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Abstract. Prokaryotic evolution is often described as the Spaghetti of
Life due to massive genome dynamics (GD) events of gene gain and loss,
resulting in different evolutionary histories for the set of genes comprising
the organism. These different histories, dubbed as gene trees provide
confounding signals, hampering the attempt to reconstruct the species
tree describing the main trend of evolution of the species under study.
The synteny index (SI) between a pair of genomes combines gene or-
der and gene content information, allowing comparison of unequal gene
content genomes, together with order considerations of their common
genes. Recently, GD has been modelled as a continuous-time Markov
process. Under this formulation, the distance between genes along the
chromosome was shown to follow a birth-death-immigration process. Us-
ing classical results from birth-death theory, we recently showed that the
SI measure is consistent under that formulation.
In this work, we provide an alternative, stand alone combinatorial proof
of the same result. By using generating function techniques we derive
explicit expressions of the system’s probabilistic dynamics in the form of
rational functions of the model parameters. This, in turn, allows us to
infer analytically the expected distances between organisms based on a
transformation of their SI. Although the expressions obtained are rather
complex, we establish additivity of this estimated evolutionary distance
(a desirable property yielding phylogenetic consistency). This approach
relies on holonomic functions and the Zeilberger Algorithm in order to
establish additivity of the transformation of SI.

Keywords: Genome Dynamics, Markovian Processes, Generating Func-
tions, Phylogenetics, Holonomic Functions.

1 Introduction

The dramatic advancements in sequencing technologies have made realistic bi-
ological tasks seemed imaginary only a decade ago. Inferring the evolutionary
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history of thousands of species, is among the most fundamental tasks in biology
with implications to medicine, agriculture, and more. Such a history is depicted
in a tree structure and is called a phylogeny. Leaves of that tree correspond to
contemporary (i.e. extant) species and the tree edges (or branches) represent evo-
lutionary relationships. Despite the impressive advancement in the extraction of
such molecular data, and of ever increasing quality, finding the underlying phy-
logenetic tree is still a major challenge requiring reliable approaches for inferring
the true evolutionary distances between the species at the tips (leaves) of the
tree. The tree sought should preserve the property that the length of the path
between any two organisms at its leaves equals the inferred pairwise distance
between these two organisms. When such a tree exists, these distances are called
additive, as does the distance matrix storing them.
Modern approaches in systematics rely on statistical modelling in which a model
fitting optimally the data is sought. The challenges under this framework, are
both statistical, i.e. accurately modelling the data, and computational for effi-
cient model inference and selection from given data. In phylogenetics, maximum
likelihood seeks for a tree under which the probability of observing the given
leaf sequences is maximised [12,13,14,8,9]. Normally, the data for this task is
taken from few ubiquitous genes, such as ribosomal genes, that reside in every
species and are imune for GD events. Such genes are typically highly conserved
by definition and hence cannot provide a strong enough signal to distinguish
the shallow branches of the prokaryotic tree. Nevertheless, GD events, gene gain
in the form of horizontal gene transfer (HGT), a mechanism by which organ-
isms transfer genetic material not through vertical inheritance, and gene loss,
seem to provide valuable evolutionary information that can be harnessed for
classification [7,20,23]. Approaches relying on GD are mainly divided into gene-
order-based and gene-content-based techniques. Under the gene-order-based ap-
proach [24,11,33], two genomes are considered as permutations over the gene
set, and distance is defined as the minimal number of operations needed to
transform one genome to the other. The gene-content-based approach [29,30,10]
ignores entirely gene order, and similarity is defined as the size of the set of
shared genes. Although a statistical framework was devised for part of these
models [26,31,4,25] to the best of our knowledge no such framework accounted
for HGT.

The synteny index (SI) [28,1,27] captures both existence and locality, i.e. gene
content and order respectively, by summarising gene neighbourhoods across the
entire genome. An attractive property of the SI measure is the relaxation of
the equal gene content requirement, in which genomes are permutations of the
gene set. Under the attempt to model SI in a statistical framework, the Jump
model was defined to account for gene order variation between evolving genomes.
The Jump operation moves a gene to a random location in the genome. In the
Jump model, every gene jumps, in a Poisson process. Under that framework,
a genome is defined as a continuous-time Markov process (CTMP) [2]. Conse-
quently, gene distance along the genome can be described as a (critical) birth-
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death-immigration process. The setting poses intrinsic hurdles such as overlap-
ping neighbourhoods, non-stationarity, confounding factors, and more. There-
fore, trees were constructed from evolutionary distances inferred heuristically
based on exponential decay modelling.

In a recent paper [19] we have used classical tools for the birth-death field such
as spectral theory and orthogonal polynomials, to derive analytical expressions
for deriving the model transition probabilities and hence expected evolutionary
distances. These analytical expressions yielded model consistency - an attractive
property in systematics, implying that a measure infers accurate distances under
a given model of evolution.

In this work, we provide an alternative, standalone combinatorial deriva-
tion for the model parameter and the proof of consistency. We first define the
system in terms of a generating function, and extract transition probabilities
as a function of time since divergence. However, the complexity of the expres-
sions obtained to infer distances, could not readily imply consistency for the
SI. By showing that these expressions satisfy the conditions for holonomic func-
tions [35,32] and applying the Zeilberger Algorithm [34] we prove consistency of
the SI measure under the jump model. We believe that this alternative proof,
besides its independent interest, confers better understandings of the system and
might prove useful for future extensions of the model, handling richer models
such as unequal gene content or jumps of several genes.
Due to space considerations, several proofs were omitted and will appear at the
journal version.

2 Preliminaries

We provide preliminary definitions and concepts to be used throughout the pa-
per. We start with the Jump Model that comprises of a Jump operation oper-
ating on a single gene, and a stochastic process acting on the genomic ensemble
of genes.

The Jump Model In this work we consider the genome as a gene list, that
is, the basic unit of resolution is an entire gene. Let G(n) = (g1, g2, . . . , gn) be
a sequence of ‘genes’ (see Figure 1). For the sake of ignoring the tips of the
sequence G(n), we assume n is large enough compared to other sizes defined
below.

Let G(n)(0) be a genome at time zero and WLOG let G(n)(0) = (g1, g2, . . . , gn).
Now consider the following continuous-time Markovian process G(n)(t), t ≥ 0 on
the state space of all n! permutations of g1, g2, . . . , gn. Each gene gi is indepen-
dently subject to a Poisson process transfer event (at constant rate λ) in which
gi is moved (or simply Jumps) to a different location in the sequence, with each
of these possible n− 1 locations selected uniformly at random (see Fig 2).

For example, if G(n)(t) = (g1, g2, g3, g4, g5), and then g1 jumps and lands
between g3 and g4 then the sequence yielded is G(n)(t + δ) = (g2, g3, g1, g4, g5).
Note, that gi can also move to one of the tips of the genome.
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Fig. 1. A Genome as Gene List: The basic unit of resolution is a gene and a genome
is defined as a sequence of genes.
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Fig. 2. The Jump operation: Gene g2 jumps into the space between genes g5 and
g6.

Since the model assumes a Poisson process, the probability that gi is trans-
ferred to a different position between times t and t+δ is λδ+o(δ), where the o(δ)
term accounts for the possibilities of more than one transfer occurring in the δ
time period (these are of order δ2 and so are asymptotically negligible compared
to terms of order δ as δ → 0). Moreover, a single transfer event always results
in a different sequence.

The Synteny Index Let k be any constant positive integer (note it may be
possible to allow k to grow slowly with n but we will not explore such an exten-
sion here). Then, for j ∈ k + 1, . . . , n− k the 2k-neighbourhood of gene gj in a
genome G(n), N2k(gj ,G(n)) is the set of 2k genes (different from gj) that have
distance, in terms of separating genes along the chromosome, at most k from

gj in G(n). Consider genomes G(n)1 and G(n)2 , with the restriction that G(n)1 and

G(n)2 share the same gene set. Let SIj(G(n)1 ,G(n)2 ) be the relative intersection size

between N2k(gj ,G(n)1 )) and N2k(gj ,G(n)2 ), or formally

SIj(G(n)1 ,G(n)2 ) =
1

2k
|N2k(gj ,G(n)1 ) ∩N2k(gj ,G(n)2 )|

(this is also called the Jaccard index between the two neighbourhoods [15]). See
Figure 3 for example of a gene neighbourhood and the synteny index of a par-
ticular gene.
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For the special case of our stochastic process, we define SIj(t) to be the SI for
gene gj between G(n)(0) and G(n)(t), 1

2k |N2k(gj ,G(n)(0)) ∩N2k(gj ,G(n)(t)).

Let SI(G(n)1 ,G(n)2 ) be the average of these SIj(G(n)1 ,G(n)2 ) values over all genes
gj for j between k + 1 and n− k. That is,

SI(G(n)1 ,G(n)2 ) =
1

n− 2k

n−k∑
j=k+1

SIj(G(n)1 ,G(n)2 ).

Finally, we equivalently define SI(G(n)(0),G(n)(t) be the average of these
SIj(t) values between G(n)(0) and G(n)(t), over all j from k + 1 to n− k.

SI(G(n)1 ,G(n)2 ) =
1

n− 2k

n−k∑
j=k+1

SIj(t). (1)

G1

G2

Fig. 3. The synteny Index The two gene neighbourhoods induced by gene g
in genomes G1 and G2 and the synteny Index between G1 and G2 for gene g,
SIg(G(n)

1 ,G(n)
2 ) = 1

2k
|N2k(g,G(n)

1 ) ∩ N2k(g,G(n)
2 )|. As genes e, f and i are shared

between the two neighbourhoods induced by gene g in G1 and G2, we obtain
SIg(G(n)

1 ,G(n)
2 ) = 1

2
.

In the sequel, when time t does not matter, we simply use SI or simply SI
where it is clear from the context.

2.1 Genome Permutations as a State Space

We now introduce a random process, that will play a key role in the analysis of
the random variable SI(G(n)(0),G(n)(t)). Consider the location of a gene gi, not
being transferred during time period t, with respect to another gene gi′ . WLG
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assume i > i′ and let j = i − i′. Now, there are j ‘slots’ between gi′ and gi in
which a transferred gene can be inserted, but only j − 1 genes in that interval,
that can be transferred. Obviously, a transfer into that interval moves gi′ one
position away from gi, and transfer from that interval, moves gi′ closer to gi.
The above can be modelled as a continuous-time random walk on state space
1, 2, 3, . . . with transitions from j to j + 1 at rate jλ (for all j ≥ 1) and from j
to j − 1 at rate (j − 1)λ (for all j ≥ 2), with all other transition rates 0. This
is thus a (generalised linear) birth-death process, and the process is illustrated
in Fig 4. As the process is not affected by the specific values of i and i′ (rather
by their difference), we can ignore them and let Xt denote the random variable
that describes the state of this random walk (a number 1, 2, 3 etc) at time t.

…	 …	
(i � 1)�
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Fig. 4. The Markov Chain as a Birth-Death process Transitions between the
states in the linear birth-death process with linear rate’s growth/decrease.

The processXt is slightly different from the much-studied critical linear birth-
death process, for which the rate of birth and death from state j are both equal
to j (here the rate of birth is j but the rate of death is j− 1), and for which 0 is
an absorbing state (here there are no absorbing states). However, this stochastic
process is essentially a translation of a critical linear birth-death process with
immigration rate equal to the birth-death rate λ. This connection is key to the
analysis of divergence times that we establish below.

Phylogenetic Trees and Distances For a set of species (denoted taxa) X ,
a phylogenetic X -tree T is a tree T = (V,E) for which there is a one-to-one
correspondence between X and the set L(T ) of leaves of T . A tree T is weighted
if there is a weight (or length) function associating non-negative weights (lengths)
to the edges of T . Along this work we will use the term length as it corresponds
to number of events or time span. Edge lengths are naturally extended to paths
where path length is the sum of edge lengths along the path. For a tree T over
n leaves, let D(T ) (or simply D) be a symmetric n × n matrix where [D]i,j
holds the path length (distance) between leaves i and j in T . A matrix D′ is
called additive if there is a tree T ′ such that D(T ′) = D′. A distance measure is
considered additive on a model M if it can be transformed (or corrected) to the
expected number of events generated under M .
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3 Asymptotic Estimation of the Model Parameters

In order to reconstruct maximum likelihood trees, we need to estimate the model
parameters, in a way that maximises their likelihood. We here establish the
main theoretical result of this work, by defining the problem parameters as a
generating function and use rules from this area. That in turn yields an analytical
expression of divergence times. Recall that we wish to link SI to our model
parameter Xt which is the expected value (state) of the model. Such a linkage
was established in [27] that we restate explicitly below. While this expression
is essential for the analysis, it is not stated in terms of the parameters of the
model, specifically the time since divergence, and therefore has limited power.
We start with some essential definitions that are central in the analysis. Let
pi,j(t) be the transition probability for Xt to be at state j given that at time 0
it was at state i. Formally,

Definition 1. For each ordered pair i, j ∈ {1, 2, 3 . . . , } let pi,j(t) = P(Xt = j |
X0 = i).

pi,j(t) is the most basic variable and on which more special variables are defined.
Now denote

qi,k(t) =

k∑
j=1

pi,j(t) (2)

the conditional probability that Xt ≤ k given that X0 = i, as qi,k(t).

Also let qk(t) denote the probability that for a gene at an initial state i (i.e.,
distance from a reference gene) chosen uniformly at random between 1 and k,
the process X∗ is still between 1 and k after time t, or formally:

qk(t) :=
1

k

k∑
i=1

qi,k(t) =
1

k

k∑
i=1

k∑
j=1

pi,j(t). (3)

Having defined these variables, we can restate the fundamental theorem we
proved in [27]:

Theorem 1. For any given value of t, and as n grows:

SI(G(n)(0),G(n)(t)) p−→ exp(−2λt)qk(t),

where
p−→ denotes convergence in probability.

Theorem 1 is important as it links between SI, event rate, and probabilities
of genes staying at their original neighbourhoods. Nevertheless, these factors
are confounded in the sense that qk(t) depends on t, and therefore it would be
desirable to arrive at an expression stated in the parameters of the model, i.e.
time and rate solely, so divergence times, or alternatively number of events, can
be estimated and trees can be reconstructed. The rest of the section is devoted
to this.
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3.1 Finding the Model Transition Probabilities

The transition probabilities of the Markov Model defined above are fundamental
for our goal - analytical expressions of the expected synteny index between two
genomes in terms of their divergence time. Hence, finding an explicit expression,
in terms of i, j, and t, is our first task.

Theorem 2.

pi,j(t) =
1

(t+ 1)i+j−1 ·
min(i,j)∑

`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`. (4)

The next step uses a lemma from [27] that adapts the Forward Kolmogorov
Equation [2] to our special setting.

Lemma 1. [27]

(a) The transition probabilities pi,j(t) satisfy the following tri-diagonal differen-
tial system

1

λ

dpi,j(t)

dt
= −(2j − 1)pi,j(t) + jpi,j+1(t) + (j − 1)pi,j−1(t), (5)

subject to the initial condition:

pi,j(0) =

{
1, if i = j;

0, if i 6= j.

(b) The expected value of Xt grows as a linear function of t. Specifically,

E[Xt | X0 = i] = i+ tλ. (6)

Our first aim is to solve the above infinite system of differential equations (5).

Without loss of generality, we assume λ = 1 and introduce the following
definition making use of a generating function.

Definition 2. For each i ≥ 1, we define a generating function fi(t, z) =
∑∞

j=1 pi,j(t)z
j .

Lemma 2.

fi(t, z) =
ti−1

(t+ 1)i

∞∑
j=1

(−1)j−1zj
(

t

t+ 1

)j−1 min(i,j)∑
`=1

(
i− 1

`− 1

)( −i
j − `

)(
t2 − 1

t2

)`−1

(7)

The full proof of Lemma 2 is deferred to the journal version.

We are now in a position to prove Theorem 2.
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Proof of Theorem 2: From Definition 2 and Lemma 2 above, we have two
equal power series. Therefore, by the uniqueness of generating functions [22],
we conclude that the coefficients are pairwise equal, hence:

pi,j(t) = (−1)j−1
ti−1

(t+ 1)i

(
t

t+ 1

)j−1

·
min(i,j)∑

`=1

(
i− 1

`− 1

)( −i
j − `

)(
t2 − 1

t2

)`−1

= (−1)j−1
(

1

t+ 1

)i+j−1

·
min(i,j)∑

`=1

(
i− 1

`− 1

)( −i
j − `

)(
t2 − 1

)`−1
ti+j−2`

=

(
1

t+ 1

)i+j−1

·
min(i,j)∑

`=1

( −i
j − `

)
(i− 1)!

(i− `)!(`− 1)!
(−1)j−1

(
t2 − 1

)`−1
ti+j−2`(8)

Recalling that the generalisation of the binomial coefficient to negative integers
−n is: (−n

k

)
= (−1)k

(
n+ k − 1

k

)
we obtain from (8):

pi,j(t) =

(
1

t+ 1

)i+j−1

·
min(i,j)∑

`=1

(−1)j−`
(i+ j − `− 1)!

(i− 1)!(j − `)!
(i− 1)!

(i− `)!(`− 1)!
(−1)j−1

(
t2 − 1

)`−1
ti+j−2`

=
1

(t+ 1)i+j−1 ·
min(i,j)∑

`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!
(−1)2j−`−1

(
t2 − 1

)`−1
ti+j−2`

=
1

(t+ 1)i+j−1 ·
min(i,j)∑

`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`. (9)

ut
From Theorem 2 we can see the following:

Corollary 1. For any i, j, and t it holds that pi,j(t) = pj,i(t).

3.2 Expectation and Variance of Xt

Having explicit expression for pi,j(t) allows us to confirm other derived values.
Therefore we here note by passing the expected value and variance of Xt. By
the definition of Xt we have

E(Xt | X0 = i) =

∞∑
j=1

jpi,j(t)

.
Also, from Definition 2 we have

d

dz
fi(t, z) =

d

dz

∞∑
j=1

pi,j(t)z
j =

∞∑
j=1

jpi,j(t)z
j−1
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Using the generating functions we have

E(Xt | X0 = i) =
d

dz
fi(t, z)

∣∣∣
z=1

= i+ t (10)

in agreement with Lemma 1b.
We also have

E(Xt(Xt − 1) | X0 = i) =
d2

dz2
fi(t, z)

∣∣∣
z=1

= 2t2 − 2t+ (4t− 1)i+ i2.

Hence

E(X2
t | X0 = i) = E(Xt(Xt − 1) | X0 = i) +E(Xt | X0 = i) = 2t2 − t+ 4ti+ i2.

Hence

V ar(Xt | X0 = i) = E(X2
t | X0 = i)− E(Xt | X0 = i)2

= 2t2 − t+ 4ti+ i2 − (i+ t)2

= t2 + (2i− 1)t. (11)

3.3 Explicit Expression for qk(t)

As stated above, Theorem 1 (originally from [27]) gives an explicit expression
for SI between two genomes, G0 and Gt . Nevertheless we could not derive an
expression only in terms of the number of events occurred during time t, or
alternatively a path along the tree of length λt “separating” genomes Gi and Gj ,
as we could not arrive at an explicit expression for qk (also in terms of (λt). As
here we obtained explicit expression for pi,j(t) we can aim now at expressing qk.

Lemma 3.

qk(t) =
1

k

k−1∑
`=0

k−`−1∑
i=0

k−`−1∑
j=0

(i+ j + `)!

i!j!`!
ti+j(t+ 1)−i−j−2`−1

(
1− t2

)`
. (12)

The full proof of Lemma 3 is deferred to the journal version.

4 Additivity of the SI Measure

Our goal now is to prove the monotonicity of the SI measure for any t and,
by Theorem 1, of the expression hk(t) = e−2tqk(t) in t ∈ [0,∞). In fact we
will prove that qk(t) itself is monotone decreasing, which obviously implies that
hk(t) is monotone decreasing. To do so we first obtain expressions for q′k(t). As

qi,k(t) =
∑k

j=1 pi,j(t), we get
dqi,k(t)

dt =
∑k

j=1
dpi,j(t)

dt .
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Lemma 4.
dqi,k(t)

dt
= kλ[pi,k+1(t)− pi,k(t)]. (13)

The full proof of Lemma 4 is deferred to the journal version.

Now, as by Lemma 4 we have q′i,k(t) = k[pi,k+1(t)− pi,k(t)], hence

q′k(t) =
1

k

k∑
i=1

q′i,k(t) =

k∑
i=1

[pi,k+1(t)− pi,k(t)] (14)

Using the explicit expressions for pi,j(t), we have, for i ≤ k:

pi,k(t) =
1

(t+ 1)i+k−1 ·
i∑

`=1

(i+ k − `− 1)!

(i− `)!(k − `)!(`− 1)!

(
1− t2

)`−1
ti+k−2`, (15)

and

pi,k+1(t) =
1

(t+ 1)i+k
·

i∑
`=1

(i+ k − `)!
(i− `)!(k + 1− `)!(`− 1)!

(
1− t2

)`−1
ti+k+1−2`

=
1

(t+ 1)i+k−1 ·
i∑

`=1

(i+ k − `− 1)!

(i− `)!(k − `)!(`− 1)!
· i+ k − `
k + 1− ` ·

t

t+ 1

(
1− t2

)`−1
ti+k−2`(16)

hence

pi,k+1(t)−pi,k(t) =
1

(t+ 1)i+k−1 ·
i∑

`=1

(i+ k − `− 1)!

(i− `)!(k − `)!(`− 1)!
·
(
k + i− `
k + 1− ` ·

t

t+ 1
− 1

)(
1− t2

)`−1
ti+k−2`

so that

q′k(t) =

k∑
i=1

[pi,k+1(t)− pi,k(t)] (17)

=

k∑
i=1

1

(t+ 1)i+k−1 ·
i∑

`=1

(k + i− `− 1)!

(i− `)!(k − `)!(`− 1)!
·
(
k + i− `
k + 1− ` ·

t

t+ 1
− 1

)(
1− t2

)`−1
ti+k−2`.

We would like to prove that q′k(t) < 0 for all k ≥ 1,t > 0. This is not clear from
the above expression. In the next section we prove this by advanced computer
algebra tools.

4.1 Computer proof of a double-sum identity

This section is dedicated to the proof of the following identity:

q′k(t) = − 1

(t+ 1)2k

k−1∑
m=0

(
k − 1

m

)(
k

m

)
t2m. (18)
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By (17) we need to prove that

k∑
i=1

(t+ 1)k−i
i∑

`=1

(i+ k − `− 1)!

(i− `)!(k − `)!(`− 1)!
·
(

1− i− 1

k + 1− ` · t
)(

1− t2
)`−1

ti+k−2`

=

k−1∑
m=0

(
k − 1

m

)(
k

m

)
t2m (19)

The strategy is as follows: we first prove that the right-hand side of (19)
satisfies a second-order recurrence in k (Lemma 5), then we derive a recurrence
equation for the left-hand side (Lemmas 7 and 8). Since it turns out that these
two recurrences are the same, the equality is established by comparing a few ini-
tial values. A key component in the proof is Zeilberger’s algorithm [34]. It takes
as input a parametric sum of the form F (n) :=

∑
k f(n, k) where n is a (discrete)

parameter and k runs from −∞ to +∞, or between summation bounds that are
linear expressions in n (the most common situation is k = 0, . . . , n). Moreover,
the summand f(n, k) needs to be hypergeometric in both variables, that means,
the quotients f(n + 1, k)/f(n, k) and f(n, k + 1)/f(n, k) are bivariate rational
functions in n and k. As output, Zeilberger’s algorithm produces a linear re-
currence equation with polynomial coefficients for F (n), i.e., a linear relation of
the form cd(n)F (n+ d) + . . .+ c1(n)F (n+ 1) + c0(n)F (n) = 0 where the ci are
polynomials in n, that is satisfied for all n ∈ N.
For our calculations below, we have employed the Mathematica package Holo-
nomicFunctions [21].

Theorem 3. For all k ∈ N and t a parameter, identity (19) holds.

Before we prove Theorem 3 we state few auxiliary lemmas.

Lemma 5. The right-hand side of (19), i.e., the expression

Rk(t) :=

k−1∑
m=0

(
k − 1

m

)(
k

m

)
t2m (20)

satisfies the recurrence

(k+2)(2k+1)Rk+2−2
(
2k2t2 + 2k2 + 4kt2 + 4k + 2t2 + 1

)
Rk+1+k(2k+3)(t−1)2(t+1)2Rk = 0

for all k ∈ N.

The full proof of Lemma 5 is deferred to the journal version.

The proof of the following lemma uses the same strategy as the one of
Lemma 5.

Lemma 6. The inner sum of the left-hand side of (19), i.e., the expression

Mk,i(t) :=

i∑
`=1

(t+ 1)k−i (i+ k − `− 1)!
(
k + 1− `− (i− 1)t

)
(1− t2)`−1 ti+k−2`

(i− `)! (k − `+ 1)! (`− 1)!
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satisfies the following bivariate recurrences:

(k + 1)t(i− k)Mk+1,i − it(t+ 1)2(i− k − t− 1)Mk,i+1

+ (t− 1)(t+ 1)2
(
i2 − 2ik − it− i+ k2 + k

)
Mk,i = 0,

(i+ 1)t(t+ 1)(i− k)Mk,i+2

+
(
−2i2t2 + i2 + 2ikt2 − 2ik − 2it2 + i+ k2 + kt2 − kt− k

)
Mk,i+1

+ i(t− 1)t(i− k + 1)Mk,i = 0.

Lemma 7. The left-hand side of (19) can be simplified to a single sum, i.e.,
the following identity holds for all k ∈ N:

k∑
i=1

Mk,i(t) = Lk(t) :=

1+k∑
`=1

k(1− t)`−1t1+2k−2`(1 + t)`−2(2k − `)!
(1 + k − `)!(2 + k − `)!(`− 1)!

×
(
(1 + k − `)(2 + k − `) + (2 + k − `)t+

(
1− k2

)
t2
)

with Mk,i(t) as introduced in Lemma 6.

The full proof of Lemma 7 is deferred to the journal version.

The proof of the following lemma uses the same strategy as the one of
Lemma 5.

Lemma 8. The sum Lk(t) defined in Lemma 7 satisfies the recurrence

(k+2)(2k+1)Lk+2−2
(
2k2t2 + 2k2 + 4kt2 + 4k + 2t2 + 1

)
Lk+1+k(2k+3)(t−1)2(t+1)2Lk = 0

for all k ∈ N.

Proof (Proof of Theorem 3). We have shown that both sides of (19) satisfy the
same second-order linear recurrence equation (Lemma 5 and Lemma 8). Since
the leading coefficient (k + 2)(2k + 1) is nonzero for all k ∈ N, it suffices to
verify that (19) holds for k = 0 (indeed: both sides evaluate to 0) and for k = 1
(indeed: both sides evaluate to 1).

Theorem 3 justifies Eqn. (18), which in turn implies that the function hk(t) =
exp(−λt)qk(t) is monotone decreasing with t and thus has an inverse (h−1k ).
Moreover, hk(t) can be exactly calculated (using the explicit expression for qk(t)
given by Eqn. (12)), and so, by Theorem 1, the time separating two sequences of
genes involving n genes (where n is large) can be estimated by applying h−1k to
the SI for the two gene sequences. Since the expected number of transfer events
is additive on the tree (and proportional to t), we conclude the following:

Corollary 2. The topology of the underlying unrooted tree T can be recon-
structed in a statistically consistent way from the SI values by applying the
transformation h−1k , followed by a consistent distance-based tree reconstruction
method such as Neighbour-Joining (NJ).
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5 Conclusions

In this paper, we have provided an alternative derivation for the system vari-
ables of the birth-death formulation of the synteny index (SI) distance measure.
The classical approach for this task uses the so-called Karlin-McGregor spec-
tral representation, that is based on a sequence of orthogonal polynomials and
a spectral measure [16,17,18,3]. The approach presented here is a self-contained
derivation, based on generating functions representation and a subsequent com-
binatorial treatment, leading to an application of tools from symbolic algebra.
Although the biological contribution of this work is seemingly less pronounced,
as it merely arrives at the same expressions for the transition probabilities as the
traditional approach, we believe that the derivation presented here not only has
independent interest for mathematical biology, but may also be key to future
rigorous extensions of the Jump model.
One such immediate follow-up extension we see as important is to augment the
pure Jump process, with more realistic genome dynamic events such as external
gene gain, in which a novel gene is acquired from a different genome, leading
to an extension of the gene repertoire of the organism, and events of gene loss.
Both these evens potentially cause a divergence in genome content between the
analysed genomes, and require special treatment that, based on initial attempts,
is non-trivial.

Regarding the mathematical aspect, the symbolic algebra tools as we apply
here, have been proved useful in other applications of mathematical biology [5,6]
leading to accurate expressions of quantities known to be derived heuristically
before. We are hopeful that this new derivation is a basis for the extensions we
consider in the future.
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