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Introductory Examples (1)
Task: Find a closed form for the sum

s(n) = Z": (;}C)k (Z) (2:)

k=0

— Use Zeilberger's algorithm, e.g., the implementation
fastZeil (by P. Paule and M. Schorn)!
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Introductory Examples (1)
Task: Find a closed form for the sum

s(n) = z": (;}q)k (Z) (i’f)

k=0

— Use Zeilberger's algorithm, e.g., the implementation
fastZeil (by P. Paule and M. Schorn)!

Solution: (1 + n) SUM[n] + (-2 - n) SUM[2 + n] ==
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Introductory Examples (1)
Task: Find a closed form for the sum

s(n) = z": (;}q)k (Z) (i’f)

k=0

— Use Zeilberger's algorithm, e.g., the implementation
fastZeil (by P. Paule and M. Schorn)!

Solution: (1 + n) SUM[n] + (-2 - n) SUM[2 + n] ==

(”_7,})” n even
5(”)_{ 0 nodd
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Introductory Examples (2)

Task: Find a closed form for the double sum

s(m,n)zgg Z+J<Z+]><i><?>

— Use MultiSum (by K. Wegschaider)!

.M.M.
%



Introductory Examples (2)

Task: Find a closed form for the double sum

s(m,n)zgg Z+J<Z+]><i><?>

— Use MultiSum (by K. Wegschaider)!

Solution: -(n SUM[-1 + m, -1 + n]) + (1 - m + n)
SUM[-1 + m, n] + m SUM[m, n] ==

.M.M.
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Introductory Examples (2)

Task: Find a closed form for the double sum

s(m,n)zgg Z+J<Z+]><i><?>

— Use MultiSum (by K. Wegschaider)!

Solution: -(n SUM[-1 + m, -1 + n]) + (1 - m + n)
SUM[-1 + m, n] + m SUM[m, n] ==

S(ma n) = 5m,n
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Introductory Examples (3)

Task: Prove
o 0 252425
. 22 ap 2n + ]. 2n+2 2 q J J n
(—1)7qY 3][ } = (@)Y | | -
j;oo n+jl, " ;) (—@:¢*)j+1 L7 1y

— Use gZeil (by A. Riese), qGeneratingFunctions (by C.K.)!
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Introductory Examples (3)

Task: Prove
o 0 252425
(—1)7qY SJ[ } = (@)Y e ||
jzzoo n+j |, " j;(—q;rf)jﬂ Il

— Use gZeil (by A. Riese), qGeneratingFunctions (by C.K.)!

Solution strategy:
e Find recurrences for both sides of the identity
e In this case they are different
e Compute a recurrence for the sum of both
e Check initial values
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Main Topic

Generalization to

e non-hypergeometric multivariate functions

e both discrete and continuous variables

e mixed difference-differential equations

e handling of “standard” and ¢-problems in the same framework
The main ingredients to achieve this are

e translation to pure algebra, i.e., to operator algebras
(Ore algebras)

e noncommutative Grobner bases

— We follow D. Zeilberger's “Holonomic Systems Approach”
(1991) with extensions and refinements by F. Chyzak (1998)
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Ore Algebra: Examples

Example 1: K[z]|[D,;1, D,] is the Weyl algebra A;.
Example 2: K[n][S,; S, 0] is the first shift algebra.

Example 3: K(n)[S,; Sy, 0]
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Holonomic functions

Definition is complicated (at least for the multivariate case). ..
maybe later.
Closure properties:

e sum

e product

e integration
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Holonomic functions

Definition is complicated (at least for the multivariate case). ..
maybe later.
Closure properties:

e sum
e product
e integration
o ...
Elimination property:
Given an ideal J in A,, s.t. A, /J is holonomic; then for any choice
of n + 1 among the 2n generators of A,, there exists a nonzero

operator in J that contains only these. In other words, we can
eliminate n — 1 variables.
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O-finite functions

Definition: Let O be an Ore algebra over some field A, e.g.,

A =K(x). A left ideal J in @ is called O-finite w.r.t. O, if O/J is
a finite-dimensional vector space over A.

A function f is called J-finite w.r.t. Q if it is annihilated by a
O-finite ideal. Further we have O/J = QO o f when J is the
annihilator of f in Q.
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O-finite functions

Definition: Let O be an Ore algebra over some field A, e.g.,

A =K(x). A left ideal J in @ is called O-finite w.r.t. O, if O/J is
a finite-dimensional vector space over A.

A function f is called J-finite w.r.t. Q if it is annihilated by a
O-finite ideal. Further we have O/J = QO o f when J is the
annihilator of f in Q.

Examples:
e sinx
e Legendre polynomials

e Fibonacci numbers

.M.M.
%



O-finite functions

Closure properties:
e sum
e product
e application of Ore operators
e algebraic substitution
e subsequences

— These closure properties can be executed effectively (using an
extended version of the FGLM algorithm).
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Examples for O-finite functions

The annihilator of a d-finite function is usually not too difficult to
compute.

— Use database and closure properties!
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Examples for O-finite functions

The annihilator of a d-finite function is usually not too difficult to
compute.

— Use database and closure properties!

Some functions that are not O-finite:
e tanx
Inx
et +e -1
e Inlnzx

.262

* P + In?(2e~% cos x)
VWt Qn)[S; S, 0]
! wrt. Q(z)[Dy; 1, Dy
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O-finite vs. holonomic

Consider the function

1
f(kan):m-

f(n, k) is O-finite w.r.t. Q(k,n)[Sk; Sk, 0][Sh; Sn, 0]; the
corresponding annihilating ideal is

J1 = (B> 4n*4+2n+1) S, — (k2 4n?), (K +2k4+n?4+1) S, — (k*+n?)).

f(n, k) is also O-finite w.r.t. Q(k,n)[Dy; 1, Dy|[Dy; 1, D,]; the
corresponding annihilating ideal is

Jo = ((k* +n®)D, + 2n, (k* + n?) Dy + 2k).

Note: f(k,n) regarded as a function in the continuous variables k
and n is holonomic, but regarded as a sequence in the discrete
variables & and n it is not holonomic!

o,
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Definite integration

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = K|z, y] [Dx, LD 1[Dy; 1,D ].
Find: The annihilator of F(y f f(z,y)d
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Definite integration

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = K|z, y] [Dx, LD 1[Dy; 1, D).

Find: The annihilator of F(y f f(z,y)dz

Since f is holonomic, there eX|sts P(y,D,,D,) € Anng f that
does not contain . Write

P<y7 DI7 Dy) = Q(y7 Dy) + Dz ’ R(y, D;u Dy)

Throwing the integral on P e f = 0 gives

Q(y, Dy)F(y) + |R(y, D, Dy)f($7y):|z -0
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Definite integration with Takayama

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = Kz, y|[Dy; 1; D,][Dy; 1, D).
Find: The annihilator of F(y) = f; f(z,y)dz

.M.M.
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Definite integration with Takayama

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = Kz, y|[Dy; 1; D,][Dy; 1, D).

Find: The annihilator of F(y) = f; f(z,y)dz

Find P € Anng f which can be written in the form

P(.Z‘, ya DZa Dy) = Q(y7 Dy) + DIR(xaya D&Ua Dy)
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Definite integration with Takayama

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = K]z, y][Dm, 17D 1[Dy; 1, D).

Find: The annihilator of F'(y f f(z,y)dz

Find P € Anng f which can be written in the form

P(.Z‘, ya Dza Dy) = Q(y7 Dy) + DIR(x>y7 D&U> Dy)

0 = /P:cy,Dx,Dmx y)da

- / Q(y, D) f(x y)d:z:+/ DyR(z,y, Dy, Dy) f (2, y)dx

Hence Q(y, D,)F(y) = 0 (in the case of “natural boundaries”).

The operator () can be computed with Takayama's algorithm
(noncommutative Grobner bases over modules). The theory of
holonomy guarantees that such an operator exists. S



Definite summation with Takayama

Given: Anng f, the annihilator of a holonomic sequence f(k,n) in
the Ore algebra O = K[k, n)[Sk; Sk, 0][Sn; Sh, 0].

Find: The annihilator of Fi(n) = >, f(k,n)

Find P € Ann f which can be written in the form

P(k, n, Sk, S,I) = Q(TL, Sz) + AkR(k, n, Sk, S,L)
0 = > P(k,n,%,S)f(k,n)
k
= > QM S)f(k,n) + > ApR(k,n, S, S,) f(k,n)
k

k

Hence Q(n, S,)F(n) = 0 (in the case of “natural boundaries”).

The operator () can be computed with Takayama's algorithm
(noncommutative Grobner bases over modules). The theory of
holonomy guarantees that such an operator exists.

.M.M.
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Example

Task: Compute the definite integral
/ e_"’“"QHn(:c) dr =0

Solution: First verify that the integral has natural boundaries, i.e.,

[P . (e_”’QHn(:c))ro =0 VP € Q(n,z)[S; %, 01[D; 1, Dy].

—00

Then apply Takayama's algorithm!

.M.M.
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Jacobi Polynomials (1)

The Jacobi polynomials are defined by

i (a4 Dn(—n)p(n+a+b+ 1) (1—x)k

| |
— n! a—l—l)kk: 2

The summand is both hypergeometric and hyperexponential.
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Jacobi Polynomials (1)

The Jacobi polynomials are defined by

i (a4 Dn(—n)p(n+a+b+ 1) (1—x)k
= n' (a+ 1)kk! 2
The summand is both hypergeometric and hyperexponential.
Applying Takayama's algorithm gives an annihilator for pleb) (z):
{(—2n? — 2an — 2bn — 4n — 2a — 2b — 2)S,
+(az? + bz? +2na? + 222 —a—b—2n - 2)D,
+xa® + a® + na + 2bxa + 3nza + 3ra+a —b*> —b—bn
+b%x + 2n%x + 3bx + 3bnx + 4nz + 2z,
(—a—=b—n—-1)8+@—-1)D,+(a+b+n+1),
(a+b+n+1)S+(—2z—1)Dy+(—a—b—n—-1),
(1—2?)D2 + (—za—a+b—bx — 2x) Dy + (n? + an + bn +n)}.

.M.M.
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Jacobi polynomials (2)

Task: Prove (or even better: find!):

(2n+a+b)PP V(z) = (n+a+b)P(z)
+(n+a) P (),
(1-2) S PEO@) = aP(@) — (n+a) P (@),

.M.M.
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Jacobi polynomials (2)

Task: Prove (or even better: find!):

(2n+a+b)PP V(z) = (n+a+b)P(z)
+(n+a) P\ (),
(1-2) S PEO@) = aP(@) — (n+a) P (@),

Solution: Use Grobner bases for elimination. We get:
(a+b+n+2)8S,+(a+n+1) — (a+ b+ 2n+ 3)S,,
1-2)DS+ (a+n+1)S —(a+1)S,

.M.M.
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Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute a closed form for the definite integral

Noa(a,m) = / aceCmeN
) , ,m
04 o (z*42az?+1)mH+L

.M.M.
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Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute a closed form for the definite integral

a,m ac m e
0,4\ &, 0 (];.4 2a12 1)m+1’ ’

Solution: Use e.g. Takayama's algorithm to obtain an annihilator
for the integral:

{(4m +4)S,, — 2aD, — 4m — 3,
(4a® — 4)D? + (8ma + 12a) D, + 4m + 3}

.M.M.
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Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute a closed form for the definite integral

a,m ac m e
0,4\ &, 0 (];.4 2a12 1)m+1’ !

Solution: Use e.g. Takayama's algorithm to obtain an annihilator
for the integral:

{(4m +4)S,, — 2aD, — 4m — 3,
(4a® — 4)D? + (8ma + 12a) D, + 4m + 3}
With Mathematica's DSolve) we get:

(1+i)(—iym2mt (a2 — 1) 21 Qi (a)
F(m+1)

N0,4(a, m) = —

.M.M.
%



Irresistible integral (Boros / Moll, 7.2.1)

Task: Compute a closed form for the definite integral

a,m ac m e
0,4\ &, 0 (];.4 2a12 1)m+1’ !

Solution: Use e.g. Takayama's algorithm to obtain an annihilator
for the integral:

{(4m +4)S,, — 2aD, — 4m — 3,
(4a® — 4)D? + (8ma + 12a) D, + 4m + 3}
With Mathematica's DSolve) we get:

(1+i)(—iym2mt (a2 — 1) 21 Qi (a)
F(m+1)

N0,4(a, m) = —

1 1

P(m+§,—m—§)
Solution of V. Moll: Ny, = — " (?) o,
2" 2 (a4 1)""2 S




Nicholson's integral

Task: Prove the following identity involving a Bessel function:

/OO e L (t)dt = <x SR 1>
0

2 —1

where R(z) > 1.

.M.M.
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Multiple integration / summation

Task: Prove

[ oI e CHNNe o]

H H lsmn
[ (D 3y e

=0 m=0n=0

_ \/7?62(rs+rt+st) )

P
)d:ﬂ

.M.M.
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Chyzak’s algorithm

Given a function f that is O-finite w.r.t. an Ore algebra O.
Any function in O e f can be written in normal form

(Z goaa')‘) of.

acV
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Chyzak’s algorithm

Given a function f that is O-finite w.r.t. an Ore algebra Q.
Any function in O e f can be written in normal form

(Z g0a8°‘> of.

acV

Task: Find an operator @ € Anng f with certain properties, e.g.,
such that D, - Q — 1 = 0 (indefinite integration).

.M.M.
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Chyzak’s algorithm

Given a function f that is O-finite w.r.t. an Ore algebra Q.
Any function in O e f can be written in normal form

(Z g0a8°‘> of.

acV

Task: Find an operator @ € Anng f with certain properties, e.g.,
such that D, - Q — 1 = 0 (indefinite integration).
Algorithm:

compute a Grobner basis G for Anng f

make an ansatz for () with undetermined coefficients
reduce the ansatz with G, i.e., compute the normal form
all coefficients of the normal form must be zero

solve the resulting system
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%



Integrated Jacobi polynomials (1)

Define
i S @t Dannat Dy (1-2)*

p(z) = / ()

Task: Express p2(z) in terms of p2_;(x) and p?~2(z).

.M.M.
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Integrated Jacobi polynomials (1)

Define

0o k
pi(z) = z:(zJL—i-1)n(—n)k(n—|—a+1);.C <1—x> ,

| |
— nl(a + 1)ik! 2
x

p(z) = / ()

Task: Express p2(z) in terms of p2_;(x) and p?~2(z).

Ansatz: %1% (z) = Q o p(z) with Q = 1 (2)S2 + ¢a(2)S,.

.M.M.
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Integrated Jacobi polynomials (2)

Ansatz: p7(x) = Q o piy(w) with Q = ¢1(2)S7 + @2 () S,
Solution:

e compute a Grobner basis G for Ann p?

. ddxﬁflizl = p2*2 translates to 0 = D,Q — S? =: Z

e compute the normal form of Z by reducing it with G

e all coefficients of the normal form must be zero

e solve the system of coupled differential equations for rational

solutions: use OreSys (by S. Gerhold) for uncoupling.

We find

(a+1)ppii(2) = (1= 2)pi (@) + 205 41 (2).

.M.M.
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Creative telescoping

Chyzak's ansatz can be extended in order to do definite summation
and integration with creative telescoping!
—— Compare Zeilberger's extension of Gosper's algorithm!

.M.M.
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Creative telescoping

Chyzak's ansatz can be extended in order to do definite summation
and integration with creative telescoping!
—— Compare Zeilberger's extension of Gosper's algorithm!

Example: Strang's integral

[ -

Ansatz: D, -Q + Z?:o mSé
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Integral from Amdeberhan/Espinosa/Moll

We compute an annihilator for the integral

/‘T Intdt
0 (1 + t2)(n+1) ’

.M.M.
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Integral from Amdeberhan/Espinosa/Moll
We compute an annihilator for the integral
/‘T Intdt
0 (1 + 752)(714—1) ’
Let's prove the special case for z = 1:
L Intdt — T+l
o _2—277, G 4
/0 (1 +t2)(n+1) < )( +kzo 2k + 1 )

2J
=2

M=

where pi(1) =

.M.M.
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Thanks for your attention!



