Diagonals, determinants, and rigidity

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

July 12, 2019 SIAM-AAG, Bern, Switzerland

Diagonals, determinants, and rigidity

$$\begin{split} &\Delta\left(\frac{1}{1+x+y+z+xy+yz-x^3yz}\right) = \dots \\ &Heun\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}, \frac{1}{2} - \frac{i\sqrt{3}}{6}, 1, 1, 1, 1, \frac{3}{2} \cdot \left(-3+i\sqrt{3}\right) \cdot x\right) \\ &= \frac{1}{1+3x} \cdot {}_2F_1\left(\left[\frac{1}{3}, \frac{2}{3}\right], [1], \frac{27 \cdot x^3}{(1+3x)^3}\right) \\ &= \left(\frac{1}{1+9x+27x^2-27x^3}\right)^{1/3} \\ &\times {}_2F_1\left(\left[\frac{1}{6}, \frac{2}{3}\right], [1], -\frac{108 \cdot x^3 \cdot (1+9x+27x^2)}{(1+9x+27x^2-27x^3)^2}\right) \\ &= \left(\frac{1}{1+3x}\right)^{1/4} \cdot \left(\frac{1}{1+9x+27x^2+3x^3}\right)^{1/4} \\ &\times {}_2F_1\left(\left[\frac{1}{12}, \frac{5}{12}\right], [1], \frac{1728 \cdot x^9 \cdot (1+9x+27x^2+3x^3)^3}{(1+3x)^3 \cdot (1+9x+27x^2+3x^3)^3}\right) \end{split}$$

Exact lower bounds for monochromatic Schur triples

Christoph Koutschan (joint work Elaine Wong)

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

July 12, 2019 SIAM-AAG, Bern, Switzerland

Schur triple:

$$(x, y, z) \in \mathbb{N}^3$$
 with $x + y = z$

Schur triple:

$$(x, y, z) \in \mathbb{N}^3$$
 with $x + y = z$

Finite range of positive integers:

$$[n] := \{1, \dots, n\} \subset \mathbb{N}$$

Schur triple:

$$(x, y, z) \in \mathbb{N}^3$$
 with $x + y = z$

Finite range of positive integers:

$$[n] := \{1, \dots, n\} \subset \mathbb{N}$$

2-Coloring of [n]:

$$\chi\colon [n]\to \{\mathsf{red},\mathsf{blue}\}$$

Schur triple:

$$(x, y, z) \in \mathbb{N}^3$$
 with $x + y = z$

Finite range of positive integers:

$$[n] := \{1, \dots, n\} \subset \mathbb{N}$$

2-Coloring of [n]:

$$\chi\colon [n]\to \{\mathsf{red},\mathsf{blue}\}$$

Number of monochromatic Schur triples (MSTs):

$$\mathcal{M}(n,\chi) := \left| \left\{ (x, y, z) \in [n]^3 : z = x + y \, \land \, \chi(x) = \chi(y) = \chi(z) \right\} \right|$$

Schur triple:

$$(x, y, z) \in \mathbb{N}^3$$
 with $x + y = z$

Finite range of positive integers:

$$[n] := \{1, \dots, n\} \subset \mathbb{N}$$

2-Coloring of [n]:

$$\chi \colon [n] \to \{\mathsf{red}, \mathsf{blue}\}$$

Number of monochromatic Schur triples (MSTs):

$$\mathcal{M}(n,\chi) := \left| \left\{ (x, y, z) \in [n]^3 : z = x + y \, \land \, \chi(x) = \chi(y) = \chi(z) \right\} \right|$$

Schur triples (x, y, x + y) and (y, x, x + y) are distinct if $x \neq y!$

Consider the 2-coloring χ of $[6] = \{1, 2, 3, 4, 5, 6\}$:

$$\chi(2)=\chi(4)=\mathrm{red}, \qquad \chi(1)=\chi(3)=\chi(5)=\chi(6)=\mathrm{blue}$$

Consider the 2-coloring χ of $[6] = \{1, 2, 3, 4, 5, 6\}$:

$$\chi(2)=\chi(4)=\mathrm{red}, \qquad \chi(1)=\chi(3)=\chi(5)=\chi(6)=\mathrm{blue}$$

Short notation: BRBRBB, or graphically:

$$\{1, 2, 3, 4, 5, 6\}$$

Consider the 2-coloring χ of $[6] = \{1, 2, 3, 4, 5, 6\}$:

$$\chi(2) = \chi(4) = \text{red}, \qquad \chi(1) = \chi(3) = \chi(5) = \chi(6) = \text{blue}$$

Short notation: BRBRBB, or graphically:

$$\{1, 2, 3, 4, 5, 6\}$$

We have $\mathcal{M}(6,\chi)=4$, i.e., there are exactly 4 MSTs:

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed?

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs.

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs. Boring!

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs. Boring!

Lower bound: Find a function b(n) such that $\mathcal{M}(n,\chi) \geqslant b(n)$ for all $n \in \mathbb{N}$ and for all $\chi \in \{R,B\}^{[n]}$.

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs. Boring!

Lower bound: Find a function b(n) such that $\mathcal{M}(n,\chi) \geqslant b(n)$ for all $n \in \mathbb{N}$ and for all $\chi \in \{R,B\}^{[n]}$. Define b(n) = 0. Boring!

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs. Boring!

Lower bound: Find a function b(n) such that $\mathcal{M}(n,\chi) \geqslant b(n)$ for all $n \in \mathbb{N}$ and for all $\chi \in \{R,B\}^{[n]}$. Define b(n) = 0. Boring!

Minimal number: Determine the minimal number $\mathcal{M}(n)$ of MSTs among all possible 2-colorings of [n]

$$\mathcal{M}(n) := \min_{\chi \colon [n] \to \{R,B\}} \mathcal{M}(n,\chi)$$

and the / a corresponding coloring χ .

What can be said about $\mathcal{M}(n,\chi)$ if the coloring χ is not fixed? **Upper bound:** There are $\sum_{i=1}^{n-1} i = \binom{n}{2}$ Schur triples on [n], thus

$$\mathcal{M}(n,R^n) = \mathcal{M}(n,B^n) = \binom{n}{2}$$

is a (sharp!) upper bound for the number of MSTs. Boring!

Lower bound: Find a function b(n) such that $\mathcal{M}(n,\chi) \geqslant b(n)$ for all $n \in \mathbb{N}$ and for all $\chi \in \{R,B\}^{[n]}$. Define b(n) = 0. Boring!

Minimal number: Determine the minimal number $\mathcal{M}(n)$ of MSTs among all possible 2-colorings of [n]

$$\mathcal{M}(n) := \min_{\chi \colon [n] \to \{R,B\}} \mathcal{M}(n,\chi)$$

and the / a corresponding coloring χ . Sounds interesting!

Consider again $[6] = \{1, 2, 3, 4, 5, 6\}.$

- ▶ What is $\mathcal{M}(6)$?
- ▶ Which coloring $\chi \colon [6] \to \{R,B\}$ yields the least number of monochromatic Schur triples (MSTs)?

Consider again $[6] = \{1, 2, 3, 4, 5, 6\}.$

- ▶ What is *M*(6)?
- ▶ Which coloring χ : [6] \rightarrow {R, B} yields the least number of monochromatic Schur triples (MSTs)?

Answer: Choose the coloring $\chi = R^2B^3R = RRBBBR$:

$$\{1, 2, 3, 4, 5, 6\}$$

Then there exists only one single MST, namely (1, 1, 2), hence $\mathcal{M}(6) = 1$.

Historical remarks

- Schur (1917) studied a modular version of Fermat's last theorem
- ▶ Hilfssatz: $\exists n = n(m)$ s.t. for any m-coloring of [n] an MST exists (nowadays known as Schur's theorem)
- ▶ Van der Waerden (1927): generalization to monochromatic arithmetic progressions of length k
- ▶ Ramsey (1928): same for monochromatic subgraphs
- ► Erdős and Szekeres (1935): rediscovery of Ramsey's theorem and simpler proof of Schur's theorem
- ► Alan Goodman (1959): minimum number of monochromatic triangles under a 2-coloring of a complete graph
- ► Graham, Rödl, Ruciński (1996) asked about the minimum number of Schur triples under any 2-coloring (100 USD prize!)
- ▶ Robertson, Zeilberger (1998) answer this question asymptotically.
- ► Their result was independently confirmed by Schoen (1999), Datskovsky (2003), and Thanatipanonda (2009).
- ➤ Recent work on generalized Schur triples by Butler, Costello, Graham (2010), and Thanatipanonda, Wong (2017).

6 / 31

Three blocks

It has been shown previously (RobertsonZeilberger 98, Schoen 99) that the number $\mathcal{M}(n,\chi)$ is minimized when χ is of the form

$$R^s B^{t-s} R^{n-t}$$
,

where $s \approx \frac{4}{11}n$ and $t \approx \frac{10}{11}n$.

Three blocks

It has been shown previously (RobertsonZeilberger 98, Schoen 99) that the number $\mathcal{M}(n,\chi)$ is minimized when χ is of the form

$$R^s B^{t-s} R^{n-t}$$
,

where $s \approx \frac{4}{11}n$ and $t \approx \frac{10}{11}n$.

Lemma. Let $n,s,t\in\mathbb{N}$ be such that $1\leqslant s\leqslant t\leqslant n$. Moreover, assume that the inequalities $t\geqslant 2s$ and $s\geqslant n-t$ hold. Then the number of monochromatic Schur triples on [n] under the coloring $R^sB^{t-s}R^{n-t}$ is exactly

$$\mathcal{M}(n,s,t) = \frac{s(s-1)}{2} + \frac{(t-2s)(t-2s-1)}{2} + (n-t)(n-t-1).$$

Proof (by example)

$$\mathcal{M}(n,s,t) = \frac{s(s-1)}{2} + \frac{(t-2s)(t-2s-1)}{2} + (n-t)(n-t-1).$$

- s = 12, t = 30
- $\mathcal{M}(33, 12, 30) = 66 + 15 + 6 = 87$
- Actually we have $\mathcal{M}(33) = 87$

The optimal values for s and t are easily derived using the techniques of multivariable calculus:

ightharpoonup let n go to infinity

- ▶ let *n* go to infinity
- ▶ scale the square $[0,n]^2 \subset \mathbb{R}^2$ to the unit square $[0,1]^2$

- ightharpoonup let n go to infinity
- ▶ scale the square $[0, n]^2 \subset \mathbb{R}^2$ to the unit square $[0, 1]^2$
- ▶ integers s and t turn into real numbers satisfying $0 \leqslant s \leqslant t \leqslant 1$

- ightharpoonup let n go to infinity
- ▶ scale the square $[0, n]^2 \subset \mathbb{R}^2$ to the unit square $[0, 1]^2$
- ▶ integers s and t turn into real numbers satisfying $0 \leqslant s \leqslant t \leqslant 1$
- ▶ portion of pairs $(x,y) \in [n]^2$ for which (x,y,x+y) is an MST equals the area of a certain region in the unit square

- \blacktriangleright let n go to infinity
- ▶ scale the square $[0, n]^2 \subset \mathbb{R}^2$ to the unit square $[0, 1]^2$
- ▶ integers s and t turn into real numbers satisfying $0 \leqslant s \leqslant t \leqslant 1$
- ▶ portion of pairs $(x,y) \in [n]^2$ for which (x,y,x+y) is an MST equals the area of a certain region in the unit square
- ▶ This area is calculated by the formula

$$A(s,t) = \frac{s^2}{2} + \frac{(t-2s)^2}{2} + 2 \cdot \frac{(1-t)^2}{2}$$
$$= \frac{5s^2}{2} + \frac{3t^2}{2} - 2st - 2t + 1.$$

Recall:

$$A(s,t) = \frac{5s^2}{2} + \frac{3t^2}{2} - 2st - 2t + 1.$$

Equating the gradient

$$\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right) = (5s - 2t, 3t - 2s - 2)$$

to zero, one immediately gets the location of the minimum

$$(s,t) = \left(\frac{4}{11}, \frac{10}{11}\right).$$

Lemma. For fixed $n \in \mathbb{N}$, the integers s_0 and t_0 that minimize the function $\mathcal{M}(n,s,t)$ are given by

$$s_0 = \left\lfloor \frac{4n+2}{11} \right
floor \quad and \quad t_0 = \left\lfloor \frac{10n}{11} \right
floor.$$

Lemma. For fixed $n \in \mathbb{N}$, the integers s_0 and t_0 that minimize the function $\mathcal{M}(n,s,t)$ are given by

$$s_0 = \left\lfloor \frac{4n+2}{11} \right
floor \quad and \quad t_0 = \left\lfloor \frac{10n}{11} \right
floor.$$

Proof. By case distinction, according to $n \mod 11$.

Lemma. For fixed $n \in \mathbb{N}$, the integers s_0 and t_0 that minimize the function $\mathcal{M}(n, s, t)$ are given by

$$s_0 = \left\lfloor \frac{4n+2}{11} \right
floor \quad and \quad t_0 = \left\lfloor \frac{10n}{11} \right
floor.$$

Proof. By case distinction, according to $n \mod 11$.

▶ We want to show that among all integers $i, j \in \mathbb{Z}$ the expression $\mathcal{M}(n, s_0 + i, t_0 + j)$ is minimal for i = j = 0.

Lemma. For fixed $n \in \mathbb{N}$, the integers s_0 and t_0 that minimize the function $\mathcal{M}(n,s,t)$ are given by

$$s_0 = \left\lfloor rac{4n+2}{11}
ight
floor \qquad t_0 = \left\lfloor rac{10n}{11}
ight
floor.$$

Proof. By case distinction, according to $n \mod 11$.

- ▶ We want to show that among all integers $i, j \in \mathbb{Z}$ the expression $\mathcal{M}(n, s_0 + i, t_0 + j)$ is minimal for i = j = 0.
- Such a task can, in principle, be routinely executed by cylindrical algebraic decomposition (CAD).

Lemma. For fixed $n \in \mathbb{N}$, the integers s_0 and t_0 that minimize the function $\mathcal{M}(n, s, t)$ are given by

$$s_0 = \left\lfloor \frac{4n+2}{11} \right
floor \quad and \quad t_0 = \left\lfloor \frac{10n}{11} \right
floor.$$

Proof. By case distinction, according to $n \mod 11$.

- ▶ We want to show that among all integers $i, j \in \mathbb{Z}$ the expression $\mathcal{M}(n, s_0 + i, t_0 + j)$ is minimal for i = j = 0.
- Such a task can, in principle, be routinely executed by cylindrical algebraic decomposition (CAD).
- ightharpoonup Small adaptions to take into account that i,j are integers.

Exact lower bound

Theorem 1. The minimal number of monochromatic Schur triples that can be attained under any 2-coloring of [n] is

$$\mathcal{M}(n) = \left\lfloor \frac{n^2 - 4n + 6}{11} \right\rfloor.$$

Exact lower bound

Theorem 1. The minimal number of monochromatic Schur triples that can be attained under any 2-coloring of [n] is

$$\mathcal{M}(n) = \left\lfloor \frac{n^2 - 4n + 6}{11} \right\rfloor.$$

Proof.

$$\ell = 0 \colon \mathcal{M}(11k, 4k, 10k) \qquad = 11k^2 - 4k \qquad = \frac{1}{11}(n^2 - 4n)$$

$$\ell = 1 \colon \mathcal{M}(11k + 1, 4k, 10k) \qquad = 11k^2 - 2k \qquad = \frac{1}{11}(n^2 - 4n + 3)$$

$$\ell = 2 \colon \mathcal{M}(11k + 2, 4k, 10k + 1) \qquad = 11k^2 \qquad = \frac{1}{11}(n^2 - 4n + 4)$$

$$\ell = 3 \colon \mathcal{M}(11k + 3, 4k + 1, 10k + 2) \qquad = 11k^2 + 2k \qquad = \frac{1}{11}(n^2 - 4n + 3)$$

$$\ell = 4 \colon \mathcal{M}(11k + 4, 4k + 1, 10k + 3) \qquad = 11k^2 + 4k \qquad = \frac{1}{11}(n^2 - 4n)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\ell = 9 \colon \mathcal{M}(11k + 9, 4k + 3, 10k + 8) \qquad = 11k^2 + 14k + 4 = \frac{1}{11}(n^2 - 4n - 1)$$

$$\ell = 10 \colon \mathcal{M}(11k + 10, 4k + 3, 10k + 9) = 11k^2 + 16k + 6 = \frac{1}{11}(n^2 - 4n + 6)$$

Generalized Schur triples

- ▶ For $a \in \mathbb{N}$, a generalized Schur triple $(x,y,z) \in \mathbb{N}^3$ satisfies x+ay=z.
- ▶ Extend this to $a \in \mathbb{R}^+$ by imposing x + |ay| = z.

Polygon 133 corresponds to triples (x,y,z) that satisfy $x\leqslant s$ and $y,z\geqslant t.$

Polygon 133 corresponds to triples (x,y,z) that satisfy $x\leqslant s$ and $y,z\geqslant t.$

- ▶ Depending on the values of s, t, a, polygon 133 is a triangle, a quadrilateral, or a polygon with five or six vertices.
- ightharpoonup For some values of s, t, a it is not present at all.
- ▶ Hence its area is given by a piecewise defined function.

Polygon 133 corresponds to triples (x,y,z) that satisfy $x\leqslant s$ and $y,z\geqslant t.$

- ▶ Depending on the values of s, t, a, polygon 133 is a triangle, a quadrilateral, or a polygon with five or six vertices.
- ightharpoonup For some values of s,t,a it is not present at all.
- ▶ Hence its area is given by a piecewise defined function.

Performing a similar case analysis for all possible seven polygons 111, 222, 113, 131, 133, 313, 333

we encounter a set of 16 "atomic" conditions:

Performing a similar case analysis for all possible seven polygons 111, 222, 113, 131, 133, 313, 333

we encounter a set of 16 "atomic" conditions:

$$C_{1} \equiv 1 - as \geqslant 0, \qquad C_{2} \equiv 1 - as - s \geqslant 0, \\ C_{3} \equiv 1 - as - t \geqslant 0, \qquad C_{4} \equiv t - as \geqslant 0, \\ C_{5} \equiv t - as - s \geqslant 0, \qquad C_{6} \equiv 1 - at \geqslant 0, \\ C_{7} \equiv 1 - at - s \geqslant 0, \qquad C_{8} \equiv 1 - at - t \geqslant 0, \\ C_{9} \equiv 1 - a \geqslant 0, \qquad C_{10} \equiv 1 - a - s \geqslant 0, \\ C_{11} \equiv s - a \geqslant 0, \qquad C_{12} \equiv 1 - a - t \geqslant 0, \\ C_{13} \equiv t - a \geqslant 0, \qquad C_{14} \equiv t - a - s \geqslant 0, \\ C_{15} \equiv s - at \geqslant 0, \qquad C_{16} \equiv t - at - s \geqslant 0.$$

Performing a similar case analysis for all possible seven polygons 111, 222, 113, 131, 133, 313, 333

we encounter a set of 16 "atomic" conditions:

$$\begin{array}{lll} C_1 \equiv 1 - as \geqslant 0, & C_2 \equiv 1 - as - s \geqslant 0, \\ C_3 \equiv 1 - as - t \geqslant 0, & C_4 \equiv t - as \geqslant 0, \\ C_5 \equiv t - as - s \geqslant 0, & C_6 \equiv 1 - at \geqslant 0, \\ C_7 \equiv 1 - at - s \geqslant 0, & C_8 \equiv 1 - at - t \geqslant 0, \\ C_9 \equiv 1 - a \geqslant 0, & C_{10} \equiv 1 - a - s \geqslant 0, \\ C_{11} \equiv s - a \geqslant 0, & C_{12} \equiv 1 - a - t \geqslant 0, \\ C_{13} \equiv t - a \geqslant 0, & C_{14} \equiv t - a - s \geqslant 0, \\ C_{15} \equiv s - at \geqslant 0, & C_{16} \equiv t - at - s \geqslant 0. \end{array}$$

The area of each polygon is given by a piecewise function, whose definition involves logical combinations of C_1, \ldots, C_{16} .

Recall that we are interested in the total area A of the shaded regions, as a function of s,t,a. The area of each polygon is given by a piecewise (rational) function in s,t,a. Hence, we have to express the sum of seven piecewise functions as a single (piecewise) function.

▶ Need a common refinement of the regions on which the seven area functions are defined.

- ▶ Need a common refinement of the regions on which the seven area functions are defined.
- ▶ Start with the finest possible refinement, which is obtained by considering all $2^{16} = 65536$ logical combinations of C_i and $\overline{C_i}$.

- ▶ Need a common refinement of the regions on which the seven area functions are defined.
- ▶ Start with the finest possible refinement, which is obtained by considering all $2^{16} = 65536$ logical combinations of C_i and $\overline{C_i}$.
- Remove those cases that contain contradictory combinations of conditions.

- ▶ Need a common refinement of the regions on which the seven area functions are defined.
- ▶ Start with the finest possible refinement, which is obtained by considering all $2^{16} = 65536$ logical combinations of C_i and $\overline{C_i}$.
- Remove those cases that contain contradictory combinations of conditions.
- ▶ Merge regions on which A(s,t,a) is defined by the same expression into a single region.

The area function A(s,t,a)

Lemma. Let $a,s,t\in\mathbb{R}$ with a>0 and $0\leqslant s\leqslant t\leqslant 1$. Then the area A(s,t,a) of the region

$$\{(x,y) \in \mathbb{R}^2 : (x,y,x+ay) \in ([0,s] \cup (t,1])^3 \cup (s,t]^3\}$$

is given by the following piecewise defined function (70 cases):

СОІ	nditions on a,s,t	A(s,t,a)
(R_1) $\overline{C_1}$		$\frac{s^2 - 2ts + 2s + t^2 - 2t + 1}{2a}$
(R_2) C_3	$\wedge C_4 \wedge \overline{C_6}$	$\frac{2as^2 + 2s^2 + 2as - 4ats - 2ts + t^2}{2a}$
(R_3) C_3	$\wedge \overline{C_4} \wedge \overline{C_6}$	$\frac{-a^2s^2 + 2as^2 + 2s^2 + 2as - 2ats - 2ts}{2a}$
(R_4) $\overline{C_2}$	$\wedge C_4 \wedge \overline{C_6}$	$\frac{s^2 + 2as - 2ats - 2ts + 2s + 2t^2 - 2t}{2a}$
(R_5) $\overline{C_2}$	$\wedge \overline{C_4} \wedge C_6$	$\frac{-a^2s^2+s^2+2as-2ts+2s+a^2t^2+t^2-2at-2t+1}{2a}$
(R_6) C_1	$\wedge \ \overline{C_2} \wedge \overline{C_4} \wedge \overline{C_6}$	$\frac{-a^2s^2 + s^2 + 2as - 2ts + 2s + t^2 - 2t}{2a}$
(R_7) C_2	$\wedge \overline{C_3} \wedge C_4 \wedge \overline{C_6}$	$\frac{a^2s^2 + 2as^2 + 2s^2 - 2ats - 2ts + 2t^2 - 2t + 1}{2a}$
(R_8) C_2	$\wedge \overline{C_3} \wedge \overline{C_4} \wedge C_6$	$\frac{2as^2 + 2s^2 - 2ts + a^2t^2 + t^2 - 2at - 2t + 2}{2a}$
:	:	i i

Polyhedral subdivision

Minimize the area function A(s,t,a)

Lemma. For a > 0, the minimum of the function A(s, t, a)

$$m(a) := \min_{0 \leqslant s \leqslant t \leqslant 1} A(s,t,a)$$

is given by a piecewise rational function, depending on a:

	s_0	t_0	m(a)
$0 \leqslant a \leqslant \alpha_1$	$\frac{(a-4)a}{a^3-a-4}$	$\frac{-2a^2 + 4a + 2}{-a^3 + a + 4}$	$\frac{-a^4 + 2a^3 - 2a^2 + 6a - 4}{2(a^3 - a - 4)}$
$\alpha_1 \leqslant a \leqslant \alpha_2$	$\frac{a(a^2-3)}{a^4-8a-1}$	$\frac{a^3 + a^2 - 5a - 1}{a^4 - 8a - 1}$	$\frac{a^3-2a^2+a-2}{2(a^4-8a-1)}$
$\alpha_2 \leqslant a \leqslant \alpha_3$	$\frac{-2a^3 + 2a + 1}{-a^4 + 8a + 3}$	$\frac{2a^3 + a^2 - 6a - 2}{a^4 - 8a - 3}$	$\frac{a^6 + a^4 - 12a^3 + 4a^2 - 1}{2a(a^4 - 8a - 3)}$
÷	÷	÷	
$\alpha_7 \leqslant a \leqslant 1$	$\frac{(a+1)^2}{a(7a+4)}$	$\frac{(a+1)(4a+1)}{a(7a+4)}$	$\frac{-7a^4 + 6a^3 + 6a^2 - 2a - 1}{2a^2(7a + 4)}$
$1\leqslant a\leqslant \alpha_8$	$\frac{(a+1)^2}{a^4+2a^3+3a^2+2a+3}$	$\frac{(a+1)\left(a^2+2a+2\right)}{a^4+2a^3+3a^2+2a+3}$	$\frac{a^4 - a^2 - 2a + 4}{2a(a^4 + 2a^3 + 3a^2 + 2a + 3)}$
$\alpha_8 \leqslant a$	$\frac{a+1}{a^2+2a+3}$	$\frac{a^2 + 2a + 2}{a^2 + 2a + 3}$	$\frac{1}{2a(a^2+2a+3)}$

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

▶ View A(s,t,a) as a function in s,t with a parameter a.

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ▶ Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ► Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.
- ▶ Find all points $(s,t) \in \mathbb{R}^2$ where the gradient is zero.

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ▶ Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.
- ▶ Find all points $(s,t) \in \mathbb{R}^2$ where the gradient is zero.
- ▶ For each such point determine for which values of a it actually lies in (R_i) .

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ▶ Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.
- ▶ Find all points $(s,t) \in \mathbb{R}^2$ where the gradient is zero.
- ▶ For each such point determine for which values of a it actually lies in (R_i) .

Example: On (R_2) the gradient is $\left(\frac{2as-2at+2s-t+a}{a}, \frac{t-2as-s}{a}\right)$, which is zero for

$$(s,t) = \left(\frac{a}{4a^2 + 2a - 1}, \frac{a(2a + 1)}{4a^2 + 2a - 1}\right).$$

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ▶ Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.
- ▶ Find all points $(s,t) \in \mathbb{R}^2$ where the gradient is zero.
- For each such point determine for which values of a it actually lies in (R_i) .

Example: On (R_2) the gradient is $\left(\frac{2as-2at+2s-t+a}{a}, \frac{t-2as-s}{a}\right)$, which is zero for

$$(s,t) = \left(\frac{a}{4a^2 + 2a - 1}, \frac{a(2a + 1)}{4a^2 + 2a - 1}\right).$$

Definition of (R_2) : $as + t \leq 1 \land t \geq as \land at > 1 \land 0 < s < t < 1$.

For each region (R_i) , $1 \le i \le 70$, on which A(s,t,a) is defined:

- ▶ View A(s,t,a) as a function in s,t with a parameter a.
- ▶ Compute the gradient $\left(\frac{\partial A}{\partial s}, \frac{\partial A}{\partial t}\right)$.
- ▶ Find all points $(s,t) \in \mathbb{R}^2$ where the gradient is zero.
- For each such point determine for which values of a it actually lies in (R_i) .

Example: On (R_2) the gradient is $\left(\frac{2as-2at+2s-t+a}{a}, \frac{t-2as-s}{a}\right)$, which is zero for

$$(s,t) = \left(\frac{a}{4a^2 + 2a - 1}, \frac{a(2a + 1)}{4a^2 + 2a - 1}\right).$$

Definition of (R_2) : $as + t \le 1 \land t \ge as \land at > 1 \land 0 < s < t < 1$. Using CAD one finds the admissible range for a:

$$a \ge \text{Root}(2a^3 - 3a^2 - 2a + 1, [1, 2]) = 1.889228559...$$

Plot of the local minima

Find the global minimum

Note that A(s,t,a) is defined piecewise and therefore may not be differentiable (it is, however, obvious from construction that it is continuous). \rightarrow Search for minima along boundaries of regions.

Find the global minimum

Similarly, we consider the function values of A(s,t,a) at all intersections of the lines defined by the C_i (these points depend on a, and we get 348 cases to check).

Theorem 2. The minimal number of monochromatic generalized Schur triples of the form (x, y, x + 2y) that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is

$$\mathcal{M}^{(2)}(n) = \left[\frac{n^2 - 10n + 33}{44} \right].$$

Theorem 2. The minimal number of monochromatic generalized Schur triples of the form (x,y,x+2y) that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is

$$\mathcal{M}^{(2)}(n) = \left[\frac{n^2 - 10n + 33}{44} \right].$$

Proof. Using the knowledge of A(s,t,a), we find (empirically) that the minimum of $\mathcal{M}^{(2)}(n,s,t)$ is attained at

$$s_0 = \left\lfloor \frac{3n+1}{11} \right\rfloor, \qquad t_0 = \left\lfloor \frac{10n}{11} \right\rfloor + \begin{cases} -1, & \text{if } n = 22k+10, \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 2. The minimal number of monochromatic generalized Schur triples of the form (x,y,x+2y) that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is

$$\mathcal{M}^{(2)}(n) = \left| \frac{n^2 - 10n + 33}{44} \right|.$$

Proof. Using the knowledge of A(s,t,a), we find (empirically) that the minimum of $\mathcal{M}^{(2)}(n,s,t)$ is attained at

$$s_0 = \left\lfloor \frac{3n+1}{11} \right\rfloor, \qquad t_0 = \left\lfloor \frac{10n}{11} \right\rfloor + \begin{cases} -1, & \text{if } n = 22k+10, \\ 0, & \text{otherwise.} \end{cases}$$

Analogous to the a=1 case, make a case distinction according to $n=22k+\ell$ and apply CAD in each case.

Theorem 3. The minimal number of monochromatic generalized Schur triples of the form (x, y, x + 3y) that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is

$$\mathcal{M}^{(3)}(n) = \left\lfloor \frac{n^2 - 18n + 101}{108} \right\rfloor + \begin{cases} 1, & \text{if } n = 54k + 36, \\ -1, & \text{if } n = 54k + 30 \\ & \text{or } n = 54k + 42 \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Analogous to previous theorem, but 54 case distinctions.

Theorem 4. The minimal number of monochromatic generalized Schur triples of the form (x,y,x+4y) that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is

$$\mathcal{M}^{(4)}(n) = \left\lfloor \frac{n^2 - 28n + 245}{216} \right\rfloor - \begin{cases} 1, & \text{if } n = 108k + i \text{ for } i \in I, \\ 0, & \text{otherwise,} \end{cases}$$

where the set I is given by

$$\{0, 1, 27, 28, 43, 47, 48, 53, 58, 63, 67, 68, 69, 73, 78, 83, 88, 89, 93\}.$$

Proof. Analogous to previous theorem, but 108 case distinctions.

Exact lower bound for $a = \frac{1}{2}$

Theorem $\frac{1}{2}$. The minimal number of monochromatic generalized Schur triples of the form $\left(x,y,x+\lfloor\frac{1}{2}y\rfloor\right)$ that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is given by

$$\mathcal{M}^{(1/2)}(n) = \left\lfloor \frac{15n^2 + 72}{76} \right\rfloor + \begin{cases} 1, & \text{if } n = 38k + 18 \text{ or } n = 38k + 20 \\ -1, & \text{if } n = 38k + 19, \\ 0, & \text{otherwise.} \end{cases}$$

Exact lower bound for $a = \frac{1}{2}$

Theorem $\frac{1}{2}$. The minimal number of monochromatic generalized Schur triples of the form $\left(x,y,x+\lfloor\frac{1}{2}y\rfloor\right)$ that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is given by

$$\mathcal{M}^{(1/2)}(n) = \left\lfloor \frac{15n^2 + 72}{76} \right\rfloor + \begin{cases} 1, & \text{if } n = 38k + 18 \text{ or } n = 38k + 20 \\ -1, & \text{if } n = 38k + 19, \\ 0, & \text{otherwise.} \end{cases}$$

Counter-example. For n=4 the theorem predicts a minimum of four MSTs, under the coloring $\{1, 2, 3, 4\}$, namely

$$(1, 1, 1), (4, 1, 4), (2, 2, 3), (2, 3, 3).$$

Exact lower bound for $a = \frac{1}{2}$

Theorem $\frac{1}{2}$. The minimal number of monochromatic generalized Schur triples of the form $\left(x,y,x+\lfloor\frac{1}{2}y\rfloor\right)$ that can be attained under any 2-coloring of [n] of the form $R^sB^{t-s}R^{n-t}$ is given by

$$\mathcal{M}^{(1/2)}(n) = \left\lfloor \frac{15n^2 + 72}{76} \right\rfloor + \begin{cases} 1, & \text{if } n = 38k + 18 \text{ or } n = 38k + 20 \\ -1, & \text{if } n = 38k + 19, \\ 0, & \text{otherwise.} \end{cases}$$

Counter-example. For n=4 the theorem predicts a minimum of four MSTs, under the coloring $\{1, 2, 3, 4\}$, namely

$$(1, 1, 1), (4, 1, 4), (2, 2, 3), (2, 3, 3).$$

However, for the coloring { 1, 2, 3, 4 } we get only three MSTs:

True minimum for $a = \frac{1}{2}$

Conjecture. For $n\geqslant 12$, the minimal number of monochromatic generalized Schur triples of the form $\left(x,y,x+\lfloor\frac{1}{2}y\rfloor\right)$ that can be attained under any 2-coloring of [n] is given by

$$\left| \frac{n^2+5}{6} \right|$$
,

and it occurs at the coloring $R^sB^{t-s}R^{u-t}B^{n-u}$ for

$$s = \left\lfloor \frac{n+3}{6} \right\rfloor, \qquad t = \left\lfloor \frac{n+1}{2} \right\rfloor, \qquad u = \left\lfloor \frac{5n+3}{6} \right\rfloor.$$