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Abstract

The Holonomic Systems Approach was proposed in the early 1990s
by Doron Zeilberger and has turned out to be extremely useful when
dealing with special functions in computer algebra. Moreover, his cel-
ebrated algorithm for definite hypergeometric summation originates
from this approach. We want to give an introduction to the under-
lying ideas—creative telescoping, Grobner bases, Ore algebras—in an
intuitive and therefore non-rigorous way. We also show various exam-
ples where these concepts can be successfully applied.

1 Telescoping

The basic principle of how summation (and integration) problems are at-
tacked in the holonomic systems approach is telescoping. For indefinite sum-
mation this is quite natural: Computing the sum

for arbitrary a,b € Z,b > a requires to find an antidifference g(k) such that
f(k) =g(k+1)—g(k). By telescoping, the sum then equals g(b+ 1) — g(a).



Depending on how the expression g(k) looks like, this can be considered as
a closed form (of course, one could just define g(k) := Z?;ioo f(4), but this
would not provide a closed form).

Example 1. The antidifference of k- k! is k! since (k4 1)! — k! = k- k!, hence

b
dkekl=(0+1)!-a, 0<a<b.
k=a

2 Indefinite hypergeometric summation

We turn to a specific class of functions, namely the hypergeometric ones. A
discrete function f(k) is called hypergeometric if

flk+1)

=r(k) € K(k
F = k) € Kb
where K is a field of characteristic 0. Usually we work with K = Q or
K = Q(ay, as, . ..) for some additional parameters a;. In other words, hyper-

geometric functions satisfy a linear first-order recurrence. We want to study
the question whether a given hypergeometric function f(k) is indefinitely
summable, or, more concretely, whether there exists an antidifference g(k)
that is hypergeometric, too.

Writing the telescoping equation as

g(k) (% - 1)4 _—

€K (k)

reveals that a hypergeometric antidifference g(k), if it exists at all, must be a
rational function multiple of the summand f(k). Therefore g(k) = q(k)f(k)
for some yet unknown ¢ € K(k). We plug this ansatz into the telescoping
equation and obtain

q(k+1)f(k+1) —q(k) f(k) = f(k).
Dividing by f(k) yields the equation
r(k)q(k +1) —q(k) =1

that has to be solved for the unknown rational function ¢(k) (we omit the
details how this can be achieved; this is part of Gosper’s algorithm [5]).
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Example 2. For f(k) = k- k! we have to solve the equation

(k+1)2
k

qk+1) —q(k)=1.

The only rational function solution is 1, and hence g(k) = 3 f(k) = k!.

Example 3. Let now f(k) = (Z), which is hypergeometric with respect to k
as a simple computation shows:

(nl) nl(n — k)!k! n—k )
?;E) - (n—k(—1)!(12+1)!n! = 51 € R with K=Q(n).

According to the above results, we have to solve the equation
(n—Fk)glk+1)—(k+1)qgk)=k+1

which turns out to have no solution ¢(k) € Q(n)(k). Hence the binomial
coefficients are not indefinitely summable.

3 Definite hypergeometric summation

But we all know that the definite sum y_,_, (Z) has a nice evaluation. Now
Zeilberger enters the game with his celebrated algorithm for definite hyperge-
ometric summation [10]. It is based on the principle of creative telescoping:
for this to work, the summand has to depend on at least one additional
parameter n, and typically, the summation bounds involve this parameter,
too. In this situation, f(n, k) must be hypergeometric with respect to both n
and k, i.e.,

f(n,k+1) f(n+1,k)
f(n, k) f(n, k)

Instead of searching for a hypergeometric antidifference of the summand it-
self, we try the same for a K(n)-linear combination of f(n,k) and some of
its n-shifts, i.e., f(n + 1,k),..., f(n +d, k). In other words, we try to find
g(n, k) = q(n, k) f(n,k),q € K(n, k) such that

=r(n, k) and =ro(n, k), r,reKn,k). (1)

po(n)f(n.k) +pi(n) f(n+1,k) + -+ pa(n) f(n+d, k) = (@)
gn,k+1) —g(n, k)



for some rational functions p; € K(n). A similar reasoning as before leads to
the problem of solving the parameterized equation

d—1

po(n)+pi(n)ra(n, k) +- - -+ pa(n) Hrg(n+i, k) =ri(n,k)g(n,k+1)—q(n, k)

for rational solutions ¢ € K(n, k) and the parameters py, ..., ps € K(n). Un-
der certain conditions (e.g., if the summand is proper hypergeometric), theory
predicts that there must exist an integer d such that the above equation be-
comes solvable. Therefore Zeilberger’s algorithm loops over d = 0,1,2, ...
until it finds a solution. We now sum over (2):

b(n) b(n)
po(n) Y f(nk)+--+pan) Y fln+dk)=
k=a(n) k=a(n)
b(n)
> (9l k+1) = g(n,k)) = g(n,b+1) — g(n, a).

k=a(n)

Upon adjusting the summation ranges on the left-hand side and adding or
subtracting correction terms, we have found a recurrence for the sum that
has the form

b(n)
po(n)F(n) + -+ + pa(n)F(n+d) = h(n), for F(n)= Y_ f(n,k).
k=a(n)

In many cases this yields a closed-form solution, but in any case enables
us to prove a given identity (by computing recurrences for both sides and
comparing initial values).

Example 4. We continue with the binomial sum and perform the second
loop of Zeilberger’s algorithm (that corresponds to d = 1). We end up with
the equation

n+1 n—=k
vt — E+1) — k
poln) + — () = Tl b+ 1) — g, )
which admits the solution
ck
q(n, k) = T po(n) = —2¢, pi(n) =¢, for some constant c.
J— n —



Summing both sides over £k = 0,...,n + 1 delivers the recurrence

Q)

k=0
which, together with the initial value 22:0 (Z) =1, yields the solution 2".

A nice and comprehensive introduction into hypergeometric summation
is given in [8].

4 Hyperexponential integration

We want to stress that all the above can be translated to a continuous setting,
then addressing integrals of hyperezponential functions, i.e., functions f(x)
with the property that the quotient % is a rational function in z. In
other words, hyperexponential functions satisfy a linear first-order differential
equation. Instead of antidifferences we then look for antiderivatives, and
telescoping corresponds to invoke the Fundamental Theorem of Calculus.
This method is sometimes referred to as differentiating under the integral

sign, see for example [1, 9].

5 Holonomic systems

The main purpose of this talk is to introduce various generalizations of the
above scenarios that allow to treat special function identities, summation
and integration problems as well. The ideas go back to Zeilberger’s semi-
nal paper [11] and laid the foundations for his hypergeometric summation
algorithm. These generalizations concern

e a unifying framework for dealing with shifts (summation) and deriva-
tives (integration) at the same time,

e functions that are described by sufficiently many (possibly higher-order)
recurrences or differential equations (holonomic functions)

e multivariate functions and multiple sums and integrals.



We want to exemplify this new class of holonomic functions with the
Bessel function J, (z) which is defined to be one of the two solutions of Bessel’s
differential equation

2IN(2) + 20 (2) + (2 —v*)J,(2) = 0.

A necessary condition for a function to be holonomic is that for each variable
under consideration there exists a pure recurrence or differential equation.
For the Bessel functions J,(z) there exists also a relation for the variable v,
namely the following recurrence:

2Jyi0(2) =2+ 1)Jy1(2) + 2J,(2) = 0.

These two relations (together with finitely many initial values) completely
define the Bessel functions. Here is an incomplete list of functions that are
holonomic:

e rational functions, algebraic functions, logarithms, exponentials,

e sine, cosine, all arc functions, hyperbolic sine and cosine, all inverse
hyperbolic functions,

e factorials, binomial coefficients, Gamma function, hypergeometric ,F
e Fibonacci, harmonic, and Catalan numbers,
e Airy, Bessel, Appell, Struve, Hankel, Whittaker, Kelvin functions

e orthogonal polynomials: Legendre, Chebyshev, Hermite, Gegenbauer,
Laguerre, Jacobi

e crror function, elliptic functions, sine, cosine, and exponential integrals,
Fresnel integrals

We give two examples of identities that can be proven by means of the
holonomic systems approach in a completely algorithmic fashion (and hence
by the computer):

(v+1) OJy+1(x)

ox

Jqul(x) + = Ju<x>7 <3>



D(n+1)r (—m-zgﬂ)

) —n—1pn m+4n+1
/ I (ax) gy, (bz) dz = AN ) 2F1<
0

_ 2
m+4n+l n m+17n+17b_2)

2 0 2
(4)
For convenience we introduce the following operator notation. Let S,
denote the forward shift operator with respect to n, i.e., S,(f(n)) = f(n+1).
Similarly, we denote by D, the differentiation operator with respect to z, i.e.,
D,(f(z)) = f'(x). Variables like n or z, interpreted as operators, are defined
as the multiplication by this variable. As such, they do not commute with the
corresponding shift or differential operator as the some simple computations
show:

(Sh-n)(f(n) = Si(n(f(n)) = Sun- f(n)) = (n+1)- f(n+1)
(D - 2)(f(x)) = Do(a(f(2)) = (z- f(2)) =z f'(z) + f(z)

Hence we get the commutation rules S,n = nS, + 5, and D,x = D, + 1
which can be used to define a noncommutative polynomial ring

K{n,z,S,, Dy) / (Syon —nS, — Sy, Dyx — 2D, — 1,
nx — xn, S, D, — D,.S,,nD, — D,n, xS, — S,x).

Informally speaking, this is the polynomial ring K[n, z,S,, D,] in four vari-
ables subject to the above commutation rules. We will prefer to allow division
by the variables too, hence working in a structure that could—by abuse of
notation—be denoted by K(n,z)[S,, D;|. This is now a polynomial ring in
the two indeterminates S, and D,, with coefficients being rational functions
in n and x. Note that the noncommutativity is now hidden between the
indeterminates of the polynomial ring and its coefficients. Such structures
are called Ore algebras.

The two defining relations for the Bessel functions can now be written as
elements of such an Ore algebra:

PD? 42D, + (2~ %) and 252 —2(v +1)8, + 2, (5)

and are called annihilating operators for J,(z). These relations can be mul-
tiplied by v or by z, they can be differentiated by z (corresponds to multipli-
cation by D, from the left), they can be shifted in n (which corresponds to
multiplication by S, from the left), and they still will be true. Hence every
operator that lies in the left ideal generated by (5) will be an annihilating op-
erator for J,(z). Or, the other way round, all annihilating operators of .J,(2)
form a left ideal in the corresponding Ore algebra.
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Questions: How can we decide whether the operator S, D, + %16} -1,
that corresponds to (3), lies in the left ideal generated by (5), and hence is
a valid identity between Bessel functions? How can we check whether two
given sets of operators generate the same annihilating ideal?

6 Grobner bases

The above questions can be answered by means of Gréobner bases. This con-
cept has been invented by Bruno Buchberger (the founder of RISC, see his
PhD thesis [2]), and since then has been very successfully applied in various
fields of mathematics. The original work deals with commutative polynomial
rings only, and has been extended later to certain noncommutative polyno-
mial rings as well.

We try to give an intuition why Grobner bases are useful. For sake of
simplicity we choose an example with commutative bivariate polynomials.
We consider the ideal I < Qlx,y] that is generated by zy — 1 and 2% +y + 1.
When working in multivariate polynomial rings it is essential to define a
monomial order, i.e., a total order on the set of monomials that is compatible
with multiplication. In this example we use a total degree order, breaking
ties by the exponent of x. Informally speaking, a Grobner basis is a unique
representation of a polynomial ideal in terms of a generating set; it depends
on the monomial order. In our example, the Grébner basis of I with respect
to total degree order is

G={y"+ao+y ay—1,2"+y+1}.
Grobner bases can be computed by Buchberger’s algorithm.

Example 5. Compute the remainder of the division of z?y by the ideal I.
In other words, we are interested in the residue classes of K|z, y] modulo .
In some steps of the polynomial division procedure we can choose which
generator we take for reduction. This might lead to different results as the
following shows

y—z(ay—1) =2 or 2y—y@@*+y+1)=—y*—y.

When using a Grobner basis, the remainder of the polynomial division will
be unique and independent of possible choices: taking the first element in GG
for performing another division step gives the remainder x also in the second
case.



Note that by making the remainder unique, Grobner bases solve the ideal
membership problem: a polynomial is element of an ideal if and only if its
remainder modulo a Grébner basis of this ideal is zero.

Example 6. Consider the ideal J < Q]z,y] that is generated by
{22 +9° = 20" =30 =3y, ¢" + v’ + 9" + o + 2y, 29° + 20y + y° + v — 2}

In which relation are I and J, e.g., J C I, I = J, or are they incompara-
ble with respect to the subset relation? The Grobner basis of J equals G
revealing that indeed we have [ = J.

Example 7. How can we compute the zero set of I, i.e., the set of common
zeros in C2? Alternatively, we can ask: are there univariate polynomials
contained in I?7 Also these questions can be answered by Grobner bases. If
y < x, the Grébner basis of I with respect to lexicographic order is

{(V+v"+1,z2+y° +y}.

The first element depends only on y (in other words “x has been eliminated”)
and allows to compute the common zeros. Lexicographic order always gives a
Grobner basis in triangular form with respect to occurrence of the variables,
and therefore is used for elimination problems. In fact, in the special case of
linear polynomials, Buchberger’s algorithm reduces to Gaussian elimination.

7 Applications of holonomic systems

Back to the Bessel examples. Running the noncommutative version of Buch-
berger’s algorithm delivers a Grobner basis for the ideal generated by (5):

{28, 4+ 2D, — v, 2°D? + 2D, + (2* — *)}.

In order to prove identity (3), we just have to reduce it with the Grobner
basis! In the first division step, we can only use the first element of the
Grobner basis:

S,D.+ S, —1 D.(zS,+z2D. —v) =

SD.+4s, -1 - LD +1)S + (:D,+1)D, -vD,) =
1
1

_ 1
i
~D2+%8,+ 21D, — 1

z




In the second step, only the second element of the Grobner basis is eligible
for reduction:

—D2 418, + 2D, -1 4+ H(2D?+:zD. + (22 —1?)) =
25, +4D~ %

Now it is obvious that a third reduction step delivers 0, since the above is
just a multiple of the first Grobner basis element by 5. This means that the
relation (3) lies in the left ideal generated by (5) and therefore is true.
Identity (4) is more involved: First because an integral appears, and
second because the integrand consists not only of one Bessel function, but
of a combination of those. Fortunately there are algorithms for performing
closure properties of holonomic functions. Important closure properties are
sum, product, algebraic substitution of continuous variables, and rational-
linear substitution of discrete variables. This means, given an annihilating
ideal for J,(z), we can compute an annihilating ideal for J,,(ax). The closure
property “product” then delivers an annihilating ideal for J,,(ax)J,(bx):

{bxS,, + axS, + xD, — m —n,
bD, — axS, — xD, + n,
aD, + axS, — n,
204228, D, + *D? + 2az S, + (v — 2nz) D, — a*x? + b*x? — m? + n?,
arS? + (—2n — 2)S, + ax,
23D2 + 322 D? + (2a323 — 2ab*x3 + 2amPx — 2an’x)S,
+ (3a2x® + b’z — m*x — 3n’x + x) D,
— 2a*nx® + 2a%2* + 2b*nx? + 2b%°x% — 2m®n + 2n3}.

Some examples of functions that are not holonomic in both n and x:
1/J,(2) (division is not among the closure properties), J,(sin(x)) (the sub-
stitution z — sin(z) is not algebraic), and J,2(z) or J,(2) (the substitutions
for the discrete variable n are not rational-linear). In general, it is highly
nontrivial to prove non-holonomicity!

The algorithms for executing closure properties make essential use of
Grobner bases (in fact, any annihilating ideal that is encountered here, is
presented by its Grébner basis). They have first been described in [3].

Now that we have a holonomic description of the integrand, we can care
about the integration. As in Zeilberger’s algorithm this is done by creative
telescoping. Frédéric Chyzak has extended Zeilberger’s algorithm to general
holonomic functions [4]. Recall that for a hypergeometric function f(n,k),
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we were able to express any shifted version f(n + i,k + j) as a rational
function times f(n, k) itself. For holonomic functions, this is not true in
general. However, we can reduce any shifted or differentiated version of the
function to a linear combination of a finite set of base cases. This basis can
be read off from the Grobner basis of the annihilating ideal: it corresponds
exactly to the monomials that cannot be reduced by the Grébner basis (the
residue classes). In our example, let f(a,b,m,n,z) = J,,(ax)J,(bz). Then

8s+t+u
dasobtOx

ri(a,b,m,n,x)f(a,b,m,n,x) + re(a,b,m,n, x)ﬁf(a, b,m,n, )+

ox 5

rs(a,b,m,n,x)f(a,b,m,n+1,z) + ry(a,b,m,n, z)=— f(a,b,m,n, )

0x?
for some rational functions ry,...,7r4. This corresponds to the monomi-
als {1, D,, S,, D?} which cannot be reduced (“lie under the stairs”) of the
Grobner basis (they can be found by investigating the leading monomials of
the Grobner basis elements, i.e., the maximal monomials w.r.t. the mono-
mial order). For finding a recurrence in n for the integral, we therefore start
with the ansatz

fla,b,m+i,n+j,x) =

po+piSt -4 paSy = Do (@ + @D+ @S +aD;)  (6)
P @

for unknowns p; € K(a,b,m,n) and ¢; € K(a, b, m,n,z). This ansatz encodes
that we are looking for an antiderivative () of P. We reduce this ansatz with
the Grobner basis obtaining some remainder (normal form):

c1+ Dy + 035;1 + C4Dz27 ¢ € K(CL, b7 m,n, x)[p07 SR 7pd]‘

This step corresponds exactly to the rewriting in the hypergeometric case
where we expressed for example f(n + d, k) as a rational function multiple
of f(n,k). The condition that (6) is a valid relation for the integrand is
equivalent to claiming that its remainder modulo the annihilating ideal is 0.
Equating all coefficients ¢; to zero yields a parameterized coupled system of
linear differential equations of the form:

qdr = T1q1 +e 71,444 + rl(aab’ m,n,x,po,- .. 7pd)

4y = T41G1 + -+ 4,444 + T4(Cl, ba m,n,x,po,- .- 7pd)
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where r;; € K(a,b,m,n,z) and r;, € K(a,b,m,n,x)[po,...,ps). We just
mention that there are algorithms for solving such systems, but don’t go into
detail here.

Finally, integrating (6) will deliver a recurrence of the form

poF(a,b,m,n) +p1 F(a,b,m,n+1)+-- -+ psF(a,b,m,n+d) = h(a,b,m,n)

where F(a,b,m,n) = [;° Ju(ax)J,(bx) de. Similarly, we can find a recur-
rence in m and differential equations in a and b, obtaining a holonomic sys-
tem for the integral. It turns out that it equals exactly the holonomic system
that closure properties deliver for the right-hand side (again by Grobner basis
reasoning).

8 Advanced applications of the HSA

This is the title of our PhD thesis [7]. Part of this work was to implement (in
Mathematica) all the algorithms mentioned above, and related ones (non-
commutative arithmetic with Ore polynomials and Buchberger’s algorithm
for these, closure properties for holonomic functions, Chyzak’s algorithm,
algorithms for finding rational solutions of linear difference or differential
equations, uncoupling of systems of such equations, etc.). The package is
named HolonomicFunctions and is freely available from the RISC combina-
torics software page

http: //www.risc.uni-linz.ac.at /research /combinat /software/

In the thesis, three “advanced applications” are presented:

e proof of a conjecture by Ira Gessel about the enumeration formula for
certain lattice walks, see also [6],

e derivation of certain relations between basis functions that are used
in finite element methods for numerical simulations (these basis func-
tions are products of Legendre and Jacobi polynomials and hence holo-
nomic),

e a computer proof of Stembridge’s theorem about the counting formula
of totally symmetric plane partitions.
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