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Introductory Examples (1)

Task: Find a closed form for the sum

s(n) =
n∑

k=0

(−1)k

2k

(
n

k

)(
2k

k

)
.

−→ Use Zeilberger’s algorithm, e.g., the implementation
fastZeil (by P. Paule and M. Schorn)!

Solution: (1 + n) SUM[n] + (-2 - n) SUM[2 + n] == 0

s(n) =
{

(n−1)!!
n!! n even

0 n odd
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Introductory Examples (2)

Task: Find a closed form for the double sum

s(m,n) =
m∑

i=0

n∑
j=0

(−1)i+j

(
i + j

i

)(
m

i

)(
n

j

)

−→ Use MultiSum (by K. Wegschaider)!

Solution: -(n SUM[-1 + m, -1 + n]) + (1 - m + n)
SUM[-1 + m, n] + m SUM[m, n] == 0

s(m,n) = δm,n
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Introductory Examples (3)

Task: Prove

∞∑
j=−∞

(−1)jq4j2−3j

[
2n + 1
n + j

]
2

= (q2n+2; q2)n+1

∞∑
j=0

q2j2+2j

(−q; q2)j+1

[
n
j

]
2

.

−→ Use qZeil (by A. Riese), qGeneratingFunctions (by C.K.)!

Solution strategy:

• Find recurrences for both sides of the identity

• In this case they are different

• Compute a recurrence for the sum of both

• Check initial values
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Main Topic

Generalization to

• non-hypergeometric multivariate functions

• both discrete and continuous variables

• mixed difference-differential equations

• handling of “standard” and q-problems in the same framework

The main ingredients to achieve this are

• translation to pure algebra, i.e., to operator algebras
(Ore algebras)

• noncommutative Gröbner bases

−→ We follow D. Zeilberger’s “Holonomic Systems Approach”
(1991) with extensions and refinements by F. Chyzak (1998)



Ore Algebra: Examples

Example 1: K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: K[n][Sn;Sn, 0] is the first shift algebra.

Example 3: K(n)[Sn;Sn, 0]



Holonomic functions

Definition is complicated (at least for the multivariate case). . .
maybe later.
Closure properties:

• sum

• product

• integration

• . . .

Elimination property:
Given an ideal J in An s.t. An/J is holonomic; then for any choice
of n + 1 among the 2n generators of An there exists a nonzero
operator in J that contains only these. In other words, we can
eliminate n− 1 variables.
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∂-finite functions

Definition: Let O be an Ore algebra over some field A, e.g.,
A = K(x). A left ideal J in O is called ∂-finite w.r.t. O, if O/J is
a finite-dimensional vector space over A.
A function f is called ∂-finite w.r.t. O if it is annihilated by a
∂-finite ideal. Further we have O/J ∼= O • f when J is the
annihilator of f in O.

Examples:

• sinx

• Legendre polynomials

• Fibonacci numbers
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∂-finite functions

Closure properties:

• sum

• product

• application of Ore operators

• algebraic substitution

• subsequences

−→ These closure properties can be executed effectively (using an
extended version of the FGLM algorithm).



Examples for ∂-finite functions

The annihilator of a ∂-finite function is usually not too difficult to
compute.

−→ Use database and closure properties!

Some functions that are not ∂-finite:

• tanx

•
lnx

ex + e−x − 1
• ln lnx

•
x2

x2 + ln2(2e−a cos x)
•
√

n w.r.t. Q(n)[Sn;Sn, 0]
• x! w.r.t. Q(x)[Dx; 1, Dx]
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∂-finite vs. holonomic

Consider the function

f(k, n) =
1

k2 + n2
.

f(n, k) is ∂-finite w.r.t. Q(k, n)[Sk;Sk, 0][Sn;Sn, 0]; the
corresponding annihilating ideal is

J1 = 〈(k2+n2+2n+1)Sn−(k2+n2), (k2+2k+n2+1)Sk−(k2+n2)〉.

f(n, k) is also ∂-finite w.r.t. Q(k, n)[Dk; 1, Dk][Dn; 1, Dn]; the
corresponding annihilating ideal is

J2 = 〈(k2 + n2)Dn + 2n, (k2 + n2)Dk + 2k〉.

Note: f(k, n) regarded as a function in the continuous variables k
and n is holonomic, but regarded as a sequence in the discrete
variables k and n it is not holonomic!



Definite integration

Given: AnnO f , the annihilator of a holonomic function f(x, y) in
the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y)dx

Since f is holonomic, there exists P (y, Dx, Dy) ∈ AnnO f that
does not contain x. Write

P (y, Dx, Dy) = Q(y, Dy) + Dx ·R(y, Dx, Dy)

Throwing the integral on P • f = 0 gives

Q(y, Dy)F (y) +
[
R(y, Dx, Dy)f(x, y)

]b
a

= 0
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Definite integration with Takayama
Given: AnnO f , the annihilator of a holonomic function f(x, y) in
the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y)dx

Find P ∈ AnnO f which can be written in the form

P (x, y, Dx, Dy) = Q(y, Dy) + DxR(x, y, Dx, Dy)

0 =
∫ b

a
P (x, y, Dx, Dy)f(x, y)dx

=
∫ b

a
Q(y, Dy)f(x, y)dx +

∫ b

a
DxR(x, y, Dx, Dy)f(x, y)dx

Hence Q(y, Dy)F (y) = 0 (in the case of “natural boundaries”).

The operator Q can be computed with Takayama’s algorithm
(noncommutative Gröbner bases over modules). The theory of
holonomy guarantees that such an operator exists.
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Definite summation with Takayama

Given: AnnO f , the annihilator of a holonomic sequence f(k, n) in
the Ore algebra O = K[k, n][Sk;Sk, 0][Sn;Sn, 0].
Find: The annihilator of F (n) =

∑
k f(k, n)

Find P ∈ Ann f which can be written in the form

P (k, n, Sk, Sn) = Q(n, Sn) + ∆kR(k, n, Sk, Sn)

0 =
∑

k

P (k, n, Sk, Sn)f(k, n)

=
∑

k

Q(n, Sn)f(k, n) +
∑

k

∆kR(k, n, Sk, Sn)f(k, n)

Hence Q(n, Sn)F (n) = 0 (in the case of “natural boundaries”).

The operator Q can be computed with Takayama’s algorithm
(noncommutative Gröbner bases over modules). The theory of
holonomy guarantees that such an operator exists.



Example

Task: Compute the definite integral∫ ∞

−∞
e−x2

Hn(x) dx = 0

Solution: First verify that the integral has natural boundaries, i.e.,[
P •

(
e−x2

Hn(x)
)]∞
−∞

= 0 ∀P ∈ Q(n, x)[Sn;Sn, 0][Dx; 1, Dx].

Then apply Takayama’s algorithm!



Jacobi Polynomials (1)

The Jacobi polynomials are defined by

P (a,b)
n (x) =

∞∑
k=0

(a + 1)n(−n)k(n + a + b + 1)k

n!(a + 1)kk!

(
1− x

2

)k

The summand is both hypergeometric and hyperexponential.

Applying Takayama’s algorithm gives an annihilator for P
(a,b)
n (x):

{(−2n2 − 2an− 2bn− 4n− 2a− 2b− 2)Sn

+(ax2 + bx2 + 2nx2 + 2x2 − a− b− 2n− 2)Dx

+xa2 + a2 + na + 2bxa + 3nxa + 3xa + a− b2 − b− bn
+b2x + 2n2x + 3bx + 3bnx + 4nx + 2x,

(−a− b− n− 1)Sb + (x− 1)Dx + (a + b + n + 1),
(a + b + n + 1)Sa + (−x− 1)Dx + (−a− b− n− 1),
(1− x2)D2

x + (−xa− a + b− bx− 2x)Dx + (n2 + an + bn + n)}.
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Jacobi polynomials (2)

Task: Prove (or even better: find!):

(2n + a + b)P (a,b−1)
n (x) = (n + a + b)P (a,b)

n (x)

+(n + a)P (a,b)
n−1 (x),

(1− x)
d
dx

P (a,b)
n (x) = aP (a,b)

n (x)− (n + a)P (a−1,b+1)
n (x).

Solution: Use Gröbner bases for elimination. We get:

(a + b + n + 2)SbSn + (a + n + 1)Sb − (a + b + 2n + 3)Sn,

(1− x)DxSa + (a + n + 1)Sb − (a + 1)Sa
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Irresistible integral (Boros / Moll, 7.2.1)
Task: Compute a closed form for the definite integral

N0,4(a,m) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
, a ∈ C,m ∈ N

Solution: Use e.g. Takayama’s algorithm to obtain an annihilator
for the integral:{

(4m + 4)Sm − 2aDa − 4m− 3,
(4a2 − 4)D2

a + (8ma + 12a)Da + 4m + 3
}

With Mathematica’s DSolve) we get:

N0,4(a,m) = −
(1 + i)(−i)m2−m−1

(
a2 − 1

)−m
2
− 1

4
√

πQ
m+ 1

2
m (a)

Γ(m + 1)

Solution of V. Moll: N0,4 =
πP

(m+ 1
2
,−m− 1

2)
m (a)

2m+ 3
2 (a + 1)m+ 1

2
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Nicholson’s integral

Task: Prove the following identity involving a Bessel function:

∫ ∞

0
e−xtIa(t) dt =

(
x−

√
x2 − 1

)a

√
x2 − 1

where <(x) > 1.



Multiple integration / summation

Task: Prove∫ ∞

−∞

( ∞∑
l=0

∞∑
m=0

∞∑
n=0

Hl(x)Hm(x)Hn(x)rlsmtne−x2

l!m!n!

)
dx

=
√

πe2(rs+rt+st).



Chyzak’s algorithm

Given a function f that is ∂-finite w.r.t. an Ore algebra O.
Any function in O • f can be written in normal form(∑

α∈V

ϕα∂α

)
• f.

Task: Find an operator Q ∈ AnnO f with certain properties, e.g.,
such that Dx ·Q− 1 = 0 (indefinite integration).
Algorithm:

• compute a Gröbner basis G for AnnO f

• make an ansatz for Q with undetermined coefficients

• reduce the ansatz with G, i.e., compute the normal form

• all coefficients of the normal form must be zero

• solve the resulting system
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Integrated Jacobi polynomials (1)

Define

pa
n(x) =

∞∑
k=0

(a + 1)n(−n)k(n + a + 1)k

n!(a + 1)kk!

(
1− x

2

)k

,

p̂a
n(x) =

∫ x

−1
pa

n−1(y)dy.

Task: Express p̂a
n(x) in terms of pa

n−1(x) and pa−2
n (x).

Ansatz: p̂a+2
n+1(x) = Q • pa

n(x) with Q = ϕ1(x)S2
a + ϕ2(x)Sn.
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Integrated Jacobi polynomials (2)

Ansatz: p̂a+2
n+1(x) = Q • pa

n(x) with Q = ϕ1(x)S2
a + ϕ2(x)Sn.

Solution:

• compute a Gröbner basis G for Ann pa
n

• d
dx p̂a+2

n+1 = pa+2
n translates to 0 = DxQ− S2

a =: Z

• compute the normal form of Z by reducing it with G

• all coefficients of the normal form must be zero

• solve the system of coupled differential equations for rational
solutions: use OreSys (by S. Gerhold) for uncoupling.

We find

(a + 1)p̂a+2
n+1(x) = (1− x)pa+2

n (x) + 2pa
n+1(x).



Creative telescoping

Chyzak’s ansatz can be extended in order to do definite summation
and integration with creative telescoping!
−→ Compare Zeilberger’s extension of Gosper’s algorithm!

Example: Strang’s integral∫ 1

−1

(
P2k+1(x)

x

)2

dx = 2

Ansatz: Dx ·Q +
∑d

i=0 ηiS
i
k
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Integral from Amdeberhan/Espinosa/Moll

We compute an annihilator for the integral∫ x

0

ln t dt

(1 + t2)(n+1)
.

Let’s prove the special case for x = 1:∫ 1

0

ln t dt

(1 + t2)(n+1)
= −2−2n

(
2n

n

)(
G +

n−1∑
k=0

π
4 + pk(1)
2k + 1

)

where pk(1) =
k∑

j=1

2j

2j
(
2j
j

) .
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Thanks for your attention!


