mathbb{R} \rightarrow \text{SE}_2 \).

Definition. A **rational motion** is a map \(\mathbb{R} \rightarrow \mathbb{P}^3_{\mathbb{R}} \) given by four real polynomials \(X_1, X_2, Y_1, Y_2 \in \mathbb{R}[t] \) such that \(X_1^2 + X_2^2 \neq 0 \).

\[\Rightarrow \] Hence for almost every \(t \) this yields a direct isometry in \(\text{SE}_2 \).

Notation. A rational motion is written as a polynomial \(P \in \mathbb{K}[t] \)

\[P(t) = Z(t) + \eta W(t) \quad Z, W \in \mathbb{C}[t], \]

where \(Z = X_1 + \imath X_2 \) and \(W = Y_1 + \imath Y_2 \).

\[\Rightarrow \] A polynomial in \(\mathbb{K}[t] \) is called a **motion polynomial**.

\[\Rightarrow \] The multiplication of \(P \in \mathbb{K}[t] \) by a real polynomial \(R \in \mathbb{R}[t] \) gives a new motion polynomial \(RP = PR \), which however describes the **same** rational motion.
Connection to rational curves

Proposition. Let \(\varphi : \mathbb{R} \to \mathbb{R}^2 \) be a rational parametrization,

\[
\varphi(t) = \left(\frac{f(t)}{h(t)}, \frac{g(t)}{h(t)} \right), \quad \text{for some } f, g, h \in \mathbb{R}[t],
\]

of a real curve. Then the orbit of \((0, 0)\) under the motion given by \(P = h + \eta (f + \imath g) \) is exactly the image of \(\varphi \).
Connection to rational curves

Proposition. Let \(\varphi : \mathbb{R} \to \mathbb{R}^2 \) be a rational parametrization,

\[
\varphi(t) = \left(\frac{f(t)}{h(t)}, \frac{g(t)}{h(t)} \right), \quad \text{for some } f, g, h \in \mathbb{R}[t],
\]
of a real curve. Then the orbit of \((0, 0)\) under the motion given by
\[
P = h + \eta (f + \iota g)
\]
is exactly the image of \(\varphi \).

In many considerations, we restrict ourselves to monic motion polynomials (justification will be given later).

Definition. We say that \(P = Z + \eta W \in \mathbb{K}[t] \) is **monic** if its leading coefficient is 1, i.e.: \(Z \in \mathbb{C}[t] \) is monic and \(\deg W < \deg Z \).
Connection to rational curves

Proposition. Let \(\varphi : \mathbb{R} \to \mathbb{R}^2 \) be a rational parametrization,

\[
\varphi(t) = \left(\frac{f(t)}{h(t)}, \frac{g(t)}{h(t)} \right), \quad \text{for some } f, g, h \in \mathbb{R}[t],
\]

of a real curve. Then the orbit of \((0, 0)\) under the motion given by \(P = h + \eta (f + \imath g) \) is exactly the image of \(\varphi \).

In many considerations, we restrict ourselves to monic motion polynomials (justification will be given later).

Definition. We say that \(P = Z + \eta W \in \mathbb{K}[t] \) is **monic** if its leading coefficient is 1, i.e.: \(Z \in \mathbb{C}[t] \) is monic and \(\deg W < \deg Z \).

\[\implies \text{If } P \text{ is monic then } \lim_{t \to +\infty} P(t) = (1 : 0 : 0 : 0) \in \mathbb{P}_\mathbb{R}^3, \text{ which corresponds to the identity element in } SE_2. \]
Characterization of simple motions

Lemma. Let \(\ell \subseteq \mathbb{P}^3_{\mathbb{R}} \) be a projective line passing through the point \((1 : 0 : 0 : 0)\), and let \(X = \ell \cap \{x_1 = x_2 = 0\} \). Then:

1. if \(|X| = 1 \), then \(\ell \setminus X \) corresponds to a subgroup of \(\text{SE}_2 \) that consists of all translations along a fixed common direction;

2. if \(X = \emptyset \), then \(\ell \) corresponds to a subgroup of \(\text{SE}_2 \) that consists of all rotations around a fixed common point.

Corollary. Let \(P \in K[t] \) be a monic motion polynomial of degree 1, i.e., \(P(t) = t + ix_2 + \eta(y_1 + iy_2) \) with \(x_2, y_1, y_2 \in \mathbb{R} \). Then:

1. if \(x_2 = 0 \) then \(P \) gives a translational motion in direction \((y_1, y_2)\);

2. if \(x_2 \neq 0 \) then \(P \) gives a revolution around the point \((1/2x_2, -y_2, y_1)\).

Linear motion polynomials describe exactly those motions that are realized by joints.
Characterization of simple motions

Lemma. Let \(\ell \subseteq \mathbb{P}_\mathbb{R}^3 \) be a projective line passing through the point \((1 : 0 : 0 : 0)\), and let \(X = \ell \cap \{ x_1 = x_2 = 0 \} \). Then:

1. if \(|X| = 1\), then \(\ell \setminus X \) corresponds to a subgroup of \(\text{SE}_2 \) that consists of all translations along a fixed common direction;
2. if \(X = \emptyset \), then \(\ell \) corresponds to a subgroup of \(\text{SE}_2 \) that consists of all rotations around a fixed common point.

Corollary. Let \(P \in \mathbb{K}[t] \) be a monic motion polynomial of degree 1, i.e., \(P(t) = t + i x_2 + \eta (y_1 + i y_2) \) with \(x_2, y_1, y_2 \in \mathbb{R} \). Then:

1. if \(x_2 = 0 \) then \(P \) gives a translational motion in direction \((y_1) \).
2. if \(x_2 \neq 0 \) then \(P \) gives a revolution around the point \(\frac{1}{2x_2} (\frac{-y_2}{y_1}) \).
Characterization of simple motions

Lemma. Let $\mathcal{L} \subseteq \mathbb{P}_R^3$ be a projective line passing through the point $(1 : 0 : 0 : 0)$, and let $X = \mathcal{L} \cap \{x_1 = x_2 = 0\}$. Then:

1. if $|X| = 1$, then $\mathcal{L} \setminus X$ corresponds to a subgroup of SE_2 that consists of all translations along a fixed common direction;
2. if $X = \emptyset$, then \mathcal{L} corresponds to a subgroup of SE_2 that consists of all rotations around a fixed common point.

Corollary. Let $P \in \mathbb{K}[t]$ be a monic motion polynomial of degree 1, i.e., $P(t) = t + \imath x_2 + \eta (y_1 + \imath y_2)$ with $x_2, y_1, y_2 \in \mathbb{R}$. Then:

1. if $x_2 = 0$ then P gives a translational motion in direction $(y_1 y_2)$.
2. if $x_2 \neq 0$ then P gives a revolution around the point $\frac{1}{2x_2} (-y_2 y_1)$.

\rightarrow Linear motion polynomials describe exactly those motions that are realized by joints.
Examples

1. Which motion does the motion polynomial \(t + \eta \) describe?
Examples

1. Which motion does the motion polynomial \(t + i \) describe?
 \[\rightarrow \text{It gives a revolution around the origin } (0, 0). \]
Examples

1. Which motion does the motion polynomial $t + \iota$ describe?
 \[\rightarrow\] It gives a revolution around the origin $(0, 0)$.

2. What about $t + \eta$?

 \[\rightarrow\] Translational motion since $t^2 + 1$ is a real polynomial.

 \[\rightarrow\] The translational vector is given by $\frac{1}{t^2 + 1}(t - 1)$.

 \[\rightarrow\] It parametrizes the circle with radius $\frac{1}{2}$ and center $\frac{1}{2}(0 - 1)$.

 \[\rightarrow\] Hence we get a circular translation.
Examples

1. Which motion does the motion polynomial \(t + i \) describe?
 \[\rightarrow \] It gives a revolution around the origin \((0, 0)\).

2. What about \(t + \eta \)?
 \[\rightarrow \] This gives a translational motion along the line \(y = 0 \).
Examples

1. Which motion does the motion polynomial \(t + \imath \) describe?
 \(\rightarrow \) It gives a revolution around the origin \((0, 0)\).

2. What about \(t + \eta \)?
 \(\rightarrow \) This gives a translational motion along the line \(y = 0 \).

3. Multiplication of motion polynomials corresponds to the composition of motions, e.g.,
 \[
 (t + \imath) \cdot (t - \imath + \eta) = (t^2 + 1) + \eta(t - \imath).
 \]

 What is this?
Examples

1. Which motion does the motion polynomial $t + i$ describe?
 → It gives a revolution around the origin $(0, 0)$.

2. What about $t + \eta$?
 → This gives a translational motion along the line $y = 0$.

3. Multiplication of motion polynomials corresponds to the composition of motions, e.g.,

\[(t + i) \cdot (t - i + \eta) = (t^2 + 1) + \eta (t - i).\]

What is this?
→ Translational motion since $t^2 + 1$ is a real polynomial.
Examples

1. Which motion does the motion polynomial \(t + \iota \) describe?
 \(\rightarrow \) It gives a revolution around the origin \((0, 0)\).

2. What about \(t + \eta \)?
 \(\rightarrow \) This gives a translational motion along the line \(y = 0 \).

3. Multiplication of motion polynomials corresponds to the composition of motions, e.g.,
 \[
 (t + \iota) \cdot (t - \iota + \eta) = (t^2 + 1) + \eta (t - \iota).
 \]

What is this?
 \(\rightarrow \) Translational motion since \(t^2 + 1 \) is a real polynomial.
 \(\rightarrow \) The translational vector is given by \(\frac{1}{t^2 + 1} \left(\begin{array}{c} t \\ -1 \end{array} \right) \).
Examples

1. Which motion does the motion polynomial $t + \imath$ describe?
 → It gives a revolution around the origin $(0, 0)$.

2. What about $t + \eta$?
 → This gives a translational motion along the line $y = 0$.

3. Multiplication of motion polynomials corresponds to the composition of motions, e.g.,

 \[
 (t + \imath) \cdot (t - \imath + \eta) = (t^2 + 1) + \eta (t - \imath).
 \]

 What is this?
 → Translational motion since $t^2 + 1$ is a real polynomial.

 → The translational vector is given by $\frac{1}{t^2+1} \left(\begin{array}{c} t \\ -1 \end{array} \right)$.

 → It parametrizes the circle with radius $\frac{1}{2}$ and center $\frac{1}{2} \left(\begin{array}{c} 0 \\ -1 \end{array} \right)$.
Examples

1. Which motion does the motion polynomial \(t + \nu \) describe?
 \(\rightarrow \) It gives a revolution around the origin \((0, 0)\).

2. What about \(t + \eta \)?
 \(\rightarrow \) This gives a translational motion along the line \(y = 0 \).

3. Multiplication of motion polynomials corresponds to the composition of motions, e.g.,
 \[
 (t + \nu) \cdot (t - \nu + \eta) = (t^2 + 1) + \eta(t - \nu).
 \]

What is this?
 \(\rightarrow \) Translational motion since \(t^2 + 1 \) is a real polynomial.
 \(\rightarrow \) The translational vector is given by \(\frac{1}{t^2+1} \left(\begin{array}{c} t \\ -1 \end{array} \right) \).
 \(\rightarrow \) It parametrizes the circle with radius \(\frac{1}{2} \) and center \(\frac{1}{2} \left(\begin{array}{c} 0 \\ -1 \end{array} \right) \).
 \(\rightarrow \) Hence we get a circular translation.
Weak and strong realization

Let $L = ((V, E), \rho)$ be a linkage, $\phi : \mathbb{R} \to \mathbb{P}^3_\mathbb{R}$ a rational motion.

Let $RP(i, j) \subseteq SE_2$ denote the set of **relative positions** of link j with respect to the link i.
Weak and strong realization

Let $L = ((V, E), \rho)$ be a linkage, $\phi: \mathbb{R} \to \mathbb{P}^3_{\mathbb{R}}$ a rational motion.

Let $\text{RP}(i, j) \subseteq \text{SE}_2$ denote the set of relative positions of link j with respect to the link i.

Weak realization: $\phi(\mathbb{R}) \subseteq \text{RP}(i, j)$ for some $i, j \in V$.
Weak and strong realization

Let $L = ((V, E), \rho)$ be a linkage, $\phi: \mathbb{R} \rightarrow \mathbb{P}_{\mathbb{R}}^3$ a rational motion. Let $\text{RP}(i, j) \subseteq \text{SE}_2$ denote the set of relative positions of link j with respect to the link i.

Weak realization: $\phi(\mathbb{R}) \subseteq \text{RP}(i, j)$ for some $i, j \in V$.

Strong realization: weak realization, plus L has mobility one.
Weak and strong realization

Let $L = ((V, E), \rho)$ be a linkage, $\phi: \mathbb{R} \to \mathbb{P}^3_{\mathbb{R}}$ a rational motion. Let $\text{RP}(i, j) \subseteq \text{SE}_2$ denote the set of relative positions of link j with respect to the link i.

Weak realization: $\phi(\mathbb{R}) \subseteq \text{RP}(i, j)$ for some $i, j \in V$.

Strong realization: weak realization, plus L has mobility one.
Weak and strong realization

Let $L = ((V, E), \rho)$ be a linkage, $\phi: \mathbb{R} \to \mathbb{P}^3_{\mathbb{R}}$ a rational motion. Let $\text{RP}(i, j) \subseteq \text{SE}_2$ denote the set of relative positions of link j with respect to the link i.

Weak realization: $\phi(\mathbb{R}) \subseteq \text{RP}(i, j)$ for some $i, j \in V$.

Strong realization: weak realization, plus L has mobility one.
Task: Construct a linkage that realizes a given rational motion \(\phi \).

Solution strategy:

1. The motion \(\phi \) is described by a motion polynomial \(P \in \mathbb{K}[t] \).
2. Factor \(P \) into linear factors.
3. Each linear factor represents an “elementary” motion (revolution, translational motion), which can be realized by a single joint.
4. A factorization of \(P \) gives rise to an open chain of links, which weakly realizes the motion \(\phi \).
5. Insert more links in order to restrain the mobility of the linkage so that it strongly realizes the motion \(\phi \).
Factorization into linear factors

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a monic motion polynomial of degree n.

Goal: Factor P into monic linear motion polynomials, i.e.,

$$P = P_1 \cdot P_2 \cdots P_n, \quad P_i = t - z_i + \eta w_i, \quad w_i, z_i \in \mathbb{C}.$$
Factorization into linear factors

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a monic motion polynomial of degree n.

Goal: Factor P into monic linear motion polynomials, i.e.,

$$P = P_1 \cdot P_2 \cdots P_n, \quad P_i = t - z_i + \eta w_i, \quad w_i, z_i \in \mathbb{C}.$$

Recall:

$$(z + \eta w) \cdot (z' + \eta w') = z z' + \eta (\bar{z} w' + z' w).$$

By expanding the ansatz we obtain:

$$P = (t - z_1 + \eta w_1) \cdot (t - z_2 + \eta w_2) \cdots (t - z_n + \eta w_n) =$$

$$= \prod_{i=1}^{n} (t - z_i) + \eta \sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - \bar{z}_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k.$$

$Z(t)$ $W(t)$
Factorization into linear factors

Let \(P = Z + \eta W \in \mathbb{K}[t] \) be a monic motion polynomial of degree \(n \).

Goal: Factor \(P \) into monic linear motion polynomials, i.e.,

\[
P = P_1 \cdot P_2 \cdots P_n, \quad P_i = t - z_i + \eta w_i, \quad w_i, z_i \in \mathbb{C}.
\]

Recall: \((z + \eta w) \cdot (z' + \eta w') = zz' + \eta (zw' + z'w)\).

By expanding the ansatz we obtain:

\[
P = (t - z_1 + \eta w_1) \cdot (t - z_2 + \eta w_2) \cdots (t - z_n + \eta w_n) = \]
\[
Z(t) + \eta \sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - z_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k.
\]

\[
\begin{align*}
\underbrace{Z(t)}_{\text{The } z_i \text{ are precisely the complex roots of } Z(t).} & \quad \underbrace{W(t)}_{\text{The } w_i \text{ can be found by ansatz and solving a linear system.}}
\end{align*}
\]

\[
\rightarrow \quad \text{The } z_i \text{ are precisely the complex roots of } Z(t).
\]

\[
\rightarrow \quad \text{The } w_i \text{ can be found by ansatz and solving a linear system.}
\]
Factorization into linear factors

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a monic motion polynomial of degree n.

Goal: Factor P into monic linear motion polynomials, i.e.,

$$P = P_1 \cdot P_2 \cdots P_n, \quad P_i = t - z_i + \eta w_i, \quad w_i, z_i \in \mathbb{C}.$$

Recall:

$$(z + \eta w) \cdot (z' + \eta w') = zz' + \eta (\bar{z} w' + z' \omega).$$

By expanding the ansatz we obtain:

$$P = (t - z_1 + \eta w_1) \cdot (t - z_2 + \eta w_2) \cdots (t - z_n + \eta w_n) =$$

$$= \prod_{i=1}^{n} (t - z_i) + \eta \sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - \bar{z}_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k.$$

$\overset{Z(t)}{\underbrace{\prod_{i=1}^{n} (t - z_i)}} + \overset{W(t)}{\underbrace{\sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - \bar{z}_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k}}$

\rightarrow The z_i are precisely the complex roots of $Z(t)$.

\rightarrow The w_i can be found by ansatz and solving a linear system.

\rightarrow The order of z_1, \ldots, z_n matters!
How to compute the w_i

Fix a permutation $z = (z_1, \ldots, z_n)$ of the complex roots of Z.

$$P = Z(t) + \eta \sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - z_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k.$$

\[\equiv: Q_k(z)\]

The undetermined coefficients $w_1, \ldots, w_n \in \mathbb{C}$ have to satisfy

$$\sum_{k=1}^{n} w_k Q_k(z) = W.$$
How to compute the w_i

Fix a permutation $\mathbf{z} = (z_1, \ldots, z_n)$ of the complex roots of Z.

$$P = Z(t) + \eta \sum_{k=1}^{n} \left(\prod_{j=1}^{k-1} (t - z_j) \right) \left(\prod_{j=k+1}^{n} (t - z_j) \right) w_k. =: Q_k(\mathbf{z})$$

The undetermined coefficients $w_1, \ldots, w_n \in \mathbb{C}$ have to satisfy

$$\sum_{k=1}^{n} w_k Q_k(\mathbf{z}) = W.$$

Lemma. Let $P = Z + \eta W$ be monic and let $\mathbf{z} = (z_1, \ldots, z_n)$ be a fixed permutation of the roots of Z over \mathbb{C}. Then P admits a factorization $P = P_1 \cdots P_n$ where $P_i(t) = (t - z_i) + \eta w_i$, $w_i \in \mathbb{C}$, if and only if W lies in the linear span $\langle Q_1(\mathbf{z}), \ldots, Q_n(\mathbf{z}) \rangle_{\mathbb{C}}$.
Sufficient condition for factorization

\[P = Z + \eta W, \text{ monic, } \deg P = n, \text{ admits a factorization} \]

\[\iff W \in \langle Q_1(z), \ldots, Q_n(z) \rangle_{\mathbb{C}} \]

\[\iff \gcd (Q_1(z), \ldots, Q_n(z)) = 1 \quad (\text{note that } \deg Q_k = n - 1). \]

Clearly, this is the case (for arbitrary \(W \) with \(\deg W < n \)) if the following matrix \(M_n \in \mathbb{C}^{n \times n} \) is non-singular:

\[
M_n = \begin{pmatrix}
\langle t^0 \rangle Q_1 & \ldots & \langle t^0 \rangle Q_n \\
\langle t^1 \rangle Q_1 & \ldots & \langle t^1 \rangle Q_n \\
\vdots & & \vdots \\
\langle t^{n-1} \rangle Q_1 & \ldots & \langle t^{n-1} \rangle Q_n
\end{pmatrix}
\]

(here \(\langle t^i \rangle Q_k \) denotes the coefficient of \(t^i \) in \(Q_k \)).

\[\rightarrow \text{ The matrix entries are, up to sign, elementary symmetric polynomials in the } z_i \text{ and } \overline{z}_i. \]
Evaluating the determinant

We have \(\text{det}(M_n) = \prod_{1 \leq i < j \leq n} (z_i - z_j) \).

- This is very much reminiscent of the Vandermonde determinant, and it can be proved in a similar fashion.
- A similar determinant evaluation is given in (Lascoux/Pragacz 2002) where the \(z_i \) appear without conjugation.
- The above formula is a special case of a determinant evaluation that appears in (Krattenthaler 1999).
Evaluating the determinant

We have \(\det(M_n) = \prod_{1 \leq i < j \leq n} (\bar{z}_i - z_j). \)

- This is very much reminiscent of the Vandermonde determinant, and it can be proved in a similar fashion.
- A similar determinant evaluation is given in (Lascoux/Pragacz 2002) where the \(z_i \) appear without conjugation.
- The above formula is a special case of a determinant evaluation that appears in (Krattenthaler 1999).

Lemma. Let \(P = Z + \eta W \in \mathbb{K}[t] \), monic, be such that \(Z \) has no pair of complex-conjugate roots (i.e., \(Z(\alpha) = 0 \implies Z(\overline{\alpha}) \neq 0 \)). Then for every permutation \((z_1, \ldots, z_n) \) of the roots of \(Z \), the polynomial \(P \) admits a factorization into linear factors.
Evaluating the determinant

We have \(\det(M_n) = \prod_{1 \leq i < j \leq n} (\bar{z}_i - z_j) \).

- This is very much reminiscent of the Vandermonde determinant, and it can be proved in a similar fashion.
- A similar determinant evaluation is given in (Lascoux/Pragacz 2002) where the \(z_i \) appear without conjugation.
- The above formula is a special case of a determinant evaluation that appears in (Krattenthaler 1999).

Lemma. Let \(P = Z + \eta W \in K[t] \), monic, be such that \(Z \) has no pair of complex-conjugate roots (i.e., \(Z(\alpha) = 0 \implies Z(\bar{\alpha}) \neq 0 \)). Then for every permutation \((z_1, \ldots, z_n) \) of the roots of \(Z \), the polynomial \(P \) admits a factorization into linear factors.

\(\rightarrow \) This condition is only sufficient, but not necessary, for the existence of a factorization.
Characterization of factorizable polynomials

Proposition. Let \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \) and \(W \in \mathbb{C}[t], \deg W < n \). Then

\[
W \in \langle Q_1(z), \ldots, Q_n(z) \rangle_{\mathbb{C}} \iff W \in \left(Q_1(z), \ldots, Q_n(z) \right) \cdot \mathbb{C}[t]
\]

where \(\left(Q_1(z), \ldots, Q_n(z) \right) \cdot \mathbb{C}[t] \) is the ideal generated by the \(Q_k(z) \).
Characterization of factorizable polynomials

Proposition. Let \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \) and \(W \in \mathbb{C}[t] \), \(\deg W < n \). Then

\[W \in \langle Q_1(z), \ldots, Q_n(z) \rangle_{\mathbb{C}} \iff W \in (Q_1(z), \ldots, Q_n(z)) \cdot \mathbb{C}[t] \]

where \((Q_1(z), \ldots, Q_n(z)) \cdot \mathbb{C}[t]\) is the ideal generated by the \(Q_k(z) \).

Remarks:

- The ideal on the right-hand side is generated by a single polynomial \(G := \gcd(Q_1, \ldots, Q_n) \).
- Note that \(G \) depends on the permutation \(z \).
Characterization of factorizable polynomials

Proposition. Let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $W \in \mathbb{C}[t]$, $\deg W < n$. Then

$$W \in \langle Q_1(\mathbf{z}), \ldots, Q_n(\mathbf{z}) \rangle_{\mathbb{C}} \iff W \in (Q_1(\mathbf{z}), \ldots, Q_n(\mathbf{z})) \cdot \mathbb{C}[t]$$

where $(Q_1(\mathbf{z}), \ldots, Q_n(\mathbf{z})) \cdot \mathbb{C}[t]$ is the ideal generated by the $Q_k(\mathbf{z})$.

Remarks:

- The ideal on the right-hand side is generated by a single polynomial $G := \gcd(Q_1, \ldots, Q_n)$.
- Note that G depends on the permutation \mathbf{z}.

Corollary. A monic motion polynomial $Z + \eta W \in \mathbb{K}[t]$ can be factored completely if there exists a permutation \mathbf{z} such that $G \mid W$.
Determine the gcd G

$$G = \gcd\left(Q_1(z), \ldots, Q_n(z)\right) \text{ for some } z \in \mathbb{C}^n.$$

$$Q_1 = (t - z_2)(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_2 = (t - \overline{z}_1)(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_3 = (t - \overline{z}_1)(t - \overline{z}_2)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_4 = (t - \overline{z}_1)(t - \overline{z}_2)(t - \overline{z}_3) \cdots (t - z_{n-1})(t - z_n)$$

$$\vdots$$

$$Q_{n-2} = (t - \overline{z}_1)(t - \overline{z}_2)(t - \overline{z}_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_{n-1} = (t - \overline{z}_1)(t - \overline{z}_2)(t - \overline{z}_3)(t - \overline{z}_4) \cdots (t - z_n)$$

$$Q_n = (t - \overline{z}_1)(t - \overline{z}_2)(t - \overline{z}_3)(t - \overline{z}_4) \cdots (t - \overline{z}_{n-1})$$
Determine the gcd G

$G = \gcd (Q_1(z), \ldots, Q_n(z))$ for some $z \in \mathbb{C}^n$.

\[
Q_1 = (t - z_2)(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_2 = (t - \overline{z_1})(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_3 = (t - \overline{z_1})(t - \overline{z_2})(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_4 = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3}) \cdots (t - z_{n-1})(t - z_n) \\
\vdots \\
Q_{n-2} = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z_{n-1})(t - z_n) \\
Q_{n-1} = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z_{n-1})(t - z_n) \\
Q_n = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - \overline{z_{n-1}})
\]

- Assume $\overline{z_2} = z_3$. Then $(t - z_3) \mid G$.

Determine the gcd G

$$G = \gcd\left(Q_1(z), \ldots, Q_n(z)\right) \text{ for some } z \in \mathbb{C}^n.$$

$$Q_1 = (t - z_2)(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_2 = (t - \overline{z_1}) (t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_3 = (t - \overline{z_1})(t - \overline{z_2}) (t - z_4) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_4 = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3}) \cdots (t - z_{n-1})(t - z_n)$$

$$\vdots$$

$$Q_{n-2} = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z_{n-1})(t - z_n)$$

$$Q_{n-1} = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z)$$

$$Q_n = (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - \overline{z_{n-1}})$$

- Assume $\overline{z_2} = z_3$. Then $(t - z_3) \mid G$.
- Assume $\overline{z_1} = z_n$. Then $(t - z_n) \mid G$.
Determine the gcd G

$G = \gcd (Q_1(z), \ldots, Q_n(z))$ for some $z \in \mathbb{C}^n$.

\begin{align*}
Q_1 &= (t - z_2)(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_2 &= (t - \overline{z_1})(t - z_3)(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_3 &= (t - \overline{z_1})(t - \overline{z_2})(t - z_4) \cdots (t - z_{n-1})(t - z_n) \\
Q_4 &= (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3}) \cdots (t - z_{n-1})(t - z_n) \\
\vdots \\
Q_{n-2} &= (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z_{n-1})(t - z_n) \\
Q_{n-1} &= (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - z_{n-1})(t - \overline{z_n}) \\
Q_n &= (t - \overline{z_1})(t - \overline{z_2})(t - \overline{z_3})(t - \overline{z_4}) \cdots (t - \overline{z_{n-1}})
\end{align*}

- Assume $\overline{z_2} = z_3$. Then $(t - z_3) \mid G$.
- Assume $\overline{z_1} = z_n$. Then $(t - z_n) \mid G$.
- Assume $\overline{z_2} = z_4 = \overline{z_{n-1}}$. Then $(t - z_4)(t - z_{n-1}) \mid G$.
Computation of G

Definition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z_j}\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha)$

Proposition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and let M be a matching of z of maximal size. Then we have

$$\gcd(Q_1(z), \ldots, Q_n(z)) = \prod_{(i, j) \in M} (t - \overline{z_j})$$

(where the \gcd is assumed to be a monic polynomial).

Exercise: What is the \gcd in the above example?
Computation of G

Definition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z}_j\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \overline{\alpha}, \alpha, \alpha, \alpha, \overline{\alpha}, \overline{\alpha})$
Computation of G

Definition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z_j}\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \overline{\alpha}, \alpha, \alpha, \overline{\alpha}, \overline{\alpha})$

Proposition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and let M be a matching of z of maximal size. Then we have

$$\gcd(\underset{i=1}{Q}^{n}(z)) = \prod_{(i, j) \in M} (t - z_j)$$

(where the \gcd is assumed to be a monic polynomial).

Exercise: What is the gcd in the above example?
Computation of G

Definition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z_j}\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \overline{\alpha}, \alpha, \alpha, \alpha, \overline{\alpha}, \overline{\alpha})$
Computation of G

Definition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z_j}\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \overline{\alpha}, \alpha, \alpha, \alpha, \overline{\alpha}, \overline{\alpha})$

Proposition. Let $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and let M be a matching of z of maximal size. Then we have

$$\gcd(Q_1(z), \ldots, Q_n(z)) = \prod_{(i,j) \in M} (t - z_j)$$

(where the gcd is assumed to be a monic polynomial).
Computation of G

Definition. Let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$. A set

$$M \subseteq \{(i, j) : 1 \leq i < j \leq n \land z_i = \overline{z_j}\}$$

is called a **matching** of \mathbf{z} if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Example: $(\alpha, \overline{\alpha}, \alpha, \alpha, \alpha, \overline{\alpha}, \overline{\alpha})$

Proposition. Let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and let M be a matching of \mathbf{z} of maximal size. Then we have

$$\gcd(Q_1(\mathbf{z}), \ldots, Q_n(\mathbf{z})) = \prod_{(i, j) \in M} (t - z_j)$$

(where the gcd is assumed to be a monic polynomial).

Exercise: What is the gcd in the above example?
Some examples

Exercise: Let \(Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1} \). Find the permutations \(z \) of the roots of \(Z \) that give the following \(G' \)’s.

<table>
<thead>
<tr>
<th>(z)</th>
<th>(G)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((t - \alpha)^r)</td>
<td>((t - \overline{\alpha})^r)</td>
<td></td>
</tr>
</tbody>
</table>
Some examples

Exercise: Let $Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1}$. Find the permutations z of the roots of Z that give the following G’s.

<table>
<thead>
<tr>
<th>z</th>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \ldots, \alpha, \overline{\alpha}, \ldots, \overline{\alpha})$</td>
<td>$(t - \overline{\alpha})^r$</td>
<td>${(1, r + 1), (2, r + 2), \ldots, (r, 2r)}$</td>
</tr>
</tbody>
</table>
Some examples

Exercise: Let $Z = (t - \alpha)^r (t - \bar{\alpha})^{r+1}$. Find the permutations z of the roots of Z that give the following G’s.

<table>
<thead>
<tr>
<th>z</th>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \ldots, \alpha, \bar{\alpha}, \ldots, \bar{\alpha})$</td>
<td>$(t - \alpha)^r$</td>
<td>${(1, r + 1), (2, r + 2), \ldots, (r, 2r)}$</td>
</tr>
<tr>
<td></td>
<td>$(t - \bar{\alpha})^r$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(t - \alpha)^r$</td>
<td></td>
</tr>
</tbody>
</table>
Some examples

Exercise: Let $Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1}$. Find the permutations z of the roots of Z that give the following G’s.

<table>
<thead>
<tr>
<th>z</th>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \ldots, \alpha, \overline{\alpha}, \ldots, \overline{\alpha})$</td>
<td>$(t - \overline{\alpha})^r$</td>
<td>${(1, r + 1), (2, r + 2), \ldots, (r, 2r)}$</td>
</tr>
<tr>
<td>$(\overline{\alpha}, \ldots, \overline{\alpha}, \alpha, \ldots, \alpha)$</td>
<td>$(t - \alpha)^r$</td>
<td>${(1, r + 2), (2, r + 3), \ldots, (r, 2r + 1)}$</td>
</tr>
</tbody>
</table>

The cases discussed here are the extreme ones:
Exercise: Let \(Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1} \). Find the permutations \(z \) of the roots of \(Z \) that give the following \(G \)'s.

<table>
<thead>
<tr>
<th>(z)</th>
<th>(G)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \ldots, \alpha, \overline{\alpha}, \ldots, \overline{\alpha}))</td>
<td>((t - \overline{\alpha})^r)</td>
<td>{((1, r + 1), (2, r + 2), \ldots, (r, 2r)}}</td>
</tr>
<tr>
<td>((\overline{\alpha}, \ldots, \overline{\alpha}, \alpha, \ldots, \alpha))</td>
<td>((t - \alpha)^r)</td>
<td>{((1, r+2), (2, r+3), \ldots, (r, 2r+1)}}</td>
</tr>
<tr>
<td></td>
<td>((t - \alpha)^r (t - \overline{\alpha})^r)</td>
<td></td>
</tr>
</tbody>
</table>
Some examples

Exercise: Let $Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1}$. Find the permutations z of the roots of Z that give the following G’s.

<table>
<thead>
<tr>
<th>z</th>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \ldots, \alpha, \overline{\alpha}, \ldots, \overline{\alpha})$</td>
<td>$(t - \overline{\alpha})^r$</td>
<td>${(1, r + 1), (2, r + 2), \ldots, (r, 2r)}$</td>
</tr>
<tr>
<td>$(\overline{\alpha}, \ldots, \overline{\alpha}, \alpha, \ldots, \alpha)$</td>
<td>$(t - \alpha)^r$</td>
<td>${(1, r+2), (2, r+3), \ldots, (r, 2r+1)}$</td>
</tr>
<tr>
<td>$(\overline{\alpha}, \alpha, \overline{\alpha}, \alpha, \ldots, \alpha, \overline{\alpha})$</td>
<td>$(t - \alpha)^r (t - \overline{\alpha})^r$</td>
<td>${(1, 2), (2, 3), \ldots, (2r, 2r + 1)}$</td>
</tr>
</tbody>
</table>
Some examples

Exercise: Let $Z = (t - \alpha)^r (t - \overline{\alpha})^{r+1}$. Find the permutations z of the roots of Z that give the following G’s.

<table>
<thead>
<tr>
<th>z</th>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \ldots, \alpha, \overline{\alpha}, \ldots, \overline{\alpha})$</td>
<td>$(t - \overline{\alpha})^r$</td>
<td>${(1, r+1), (2, r+2), \ldots, (r, 2r)}$</td>
</tr>
<tr>
<td>$(\overline{\alpha}, \ldots, \overline{\alpha}, \alpha, \ldots, \alpha)$</td>
<td>$(t - \alpha)^r$</td>
<td>${(1, r+2), (2, r+3), \ldots, (r, 2r+1)}$</td>
</tr>
<tr>
<td>$(\overline{\alpha}, \alpha, \overline{\alpha}, \alpha, \ldots, \alpha, \overline{\alpha})$</td>
<td>$(t - \alpha)^r (t - \overline{\alpha})^r$</td>
<td>${(1, 2), (2, 3), \ldots, (2r, 2r+1)}$</td>
</tr>
</tbody>
</table>

The cases discussed here are the extreme ones:

- It is easy to see that $r \leq \deg(G) \leq 2r$.
- For any $G = (t - \alpha)^i(t - \overline{\alpha})^j$ with $0 \leq i, j \leq r$ and $i + j \geq r$ there exists a permutation z which produces this gcd G.
No factorization?

Recall: \(P = Z + \eta W \) factors iff there exists \(z \) such that \(G \mid W \).

Problem: Consider the motion polynomial \(t^2 + 1 + \eta \).
No factorization?

Recall: $P = Z + \eta W$ factors iff there exists z such that $G \mid W$.

Problem: Consider the motion polynomial $t^2 + 1 + \eta$.

- For the two permutations $(\iota, -\iota)$ and $(-\iota, \iota)$ we get the gcd $G = t + \iota$ resp. $G = t - \iota$.

\rightarrow Caveat: this trick works only for $\alpha \not\in \mathbb{R}$!
No factorization?

Recall: \(P = Z + \eta W \) factors iff there exists \(z \) such that \(G \mid W \).

Problem: Consider the motion polynomial \(t^2 + 1 + \eta \).

- For the two permutations \((\iota, -\iota)\) and \((-\iota, \iota)\) we get the gcd \(G = t + \iota \) resp. \(G = t - \iota \).
- In both cases \(G \nmid W \) since \(W = 1 \).

\(\rightarrow \) This polynomial cannot be factored!
No factorization?

Recall: $P = Z + \eta W$ factors iff there exists z such that $G \mid W$.

Problem: Consider the motion polynomial $t^2 + 1 + \eta$.

- For the two permutations $(i, -i)$ and $(-i, i)$ we get the gcd $G = t + i$ resp. $G = t - i$.
- In both cases $G \nmid W$ since $W = 1$.

→ This polynomial cannot be factored!

Solution: Multiply P by some real polynomial $R \in \mathbb{R}[t]$!
No factorization?

Recall: $P = Z + \eta W$ factors iff there exists z such that $G \mid W$.

Problem: Consider the motion polynomial $t^2 + 1 + \eta$.

- For the two permutations $(i, -i)$ and $(-i, i)$ we get the gcd
 $G = t + i$ resp. $G = t - i$.
- In both cases $G \nmid W$ since $W = 1$.

\rightarrow This polynomial cannot be factored!

Solution: Multiply P by some real polynomial $R \in \mathbb{R}[t]$!

- Note that this doesn’t change the motion itself.
No factorization?

Recall: \(P = Z + \eta W \) factors iff there exists \(z \) such that \(G \mid W \).

Problem: Consider the motion polynomial \(t^2 + 1 + \eta \).
- For the two permutations \((\imath, -\imath)\) and \((-\imath, \imath)\) we get the gcd \(G = t + \imath \) resp. \(G = t - \imath \).
- In both cases \(G \nmid W \) since \(W = 1 \).

\(\rightarrow \) This polynomial cannot be factored!

Solution: Multiply \(P \) by some real polynomial \(R \in \mathbb{R}[t] \)!
- Note that this doesn’t change the motion itself.
- Consider e.g. \(R = (t - \alpha)(t - \overline{\alpha}) \) and put \(P' = Z' + \eta W' = PR \).
No factorization?

Recall: $P = Z + \eta W$ factors iff there exists z such that $G \mid W$.

Problem: Consider the motion polynomial $t^2 + 1 + \eta$.

- For the two permutations $(\iota, -\iota)$ and $(-\iota, \iota)$ we get the gcd $G = t + \iota$ resp. $G = t - \iota$.
- In both cases $G \nmid W$ since $W = 1$.

\rightarrow This polynomial cannot be factored!

Solution: Multiply P by some real polynomial $R \in \mathbb{R}[t]$!

- Note that this doesn’t change the motion itself.
- Consider e.g. $R = (t - \alpha)(t - \overline{\alpha})$ and put $P' = Z' + \eta W' = PR$.
- Clearly, $W' = WR$, so we add two roots to W.

No factorization?

Recall: \(P = Z + \eta W \) factors iff there exists \(z \) such that \(G \mid W \).

Problem: Consider the motion polynomial \(t^2 + 1 + \eta \).

- For the two permutations \((i, -i)\) and \((-i, i)\) we get the gcd \(G = t + i \) resp. \(G = t - i \).
- In both cases \(G \nmid W \) since \(W = 1 \).

\(\Rightarrow \) This polynomial cannot be factored!

Solution: Multiply \(P \) by some real polynomial \(R \in \mathbb{R}[t] \)!

- Note that this doesn’t change the motion itself.
- Consider e.g. \(R = (t - \alpha)(t - \overline{\alpha}) \) and put \(P' = Z' + \eta W' = PR \).
- Clearly, \(W' = WR \), so we add two roots to \(W \).
- On the other hand, there exists \(z \) such that \(G' = G \cdot (t - \alpha) \) or \(G' = G \cdot (t - \overline{\alpha}) \). Thus we add only a single root to \(G \).
No factorization?

Recall: $P = Z + \eta W$ factors iff there exists z such that $G \mid W$.

Problem: Consider the motion polynomial $t^2 + 1 + \eta$.

- For the two permutations $(i, -i)$ and $(-i, i)$ we get the gcd $G = t + i$ resp. $G = t - i$.
- In both cases $G \nmid W$ since $W = 1$.

This polynomial cannot be factored!

Solution: Multiply P by some real polynomial $R \in \mathbb{R}[t]$!

- Note that this doesn’t change the motion itself.
- Consider e.g. $R = (t - \alpha) (t - \overline{\alpha})$ and put $P' = Z' + \eta W' = PR$.
- Clearly, $W' = WR$, so we add two roots to W.
- On the other hand, there exists z such that $G' = G \cdot (t - \alpha)$ or $G' = G \cdot (t - \overline{\alpha})$. Thus we add only a single root to G.
- Repeating this process, we finally achieve $G \mid W$, as desired.
No factorization?

Recall: \(P = Z + \eta W \) factors iff there exists \(z \) such that \(G \mid W \).

Problem: Consider the motion polynomial \(t^2 + 1 + \eta \).

- For the two permutations \((i, -i)\) and \((-i, i)\) we get the gcd \(G = t + i \) resp. \(G = t - i \).
- In both cases \(G \nmid W \) since \(W = 1 \).

\[\implies \text{This polynomial cannot be factored!} \]

Solution: Multiply \(P \) by some real polynomial \(R \in \mathbb{R}[t] \!.

- Note that this doesn’t change the motion itself.
- Consider e.g. \(R = (t - \alpha)(t - \overline{\alpha}) \) and put \(P' = Z' + \eta W' = PR \).
- Clearly, \(W' = WR \), so we add two roots to \(W \).
- On the other hand, there exists \(z \) such that \(G' = G \cdot (t - \alpha) \) or \(G' = G \cdot (t - \overline{\alpha}) \). Thus we add only a single root to \(G \).
- Repeating this process, we finally achieve \(G \mid W \), as desired.

\[\implies \text{Caveat: this trick works only for } \alpha \not\in \mathbb{R}! \]
Bounded motions

Recall: The origin under the motion $h + \eta (f + \imath g)$ traces the curve $(f/h, g/h)$.

▶ We are interested in linkages with revolute joints.
Bounded motions

Recall: The origin under the motion $h + \eta (f + \imath g)$ traces the curve $(f/h, g/h)$.

- We are interested in linkages with revolute joints.
- Such linkages can only draw **bounded rational curves**.
Bounded motions

Recall: The origin under the motion $h + \eta (f + ig)$ traces the curve $(f/h, g/h)$.

- We are interested in linkages with revolute joints.
- Such linkages can only draw **bounded rational curves**.
- This implies that $\text{deg } h \geq \max\{\text{deg } f, \text{deg } g\}$.
Bounded motions

Recall: The origin under the motion \(h + \eta (f + ig) \) traces the curve \((f/h, g/h)\).

- We are interested in linkages with revolute joints.
- Such linkages can only draw bounded rational curves.
- This implies that \(\deg h \geq \max\{\deg f, \deg g\} \).
- By translating the point \(\lim_{t \to \infty} (f/h, g/h) \) to \((0, 0)\) we can even have \(\deg h > \max\{\deg f, \deg g\} \).
Bounded motions

Recall: The origin under the motion \(h + η (f + ι g) \) traces the curve \((f/h, g/h)\).

- We are interested in linkages with revolute joints.
- Such linkages can only draw **bounded rational curves**.
- This implies that \(\deg h \geq \max\{\deg f, \deg g\} \).
- By translating the point \(\lim_{t \to ∞} (f/h, g/h) \) to \((0, 0)\) we can even have \(\deg h > \max\{\deg f, \deg g\} \).
- By making \(h \) monic, we obtain a monic motion polynomial.
Bounded motions

Recall: The origin under the motion \(h + \eta (f + ig) \) traces the curve \((f/h, g/h) \).

- We are interested in linkages with revolute joints.
- Such linkages can only draw bounded rational curves.
- This implies that \(\deg h \geq \max\{\deg f, \deg g\} \).
- By translating the point \(\lim_{t \to \infty} (f/h, g/h) \) to \((0, 0)\) we can even have \(\deg h > \max\{\deg f, \deg g\} \).
- By making \(h \) monic, we obtain a monic motion polynomial.
- The boundedness of the curve implies that \(h \) has no real roots.
Bounded motions

Recall: The origin under the motion \(h + \eta (f + \imath g) \) traces the curve \((f/h, g/h)\).

- We are interested in linkages with revolute joints.
- Such linkages can only draw bounded rational curves.
- This implies that \(\deg h \geq \max\{\deg f, \deg g\} \).
- By translating the point \(\lim_{t \to \infty} (f/h, g/h) \) to \((0, 0)\) we can even have \(\deg h > \max\{\deg f, \deg g\} \).
- By making \(h \) monic, we obtain a monic motion polynomial.
- The boundedness of the curve implies that \(h \) has no real roots.

Definition. Let \(P = Z + \eta W \) be a motion polynomial. We say that \(P \) is bounded if it is monic and if \(Z \) does not have real roots.
Bounded motions

Recall: The origin under the motion \(h + \eta (f + \imath g) \) traces the curve \((f/h, g/h)\).

- We are interested in linkages with revolute joints.
- Such linkages can only draw **bounded rational curves**.
- This implies that \(\deg h \geq \max\{\deg f, \deg g\} \).
- By translating the point \(\lim_{t \to \infty} (f/h, g/h) \) to \((0, 0)\) we can even have \(\deg h > \max\{\deg f, \deg g\} \).
- By making \(h \) monic, we obtain a monic motion polynomial.
- The boundedness of the curve implies that \(h \) has no real roots.

Definition. Let \(P = Z + \eta W \) be a motion polynomial. We say that \(P \) is **bounded** if it is monic and if \(Z \) does not have real roots.

Theorem. Let \(P \in \mathbb{K}[t] \) be a bounded motion polynomial. Then there exists a real polynomial \(R \in \mathbb{R}[t] \) such that \(RP \) can be factored into linear polynomials.
Factorization algorithm

Input: $P = Z + \eta W \in \mathbb{K}[t]$ a bounded motion polynomial such that Z and W have no common factor in $\mathbb{R}[t] \setminus \mathbb{R}$.

Output: a polynomial $R \in \mathbb{R}[t]$ and a tuple (k_1, \ldots, k_n) of elements of \mathbb{K} such that $(t - k_1) \cdots (t - k_n) = R(t) \cdot P(t)$.

1: Factor $Z(t)$ over \mathbb{C}: $Z = \prod_{i=1}^{h} (t - \alpha_i)^{r_i} (t - \overline{\alpha_i})^{s_i}$ with $r_i \geq s_i \geq 0$.

2: Initialize $q = \text{empty}$ (the empty tuple).

3: For $i = 1, \ldots, h$ Do

4: Set $u_i = \max_j ((t - \alpha_i)^j | W)$ and $v_i = \max_j ((t - \overline{\alpha_i})^j | W)$.

5: Set $m_i = \min \{s_i, u_i + v_i\}$

6: Set $\omega = \left(\overline{\alpha_i}, \ldots, \overline{\alpha_i}, \alpha_i, \ldots, \alpha_i\right)$, $s_i - \min \{s_i, v_i\}$, $r_i + s_i - m_i$, $s_i - \min \{s_i, u_i\}$.

7: Set $q = \text{concatenate}(q, \omega)$.

8: End For

9: Set $R = \prod_{i=1}^{h} ((t - \alpha_i)(t - \overline{\alpha_i}))^{s_i - m_i}$.

10: Set $n = \text{length}(q)$.

11: Set $Q_j = \prod_{l=1}^{j-1} (t - q_l) \prod_{l=j+1}^{n} (t - \overline{q_l})$ for all $j \in \{1, \ldots, n\}$.

12: Compute $\{w_j\}_{j=1}^{n}$ s.t. $RW = \sum_{j=1}^{n} w_j Q_j$ using linear algebra.

13: Set $k_j = q_j - \eta w_j$ for all $j \in \{1, \ldots, n\}$.

14: Return $(R, (k_1, \ldots, k_n))$.
Example: ellipse

We want to construct a linkage drawing an ellipse with radii 1 and $\frac{1}{2}$.

Show Mathematica demo!
Example: ellipse

We want to construct a linkage drawing an ellipse with radii 1 and $\frac{1}{2}$.

- It is given by the equation $x^2 + 4y^2 = 1$ (the origin is the center of the ellipse).
We want to construct a linkage drawing an ellipse with radii 1 and $\frac{1}{2}$.

▶ It is given by the equation $x^2 + 4y^2 = 1$ (the origin is the center of the ellipse).

▶ Translate the center to $(-1, 0)$: the equation becomes $(x + 1)^2 + 4y^2 = 1$.

Example: ellipse
Example: ellipse

We want to construct a linkage drawing an ellipse with radii 1 and \(\frac{1}{2} \).

- It is given by the equation \(x^2 + 4y^2 = 1 \) (the origin is the center of the ellipse).
- Translate the center to \((-1, 0)\): the equation becomes \((x + 1)^2 + 4y^2 = 1\).
- A parametrization is given by \(\frac{1}{t^2+1} \left(\begin{array}{c} -2 \\ t \end{array} \right) \).
We want to construct a linkage drawing an ellipse with radii 1 and $\frac{1}{2}$.

- It is given by the equation $x^2 + 4y^2 = 1$ (the origin is the center of the ellipse).
- Translate the center to $(-1, 0)$: the equation becomes $(x + 1)^2 + 4y^2 = 1$.
- A parametrization is given by $\frac{1}{t^2+1} \left(\begin{array}{c} -2 \\ t \end{array} \right)$.
- Hence the motion polynomial $t^2 + 1 + \eta (-2 + \nu t)$ describes a motion under which the origin traces the ellipse.
Example: ellipse

We want to construct a linkage drawing an ellipse with radii 1 and $\frac{1}{2}$.

▸ It is given by the equation $x^2 + 4y^2 = 1$ (the origin is the center of the ellipse).

▸ Translate the center to $(-1,0)$: the equation becomes $(x + 1)^2 + 4y^2 = 1$.

▸ A parametrization is given by $\frac{1}{t^2+1}(-2t)$.

▸ Hence the motion polynomial $t^2 + 1 + \eta(-2 + \eta t)$ describes a motion under which the origin traces the ellipse.

→ Show Mathematica demo!
Construction of weak linkages

Recall: $L = ((V, E), \rho)$ weakly realizes a motion $\phi: \mathbb{R} \to SE_2$ if $\phi(\mathbb{R}) \subseteq \text{RP}(i, j)$ for some $i, j \in V$.

Construction:
Construction of weak linkages

Recall: \(L = ((V, E), \rho) \) weakly realizes a motion \(\phi: \mathbb{R} \rightarrow SE_2 \) if \(\phi(\mathbb{R}) \subseteq RP(i, j) \) for some \(i, j \in V \).

Construction:

- The motion \(\phi \) is represented by a motion polynomial \(P \in \mathbb{K}[t] \).
Construction of weak linkages

Recall: \(L = ((V, E), \rho) \) weakly realizes a motion \(\phi: \mathbb{R} \to \text{SE}_2 \) if \(\phi(\mathbb{R}) \subseteq \text{RP}(i, j) \) for some \(i, j \in V \).

Construction:

- The motion \(\phi \) is represented by a motion polynomial \(P \in \mathbb{K}[t] \).
- Determine \(R \in \mathbb{R}[t] \) such that \(R(t) \cdot P(t) = \prod_{i=1}^{n}(t - k_i) \).
Construction of weak linkages

Recall: \(L = ((V, E), \rho) \) weakly realizes a motion \(\phi: \mathbb{R} \to \text{SE}_2 \) if \(\phi(\mathbb{R}) \subseteq \text{RP}(i, j) \) for some \(i, j \in V \).

Construction:

- The motion \(\phi \) is represented by a motion polynomial \(P \in \mathbb{K}[t] \).
- Determine \(R \in \mathbb{R}[t] \) such that \(R(t) \cdot P(t) = \prod_{i=1}^{n} (t - k_i) \).
- Let \(G = (V, E) \) with

 \[
 V = \{1, \ldots, n + 1\}
 \]
 \[
 E = \{(1, 2), (2, 3), \ldots, (n, n + 1)\}.
 \]
Construction of weak linkages

Recall: \(L = (\langle V, E \rangle, \rho) \) weakly realizes a motion \(\phi: \mathbb{R} \to \text{SE}_2 \) if \(\phi(\mathbb{R}) \subseteq \text{RP}(i, j) \) for some \(i, j \in V \).

Construction:

- The motion \(\phi \) is represented by a motion polynomial \(P \in \mathbb{K}[t] \).
- Determine \(R \in \mathbb{R}[t] \) such that \(R(t) \cdot P(t) = \prod_{i=1}^{n} (t - k_i) \).
- Let \(G = (V, E) \) with
 \[
 V = \{1, \ldots, n+1\} \\
 E = \{(1, 2), (2, 3), \ldots, (n, n+1)\}.
 \]
- Define \(\rho(i, i+1) \) to be the fixed point of \(k_i \).
Construction of weak linkages

Recall: $L = ((V, E), \rho)$ weakly realizes a motion $\phi: \mathbb{R} \to \text{SE}_2$ if $\phi(\mathbb{R}) \subseteq R\varphi(i, j)$ for some $i, j \in V$.

Construction:

- The motion ϕ is represented by a motion polynomial $P \in \mathbb{K}[t]$.
- Determine $R \in \mathbb{R}[t]$ such that $R(t) \cdot P(t) = \prod_{i=1}^{n}(t - k_i)$.
- Let $G = (V, E)$ with

 $V = \{1, \ldots, n + 1\}$

 $E = \{(1, 2), (2, 3), \ldots, (n, n + 1)\}$.

- Define $\rho(i, i + 1)$ to be the fixed point of k_i.
- The link graph looks as follows:

```
1 -- k_1 -- 2 -- k_2 -- 3 -- \cdots -- n -- k_n -- n+1
```
Construction of weak linkages

Recall: \(L = ((V, E), \rho) \) weakly realizes a motion \(\phi: \mathbb{R} \to \text{SE}_2 \) if \(\phi(\mathbb{R}) \subseteq \text{RP}(i, j) \) for some \(i, j \in V \).

Construction:

- The motion \(\phi \) is represented by a motion polynomial \(P \in \mathbb{K}[t] \).
- Determine \(R \in \mathbb{R}[t] \) such that \(R(t) \cdot P(t) = \prod_{i=1}^{n} (t - k_i) \).
- Let \(G = (V, E) \) with
 \[
 V = \{1, \ldots, n + 1\} \quad \text{and} \quad E = \{(1, 2), (2, 3), \ldots, (n, n + 1)\}.
 \]
- Define \(\rho(i, i + 1) \) to be the fixed point of \(k_i \).

\[
\begin{array}{cccccccc}
1 & \quad k_1 & \quad 2 & \quad k_2 & \quad 3 & \cdots & \quad n & \quad k_n & \quad n+1
\end{array}
\]

\(\longrightarrow \) Show Mathematica demo!
The flip procedure

Goal: “Rigidify” the weak linkage in order to get a strong realization (mobility one).
The flip procedure

Goal: “Rigidify” the weak linkage in order to get a strong realization (mobility one).

Simplest case: $P = (t - z_1 - \eta w_1) \cdot (t - z_2 - \eta w_2)$, bounded:

- If $z_1 \neq \overline{z_2}$ then there exist $w_3, w_4 \in \mathbb{C}$ such that
 $$(t - z_1 - \eta w_1) \cdot (t - z_2 - \eta w_2) = (t - z_2 - \eta w_3) \cdot (t - z_1 - \eta w_4).$$
- If $z_1 \neq z_2$ then these two factorizations are different.
The flip procedure

Goal: “Rigidify” the weak linkage in order to get a strong realization (mobility one).

Simplest case: \(P = (t - z_1 - \eta w_1) \cdot (t - z_2 - \eta w_2) \), bounded:

- If \(z_1 \neq z_2 \) then there exist \(w_3, w_4 \in \mathbb{C} \) such that
 \((t - z_1 - \eta w_1) \cdot (t - z_2 - \eta w_2) = (t - z_2 - \eta w_3) \cdot (t - z_1 - \eta w_4) \).
- If \(z_1 \neq z_2 \) then these two factorizations are different.
Flip linkage

Let $k_1 = z_1 + \eta w_1$ and $k_2 = z_2 + \eta w_2$ ($z_i, w_i \in \mathbb{C}$).

There is a linkage realizing $P = (t - k_1) \cdot (t - k_2)$ weakly.
Flip linkage

- Let $k_1 = z_1 + \eta w_1$ and $k_2 = z_2 + \eta w_2$ ($z_i, w_i \in \mathbb{C}$).
- There is a linkage realizing $P = (t - k_1) \cdot (t - k_2)$ weakly.
- Assume that the fixed points of k_1 and k_2 are different.
Flip linkage

Let $k_1 = z_1 + \eta w_1$ and $k_2 = z_2 + \eta w_2$ ($z_i, w_i \in \mathbb{C}$).

There is a linkage realizing $P = (t - k_1) \cdot (t - k_2)$ weakly.

Assume that the fixed points of k_1 and k_2 are different.

If $z_1 \neq \overline{z_2}$ and $z_1 \neq z_2$, then there are $k_3 = z_2 + \eta w_3$ and $k_4 = z_1 + \eta w_4$ such that $(t - k_1)(t - k_2) = (t - k_3)(t - k_4)$.
Let \(k_1 = z_1 + \eta w_1 \) and \(k_2 = z_2 + \eta w_2 \) \((z_i, w_i \in \mathbb{C})\).

There is a linkage realizing \(P = (t - k_1) \cdot (t - k_2) \) weakly.

Assume that the fixed points of \(k_1 \) and \(k_2 \) are different.

If \(z_1 \neq \overline{z_2} \) and \(z_1 \neq z_2 \), then there are \(k_3 = z_2 + \eta w_3 \) and \(k_4 = z_1 + \eta w_4 \) such that \((t-k_1)(t-k_2) = (t-k_3)(t-k_4)\).

There is a linkage realizing \(P = (t - k_3) \cdot (t - k_4) \) weakly.
Flip linkage

Let \(k_1 = z_1 + \eta w_1 \) and \(k_2 = z_2 + \eta w_2 \) \((z_i, w_i \in \mathbb{C})\).

There is a linkage realizing \(P = (t - k_1) \cdot (t - k_2) \) weakly.

Assume that the fixed points of \(k_1 \) and \(k_2 \) are different.

If \(z_1 \neq \overline{z_2} \) and \(z_1 \neq z_2 \), then there are \(k_3 = z_2 + \eta w_3 \) and \(k_4 = z_1 + \eta w_4 \) such that
\[
(t - k_1)(t - k_2) = (t - k_3)(t - k_4).
\]

There is a linkage realizing \(P = (t - k_3) \cdot (t - k_4) \) weakly.

Combining these two linkages yields a linkage with mobility one, strongly realizing \(P \).
Iterated flips
Iterated flips

1 \rightarrow k_1 \rightarrow 2 \rightarrow k_2 \rightarrow 3 \rightarrow k_3 \rightarrow 4 \rightarrow k_4 \rightarrow 5

\begin{align*}
l_1 & \downarrow \\
6 & \end{align*}
Iterated flips
Iterated flips

1 \xrightarrow{k_1} 2 \xrightarrow{k_2} 3 \xrightarrow{k_3} 4 \xrightarrow{k_4} 5

\[\begin{align*}
& 6 \xrightarrow{\tilde{k}_1} 7 \xrightarrow{\tilde{k}_2} 8
\end{align*} \]
Iterated flips
Iterated flips

1 \rightarrow \tilde{k}_1 \rightarrow 2 \rightarrow k_2 \rightarrow 3 \rightarrow k_3 \rightarrow 4 \rightarrow k_4 \rightarrow 5

6 \rightarrow l_1 \rightarrow \tilde{k}_1 \rightarrow 7 \rightarrow \tilde{k}_2 \rightarrow 8 \rightarrow \tilde{k}_3 \rightarrow 9 \rightarrow \tilde{k}_4 \rightarrow 10
Iterated flips

\[\begin{align*}
2 & \xrightarrow{k_2} 3 & k_3 & \xrightarrow{k_4} 4 & \xrightarrow{k_5} 5 \\
7 & \xrightarrow{\tilde{k}_2} 8 & \xrightarrow{\tilde{k}_3} 9 & \xrightarrow{\tilde{k}_4} 10 \\
\end{align*} \]
Construction of strong linkages

Algorithm (sketch).

1. Given a motion $\phi: \mathbb{R} \rightarrow SE_2$ via a polynomial $P \in K[t]$.

Theorem. The linkage obtained in this way has mobility one and strongly realizes the motion ϕ.

However, $Conf(L)$ has two components, i.e., this linkage can jump between two different “modes”.

Corollary. A bounded rational curve given by $(f/h, g/h)$ with $f, g, h \in \mathbb{R}[t]$ such that $\deg h > \max\{\deg f, \deg g\}$ can be drawn by a linkage with at most $4d$ links and $6d - 2$ joints ($d = \deg h$).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion \(\phi: \mathbb{R} \to SE_2 \) via a polynomial \(P \in K[t] \).
2. Compute \(R \in \mathbb{R}[t] \) such that \(RP \) factors into linear factors.

Theorem.
The linkage obtained in this way has mobility one and strongly realizes the motion \(\phi \).

However, \(\text{Conf}(L) \) has two components. i.e., this linkage can jump between two different "modes".

Corollary.
A bounded rational curve given by \((f/h, g/h) \) with \(f, g, h \in \mathbb{R}[t] \) such that \(\deg h > \max\{ \deg f, \deg g \} \) can be drawn by a linkage with at most \(4d \) links and \(6d - 2 \) joints (\(d = \deg h \)).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion $\phi : \mathbb{R} \to SE_2$ via a polynomial $P \in K[t]$.
2. Compute $R \in \mathbb{R}[t]$ such that RP factors into linear factors.
3. Construct a linkage weakly realizing the motion ϕ.

Theorem. The linkage obtained in this way has mobility one and strongly realizes the motion ϕ.

However, $\text{Conf}(L)$ has two components. i.e., this linkage can jump between two different "modes".

Corollary. A bounded rational curve given by $\left(\frac{f}{h}, \frac{g}{h} \right)$ with $f, g, h \in \mathbb{R}[t]$ such that $\deg h > \max \{ \deg f, \deg g \}$ can be drawn by a linkage with at most $4d$ links and $6d - 2$ joints ($d = \deg h$).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion $\phi: \mathbb{R} \rightarrow SE_2$ via a polynomial $P \in \mathbb{K}[t]$.
2. Compute $R \in \mathbb{R}[t]$ such that RP factors into linear factors.
3. Construct a linkage weakly realizing the motion ϕ.
4. Choose a suitable $l_1 \in \mathbb{K}$ (Lemma: this is always possible).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion \(\phi : \mathbb{R} \to \mathbb{S}\mathbb{E}_2 \) via a polynomial \(P \in K[t] \).
2. Compute \(R \in \mathbb{R}[t] \) such that \(RP \) factors into linear factors.
3. Construct a linkage weakly realizing the motion \(\phi \).
4. Choose a suitable \(l_1 \in K \) (Lemma: this is always possible).
5. Apply the flip procedure iteratively and obtain a ladder graph.

Theorem. The linkage obtained in this way has mobility one and strongly realizes the motion \(\phi \).

However, \(\text{Conf}(L) \) has two components. i.e., this linkage can jump between two different “modes.”

Corollary. A bounded rational curve given by \((f/h, g/h)\) with \(f, g, h \in \mathbb{R}[t] \) such that \(\deg h > \max\{\deg f, \deg g\} \) can be drawn by a linkage with at most \(4d \) links and \(6d - 2 \) joints (\(d = \deg h \)).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion \(\phi : \mathbb{R} \to SE_2 \) via a polynomial \(P \in K[t] \).
2. Compute \(R \in \mathbb{R}[t] \) such that \(RP \) factors into linear factors.
3. Construct a linkage weakly realizing the motion \(\phi \).
4. Choose a suitable \(l_1 \in K \) (Lemma: this is always possible).
5. Apply the flip procedure iteratively and obtain a ladder graph.

Theorem. The linkage obtained in this way has mobility one and strongly realizes the motion \(\phi \).

\(\rightarrow \) However, \(\text{Conf}(L) \) has two components. i.e., this linkage can jump between two different “modes”.

Corollary. A bounded rational curve given by \((f/h, g/h)\) with \(f, g, h \in \mathbb{R}[t] \) such that \(\deg h > \max\{\deg f, \deg g\} \) can be drawn by a linkage with at most \(4d \) links and \(6d - 2 \) joints (\(d = \deg h \)).
Construction of strong linkages

Algorithm (sketch).

1. Given a motion $\phi : \mathbb{R} \to SE_2$ via a polynomial $P \in \mathbb{K}[t]$.
2. Compute $R \in \mathbb{R}[t]$ such that RP factors into linear factors.
3. Construct a linkage weakly realizing the motion ϕ.
4. Choose a suitable $l_1 \in \mathbb{K}$ (Lemma: this is always possible).
5. Apply the flip procedure iteratively and obtain a ladder graph.

Theorem. The linkage obtained in this way has mobility one and strongly realizes the motion ϕ.

However, $Conf(L)$ has two components. i.e., this linkage can jump between two different “modes”.

Corollary. A bounded rational curve given by $(f/h, g/h)$ with $f, g, h \in \mathbb{R}[t]$ such that $\deg h > \max\{\deg f, \deg g\}$ can be drawn by a linkage with at most $4d$ links and $6d - 2$ joints ($d = \deg h$).
Physical realization

Standard way of realizing planar linkages:

▶ Each link is realized as a polygon (convex hull of the positions of its joints)
▶ Each link moves parallel to the horizontal \((x, y)\)-plane at a certain height \(z\).
▶ The joints are realized as vertical connections between links.
Self-collisions

Vertical arrangement of links is crucial when studying collisions!
Self-collisions

Vertical arrangement of links is crucial when studying collisions!
Self-collisions

Vertical arrangement of links is crucial when studying collisions!

→ It suffices to study link–joint collisions.
Self-collisions

W.l.o.g. assume that the link labels \(\{1, \ldots, n\} \) correspond to their heights, i.e., their \(z \)-coordinates.

Collision:

- links \(i < k < j \)
- \((x_1(t), y_1(t)) = \) position of joint \((i, j)\)
- \((x_2(t), y_2(t)) = \) position of some joint connected to \(k \)
- \((x_3(t), y_3(t)) = \) position of some other joint of \(k \)

\[
\begin{align*}
\text{for some } t & \in \mathbb{R} \cup \{\infty\} \\
0 & \leq s \leq 1
\end{align*}
\]
Self-collisions

W.l.o.g. assume that the link labels \(\{1, \ldots, n\} \) correspond to their heights, i.e., their \(z \)-coordinates.

Collision:

- links \(i < k < j \)
- \((x_1(t), y_1(t)) = \) position of joint \((i, j)\)
- \((x_2(t), y_2(t)) = \) position of some joint connected to \(k\)
- \((x_3(t), y_3(t)) = \) position of some other joint of \(k\)
- a collision happens if

 \[
 x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \\
 y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t)
 \]

 for some \(t \in \mathbb{R} \cup \{\infty\} \) and \(0 \leq s \leq 1 \).
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]

- Because of our construction, \(x_1(t), y_1(t), \ldots \) are rational functions.
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]

- Because of our construction, \(x_1(t), y_1(t), \ldots \) are rational functions.
- Thus the above equations are a bivariate polynomial system.
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]

- Because of our construction, \(x_1(t), y_1(t), \ldots \) are rational functions.
- Thus the above equations are a bivariate polynomial system.
- For each joint \((i, j) \) and each line of each link \(i < k < j \) such a system has to be solved.
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]

- Because of our construction, \(x_1(t), y_1(t), \ldots \) are rational functions.
- Thus the above equations are a bivariate polynomial system.
- For each joint \((i, j)\) and each line of each link \(i < k < j\) such a system has to be solved.
- This can be done with reasonably small effort (note that \(s\) appears only linearly).
Detect collisions

\[x_1(t) = s \cdot x_2(t) + (1 - s) \cdot x_3(t) \]
\[y_1(t) = s \cdot y_2(t) + (1 - s) \cdot y_3(t) \]

Because of our construction, \(x_1(t), y_1(t), \ldots \) are rational functions.
Thus the above equations are a bivariate polynomial system.
For each joint \((i, j)\) and each line of each link \(i < k < j\) such a system has to be solved.
This can be done with reasonably small effort (note that \(s\) appears only linearly).

\[\rightarrow \text{In contrast to general linkages, our construction allows for a relatively simple collision detection!} \]
Detect collisions

Example: For our linkage drawing an ellipse we can find a spatial arrangement of the links s.t. only 2 collisions occur (both at $t = \infty$).
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

- W.l.o.g. assume that the layers correspond to consecutive integer numbers.
- F-links ("flat" links): as before, located in a single layer $a \in \mathbb{N}$
- U-links, Z-links: stretch over two layers $(a, b) \in \mathbb{N}^2$, $a < b$
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

- W.l.o.g. assume that the layers correspond to consecutive integer numbers.
- F-links ("flat" links): as before, located in a single layer \(a \in \mathbb{N} \)
- U-links, Z-links: stretch over two layers \((a, b) \in \mathbb{N}^2, a < b \)
- For two U-links in layers \((a_1, b_1) \) and \((a_2, b_2) \), we prohibit the situations \(a_1 < a_2 < b_1 < b_2 \) and \(a_2 < a_1 < b_2 < b_1 \).

← This solves an open problem, posed by O'Rourke, concerning the existence of collision-free linkages.
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

▶ W.l.o.g. assume that the layers correspond to consecutive integer numbers.
▶ F-links ("flat" links): as before, located in a single layer $a \in \mathbb{N}$
▶ U-links, Z-links: stretch over two layers $(a, b) \in \mathbb{N}^2$, $a < b$
▶ For two U-links in layers (a_1, b_1) and (a_2, b_2), we prohibit the situations $a_1 < a_2 < b_1 < b_2$ and $a_2 < a_1 < b_2 < b_1$.
▶ For a Z-link we have $b - a = 2$.
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

- W.l.o.g. assume that the layers correspond to consecutive integer numbers.
- F-links ("flat" links): as before, located in a single layer $a \in \mathbb{N}$
- U-links, Z-links: stretch over two layers $(a, b) \in \mathbb{N}^2$, $a < b$
- For two U-links in layers (a_1, b_1) and (a_2, b_2), we prohibit the situations $a_1 < a_2 < b_1 < b_2$ and $a_2 < a_1 < b_2 < b_1$.
- For a Z-link we have $b - a = 2$.
- A T-joint connects links between neighboring layers.
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

▶ W.l.o.g. assume that the layers correspond to consecutive integer numbers.
▶ F-links ("flat" links): as before, located in a single layer $a \in \mathbb{N}$
▶ U-links, Z-links: stretch over two layers $(a, b) \in \mathbb{N}^2$, $a < b$
▶ For two U-links in layers (a_1, b_1) and (a_2, b_2), we prohibit the situations $a_1 < a_2 < b_1 < b_2$ and $a_2 < a_1 < b_2 < b_1$.
▶ For a Z-link we have $b - a = 2$.
▶ A T-joint connects links between neighboring layers.
▶ A Z-joint is wrapped around the vertical rod of a Z-link.
Avoid collisions

If we consider links of a more complicated 3-dimensional shape, we can completely avoid collisions:

- W.l.o.g. assume that the layers correspond to consecutive integer numbers.
- F-links (“flat” links): as before, located in a single layer $a \in \mathbb{N}$
- U-links, Z-links: stretch over two layers $(a, b) \in \mathbb{N}^2$, $a < b$
- For two U-links in layers (a_1, b_1) and (a_2, b_2), we prohibit the situations $a_1 < a_2 < b_1 < b_2$ and $a_2 < a_1 < b_2 < b_1$.
- For a Z-link we have $b - a = 2$.
- A T-joint connects links between neighboring layers.
- A Z-joint is wrapped around the vertical rod of a Z-link.

→ This solves an open problem, posed by O’Rourke, concerning the existence of collision-free linkages.
Avoid collisions

Example:
Collision-free linkages

The following scheme allows to realize a planar linkage with ladder-shaped link graph without collisions:

(0, 4n) (3, 4n−1) (6, 4n−2) (3n−3, 3n+1) (3n)

U U U … U

F Z Z … Z

(1) (2, 4) (5, 7) (3n−4, 3n−2) (3n−1)

No collisions with joints can happen.

A Z-link can never collide with an F-link or another Z-link.

Collisions between nested U-links can be avoided by moving the vertical part of the outer U-link sufficiently far away.

Collisions between a U-link and an F- or Z-link: similarly.
Collision-free linkages

The following scheme allows to realize a planar linkage with ladder-shaped link graph without collisions:

\[(0, 4n) \quad (3, 4n-1) \quad (6, 4n-2) \quad (3n-3, 3n+1) \quad (3n)\]

\[\begin{array}{c}
\text{U} \quad \text{T} \quad \text{U} \quad \text{T} \quad \text{U} \\
\text{T} \quad \text{Z} \quad \text{T} \quad \text{Z} \quad \text{T} \\
\text{F} \quad \text{T} \quad \text{Z} \quad \text{T} \quad \text{F} \\
\text{(1)} \quad \text{(2, 4)} \quad \text{(5, 7)} \quad \text{(3n-4, 3n-2)} \quad \text{(3n-1)}
\end{array}\]

▶ No collisions with joints can happen.
Collision-free linkages

The following scheme allows to realize a planar linkage with ladder-shaped link graph without collisions:

No collisions with joints can happen.

A Z-link can never collide with an F-link or another Z-link.
Collision-free linkages

The following scheme allows to realize a planar linkage with ladder-shaped link graph without collisions:

- No collisions with joints can happen.
- A Z-link can never collide with an F-link or another Z-link.
- Collisions between nested U-links can be avoided by moving the vertical part of the outer U-link sufficiently far away.
Collision-free linkages

The following scheme allows to realize a planar linkage with ladder-shaped link graph without collisions:

No collisions with joints can happen.
A Z-link can never collide with an F-link or another Z-link.
Collisions between nested U-links can be avoided by moving the vertical part of the outer U-link sufficiently far away.
Collisions between a U-link and an F- or Z-link: similarly.
Collision-free linkage for the ellipse
Final Example

Popular formulation (by W. Thurston) of Kempe’s theorem:

There is a linkage that signs your name.
Final Example

Popular formulation (by W. Thurston) of Kempe’s theorem:

There is a linkage that signs your name.

Here is a famous signature (US Declaration of Independence):

» John Hancock (1737–1793)
» merchant, smuggler, statesman, and prominent patriot of the American revolution
» “John Hancock” has become a synonym for a signature
Final Example

Popular formulation (by W. Thurston) of Kempe’s theorem:

There is a linkage that signs your name.

Here is a famous signature (US Declaration of Independence):

![Signature of John Hancock](image)

- John Hancock (1737–1793)
- merchant, smuggler, statesman, and prominent patriot of the American revolution
- “John Hancock” has become a synonym for a signature

Linkages drawing a full signature would be too complex, hence previous attempts have focused on the “J” only.
Approximate the “J” by a rational curve \((f/h, g/h)\):

\[
\begin{align*}
 f(t) &= -321880t^5 - 436132t^4 - 237449t^3 - 64488t^2 - 8666t - 451, \\
 g(t) &= -336018t^5 - 472949t^4 - 270569t^3 - 78158t^2 - 11325t - 651, \\
 h(t) &= 170 \left(7225t^6 + 13770t^5 + 11187t^4 + 4908t^3 + 1219t^2 + 162t + 9 \right).
\end{align*}
\]
Final Example

Approximate the “J” by a rational curve \((f/h, g/h)\):

\[
\begin{align*}
f(t) &= -321880t^5 - 436132t^4 - 237449t^3 - 64488t^2 - 8666t - 451, \\
g(t) &= -336018t^5 - 472949t^4 - 270569t^3 - 78158t^2 - 11325t - 651, \\
h(t) &= 170(7225t^6 + 13770t^5 + 11187t^4 + 4908t^3 + 1219t^2 + 162t + 9).
\end{align*}
\]

Let \(d = \deg h = 6\); we obtain a linkage with

- \(26 = 2 \cdot (2d + 1)\) links,
- \(37 = 2 \cdot (2d) + (2d + 1)\) joints.
Final Example

[J. O’Rourke: *How to fold it*. Cambridge University Press, 2011]
Final Example
From David Eppstein’s blog:
“It’s been long known that you can make a linkage that can draw any algebraic curve but these people are trying to make it actually work — my contacts in mechanical engineering sound quite excited about it.”