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Notation

We employ the following notation:

I L is an algebraically closed field of characteristic 0

I x is transcendental over L

I y is algebraic over L(x) with minimal polynomial f

I n is the degree of f

I K 6 L denotes the field of coefficients of f , i.e., f ∈ K[x, y]

I L[x] is the integral closure of L[x] in L(x, y)
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Vector Space Basis

We know that L(x, y) is a L(x)-vector space of dimension n.

Elements b0, . . . , bn−1 ∈ L(x, y) are a vector space basis if

L(x) b0 + · · ·+ L(x) bn−1 = L(x, y).

Standard vector space basis of L(x, y):

b0 = 1, b1 = y, b2 = y2, . . . , bn−1 = yn−1.

Example: f = y3 − x2, b0 = 1, b1 = x2/3, b2 = x4/3
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Integral Basis

Definition: An element a ∈ L(x, y) is called integral if its
minimal polynomial is monic over L[x].

Proposition: An element a ∈ L(x, y) is integral if and only if
vP (a) > 0 in all finite places P (i.e., all its Puiseux series
expansions at all finite points involve only nonnegative exponents).

Definition: A L(x)-vector space basis b0, . . . , bn−1 of L(x, y) is
called an integral basis if all the bi are integral and if

L[x] b0 + · · ·+ L[x] bn−1 = L[x]

where L[x] is the L[x]-module of all integral elements of L(x, y).
Example: f = y3 − x2, b0 = 1, b1 = x2/3, b2 = x1/3
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Conventions

W.l.o.g. we assume that y is an integral element.

Hence, every element in L[x, y] is integral. We have

L[x, y] ⊆ L[x] ⊆ L(x, y).

View elements of L(x, y) as polynomials of degree less than n.

Hence, it is meaningful to talk about the degree of a ∈ L(x, y).

Goal: Find an integral basis b0, . . . , bn−1 with deg(bi) = i and
with bi ∈ K(x, y) for all i.

Caveat: Note that Puiseux series expansions may require
coefficients in a larger field than K.
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Strategy of the Algorithm

Use an inductive argument:

I Start with b0 = 1

I For 0 < d < n assume we have already found b0, . . . , bd−1
such that

L[x] b0 + · · ·+ L[x] bd−1 =
{
a ∈ L[x] | deg(a) < d

}
I Compute bd with deg(bd) = d such that

L[x] b0 + · · ·+ L[x] bd =
{
a ∈ L[x] | deg(a) 6 d

}
I Iterate to obtain an integral basis b0, . . . , bn−1
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One Step of the Algorithm
Task: We have to find the next element bd of the integral basis.

I Start with bd = yd (optimization: use bd = ybd−1)

I V :=
{
a ∈ L[x] | deg(a) 6 d

}
\
(
L[x] b0 + · · ·+ L[x] bd

)

While V 6= 0 do the following:

1. Choose a ∈ V such that a can be written as

a =
1

k

(
a0b0 + · · ·+ adbd

)
with a0, . . . , ad, k ∈ K[x] and with ad = 1.

2. Since

L[x] b0 + · · ·+ L[x] bd−1 + L[x] bd ⊂
L[x] b0 + · · ·+ L[x] bd−1 + L[x] a ⊂ L[x]

we can replace bd by a in our basis and get a smaller V .
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Problems

The strategy described before rises the following questions:

1. How can we ensure termination of the algorithm?

2. We have to show that in the case V 6= 0 the element a can be
chosen in the described form.

3. How can we decide whether V 6= 0 and how can we compute
a0, . . . , ad, k?
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Problem 1: Termination

Look at the discriminant (Trager’s idea):

D := disc(1, y, . . . , yn−1) = Resy

(
f,
∂f

∂y

)
∈ K[x]

Termination: In every step, when bd is replaced by a,
disc(b0, . . . , bd, y

d+1, . . . , yn−1) is divided by the polynomial k2.

Bonus: This reasoning tells us that the candidates for k are
exactly the factors of D.
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Picture

f = y2 − x3 − x2

D = Resy

(
f, ∂f∂y

)
=

−4x2(x+ 1)
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Problem 2: The Particular Form of a

Assumption: L[x] b0 + · · ·+ L[x] bd−1 contains all integral
elements of degree less than d.

If V 6= 0 there exists a 6∈ V ; by assumption, deg(a) = d.

Since b0, . . . , bd is a vector space basis, we get

a =
1

k

(
a0b0 + · · ·+ adbd

)
for some polynomials a0, . . . , ad, k ∈ L[x]. Note that k 6∈ L.

To do:

1. Show that we can choose a0, . . . , ad such that ad = 1.

2. Show that we can choose a0, . . . , ad, k ∈ K[x] instead of L[x].
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ad = 1

We may multiply a by some element in L[x] such that

I the result is still in V ,

I and the denominator k is irreducible.

Hence, we may assume that k = x− α for some α ∈ L.

But then, we can write ai = qi · (x− α) + a′i with a′i ∈ L.

Still, a′d 6= 0, so we can divide by a′d, obtaining

a0b0 + · · ·+ adbd
x− α

with ai ∈ L and ad = 1.

Next step: Argue that the ai are actually in K(α).
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ai ∈ K(α)

Lemma: Under the previous assumptions the ai ∈ L are unique.
Proof: Assume to the contrary, that there were two different
sequences a0, . . . , ad. Then the difference would be an element
in V of degree less than d. Contradiction.

Claim: For all i we have ai ∈ K(α)

I If ai was transcendental over K(α, a0, . . . , ai−1, ai+1, . . . , ad),
then it could be replaced by another element from K.
Contradiction to the lemma.

I Hence the ai are algebraic over K(α).

I Using the conjugates of ai, we get a similar contradiction.

I Hence we conclude that ai ∈ K(α) for all i.
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Final Form of the ai

Since ai ∈ K(α), we can write each ai as a polynomial in α of
degree less than n.

Since we divide by x− α, we can replace all occurrences of α in
the ai by x. Then ai ∈ K[x] for all i.

The integrality of a translates to the condition
vP (a0b0 + · · ·+ adbd) > vP (x− α) in all finite places P .

We have also vP (a0b0 + · · ·+ adbd) > vP (x− αi), where the αi

are the conjugates of α, because a0b0 + · · ·+ adbd ∈ K(x, y)

Conclusion: We can find a ∈ V of the form

a =
1

k

(
a0b0 + · · ·+ adbd

)
with a0, . . . , ad, k ∈ K[x],

where k ∈ K[x] is the minimal polynomial of α.
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The integrality of a translates to the condition
vP (a0b0 + · · ·+ adbd) > vP (x− α) in all finite places P .

We have also vP (a0b0 + · · ·+ adbd) > vP (x− αi), where the αi

are the conjugates of α, because a0b0 + · · ·+ adbd ∈ K(x, y)

Conclusion: We can find a ∈ V of the form

a =
1

k

(
a0b0 + · · ·+ adbd

)
with a0, . . . , ad, k ∈ K[x],

where k ∈ K[x] is the minimal polynomial of α.

15 / 17



Problem 3: Computation of the ai

Let k ∈ K[x] be an irreducible polynomial such that k2 | D, and
let α be a root of k.

Compute all n Puiseux series expansions of y at x = α.

Since bi ∈ K[x, y], this yields, for each bi, a set of Puiseux series
expansions. Hence we can write down the Puiseux expansions of

a =
a0b0 + · · ·+ adbd

x− α

where now a0, . . . , ad are undetermined coefficients.

The ansatz a is integral if and only if the coefficients of all
negative powers in all Puiseux expansions vanish. This yields a
linear system of equations for the ai over K(α).
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Finite Algorithm

The Puiseux series are infinite objects! How to handle them?

Mark van Hoeij derives bounds where the series expansions can be
truncated and the algorithm still gives the correct result (quite
technical, skipped here).

Instead, one could also use lazy series evaluation.
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