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Basic definitions and notations
Schur triple:

(x, y, z) ∈ N3 with x+ y = z

Finite range of positive integers:

[n] := {1, . . . , n} ⊂ N

2-Coloring of [n]:
χ : [n]→ {red, blue}

Number of monochromatic Schur triples (MSTs):

M(n, χ) :=
∣∣{(x, y, z) ∈ [n]3 : z = x+ y ∧ χ(x) = χ(y) = χ(z)

}∣∣
Schur triples (x, y, x+ y) and (y, x, x+ y) are distinct if x 6= y!
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Example

Consider the 2-coloring χ of [6] = {1, 2, 3, 4, 5, 6}:

χ(2) = χ(4) = red, χ(1) = χ(3) = χ(5) = χ(6) = blue

Short notation: BRBRBB, or graphically:{
1 , 2 , 3 , 4 , 5 , 6

}
We have M(6, χ) = 4, i.e., there are exactly 4 MSTs:(

1 , 5 , 6
)
,
(

2 , 2 , 4
)
,
(

3 , 3 , 6
)
,
(

5 , 1 , 6
)
.
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Bounds on the number of MSTs

What can be said about M(n, χ) if the coloring χ is not fixed?

Upper bound: There are
∑n−1

i=1 i =
(
n
2

)
Schur triples on [n], thus

M(n,Rn) =M(n,Bn) =

(
n

2

)
is a (sharp!) upper bound for the number of MSTs. Boring!

Lower bound: Find a function b(n) such that M(n, χ) > b(n) for
all n ∈ N and for all χ ∈ {R,B}[n]. Define b(n) = 0. Boring!

Minimal number: Determine the minimal number M(n) of
MSTs among all possible 2-colorings of [n]

M(n) := min
χ : [n]→{R,B}

M(n, χ)

and the / a corresponding coloring χ. Sounds interesting!
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Example

Consider again [6] = {1, 2, 3, 4, 5, 6}.
I What is M(6)?

I Which coloring χ : [6]→ {R,B} yields the least number of
monochromatic Schur triples (MSTs)?

Answer: Choose the coloring χ = R2B3R = RRBBBR:{
1 , 2 , 3 , 4 , 5 , 6

}
Then there exists only one single MST, namely

(
1 , 1 , 2

)
,

hence M(6) = 1.
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Historical remarks
I Schur (1917) studied a modular version of Fermat’s last theorem
I Hilfssatz: ∃n = n(m) s.t. for any m-coloring of [n] an MST

exists (nowadays known as Schur’s theorem)
I Van der Waerden (1927): generalization to monochromatic

arithmetic progressions of length k
I Ramsey (1928): same for monochromatic subgraphs
I Erdős and Szekeres (1935): rediscovery of Ramsey’s theorem

and simpler proof of Schur’s theorem
I Alan Goodman (1959): minimum number of monochromatic

triangles under a 2-coloring of a complete graph
I Graham, Rödl, Ruciński (1996) asked about the minimum

number of Schur triples under any 2-coloring (100 USD prize!)
I Robertson, Zeilberger (1998) answer this question asymptotically.
I Their result was independently confirmed by Schoen (1999),

Datskovsky (2003), and Thanatipanonda (2009).
I Recent work on generalized Schur triples by Butler, Costello,

Graham (2010), and Thanatipanonda, Wong (2017). 6 / 31



Three blocks

It has been shown previously (RobertsonZeilberger 98, Schoen 99)
that the number M(n, χ) is minimized when χ is of the form

RsBt−sRn−t,

where s ≈ 4
11n and t ≈ 10

11n.

Lemma. Let n, s, t ∈ N be such that 1 6 s 6 t 6 n. Moreover,
assume that the inequalities t > 2s and s > n− t hold. Then the
number of monochromatic Schur triples on [n] under the coloring
RsBt−sRn−t is exactly

M(n, s, t) =
s(s− 1)

2
+

(t− 2s)(t− 2s− 1)

2
+ (n− t)(n− t− 1).
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Proof (by example)

M(n, s, t) =
s(s− 1)

2
+

(t− 2s)(t− 2s− 1)

2
+ (n− t)(n− t− 1).

✷ ✹ ✻ ✽ ✶� ✶✷ ✶✹ ✶✻ ✶✽ ✷� ✷✷ ✷✹ ✷✻ ✷✽ ✸� ✸✷
①

✷

✹

✻

✽

✶�

✶✷

✶✹

✶✻

✶✽

✷�

✷✷

✷✹

✷✻

✷✽

✸�

✸✷

②

I χ = R12B18R3

I s = 12, t = 30

I M(33, 12, 30) =
66 + 15 + 6 = 87

I Actually we have
M(33) = 87
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Optimal values for s and t
The optimal values for s and t are easily derived using the
techniques of multivariable calculus:

I let n go to infinity

I scale the square [0, n]2 ⊂ R2

to the unit square [0, 1]2

I integers s and t turn into real
numbers satisfying 0 6 s 6 t 6 1

I portion of pairs (x, y) ∈ [n]2 for which (x, y, x+ y) is an MST
equals the area of a certain region in the unit square

I This area is calculated by the formula

A(s, t) =
s2

2
+

(t− 2s)2

2
+ 2 · (1− t)2

2

=
5s2

2
+

3t2

2
− 2st− 2t+ 1.
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Optimal values for s and t

Recall:

A(s, t) =
5s2

2
+

3t2

2
− 2st− 2t+ 1.

Equating the gradient(
∂A

∂s
,
∂A

∂t

)
= (5s− 2t, 3t− 2s− 2)

to zero, one immediately gets the location of the minimum

(s, t) =
( 4

11
,
10

11

)
.
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Optimal values for discrete s and t

Lemma. For fixed n ∈ N, the integers s0 and t0 that minimize the
function M(n, s, t) are given by

s0 =
⌊4n+ 2

11

⌋
and t0 =

⌊10n

11

⌋
.

Proof. By case distinction, according to n mod 11.

I We want to show that among all integers i, j ∈ Z the
expression M(n, s0 + i, t0 + j) is minimal for i = j = 0.

I Such a task can, in principle, be routinely executed by
cylindrical algebraic decomposition (CAD).

I Small adaptions to take into account that i, j are integers.
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Exact lower bound
Theorem 1. The minimal number of monochromatic Schur triples
that can be attained under any 2-coloring of [n] is

M(n) =
⌊n2 − 4n+ 6

11

⌋
.

Proof.

` = 0:M(11k, 4k, 10k) = 11k2 − 4k = 1
11
(n2 − 4n)

` = 1:M(11k + 1, 4k, 10k) = 11k2 − 2k = 1
11
(n2 − 4n+ 3)

` = 2:M(11k + 2, 4k, 10k + 1) = 11k2 = 1
11
(n2 − 4n+ 4)

` = 3:M(11k + 3, 4k + 1, 10k + 2) = 11k2 + 2k = 1
11
(n2 − 4n+ 3)

` = 4:M(11k + 4, 4k + 1, 10k + 3) = 11k2 + 4k = 1
11
(n2 − 4n)

...
...

...

` = 9:M(11k + 9, 4k + 3, 10k + 8) = 11k2 + 14k + 4 = 1
11
(n2 − 4n− 1)

` = 10:M(11k + 10, 4k + 3, 10k + 9) = 11k2 + 16k + 6 = 1
11
(n2 − 4n+ 6)
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Generalized Schur triples

I For a ∈ N, a generalized Schur triple (x, y, z) ∈ N3 satisfies
x+ ay = z.

I Extend this to a ∈ R+ by imposing x+ bayc = z.

✶✶✶

✶✶�

�✶�

✶��

✵✁✂ ✵✁✄ ✵✁☎ ✵✁✆ ✝✁✵
①

✵✁✂

✵✁✄

✵✁☎

✵✁✆

✝✁✵

②

Example:
s = 1

2 , t = 3
5 , a = 3

2
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Case distinctions for polygon 133

Polygon 133 corresponds to triples (x, y, z) that satisfy x 6 s and
y, z > t.

I Depending on the values of s, t, a, polygon 133 is a triangle,
a quadrilateral, or a polygon with five or six vertices.

I For some values of s, t, a it is not present at all.

I Hence its area is given by a piecewise defined function.

(1) t < 1/a 6 1 ∧ 1− at 6 s (2) t < 1/a 6 1 ∧ (1− s)/a > t

t
0 s

1

1− at

1/a

t
0 s

1

(1− s)/a

1/a
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Case distinctions for polygon 133

(3) 0 < 1− a 6 s ∧ 1− at 6 s

(3.1) t/a 6 1 (3.2) t/a > 1

t
0 s

1

t/a

t− at 1− at

1− a

t
0 s

1

t− at 1− at

t− a 1− a

(4) 0 < 1− a 6 s ∧ (1− s)/a > t

(4.1) t/a 6 1 (4.2) t/a > 1

t
0 s

1

t/a

(1− s)/a

t− at

1− a

t
0 s

1

(1− s)/a

t− at

t− a 1− a
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Case distinctions for polygon 133

(5) 1− a > s

(5.1) t/a 6 1 ∧ t− at 6 s (5.2) t/a 6 1 ∧ (t− s)/a > t

t
0 s

1

t/a

t− at
t

0 s

1
t/a

(t− s)/a

(5.3) t/a > 1 ∧ t− at 6 s (5.4) t/a > 1 ∧ t < (t− s)/a < 1

t
0 s

1
t− a

t− at
t

0 s

1
t− a

(t− s)/a
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Case distinctions for all polygons
Performing a similar case analysis for all possible seven polygons

111, 222, 113, 131, 133, 313, 333

we encounter a set of 16 “atomic” conditions:

C1 ≡ 1− as > 0, C2 ≡ 1− as− s > 0,

C3 ≡ 1− as− t > 0, C4 ≡ t− as > 0,

C5 ≡ t− as− s > 0, C6 ≡ 1− at > 0,

C7 ≡ 1− at− s > 0, C8 ≡ 1− at− t > 0,

C9 ≡ 1− a > 0, C10 ≡ 1− a− s > 0,

C11 ≡ s− a > 0, C12 ≡ 1− a− t > 0,

C13 ≡ t− a > 0, C14 ≡ t− a− s > 0,

C15 ≡ s− at > 0, C16 ≡ t− at− s > 0.

The area of each polygon is given by a piecewise function, whose
definition involves logical combinations of C1, . . . , C16.
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Combining piecewise functions

Recall that we are interested in the total
area A of the shaded regions, as a func-
tion of s, t, a. The area of each polygon
is given by a piecewise (rational) func-
tion in s, t, a. Hence, we have to express
the sum of seven piecewise functions as
a single (piecewise) function.

I Need a common refinement of the regions on which the seven
area functions are defined.

I Start with the finest possible refinement, which is obtained by
considering all 216 = 65536 logical combinations of Ci and Ci.

I Remove those cases that contain contradictory combinations
of conditions.

I Merge regions on which A(s, t, a) is defined by the same
expression into a single region.
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The area function A(s, t, a)
Lemma. Let a, s, t ∈ R with a > 0 and 0 6 s 6 t 6 1. Then the
area A(s, t, a) of the region{

(x, y) ∈ R2 : (x, y, x+ ay) ∈
(
[0, s] ∪ (t, 1]

)
3 ∪ (s, t]3

}
is given by the following piecewise defined function (70 cases):

conditions on a, s, t A(s, t, a)

(R1) C1
s2−2ts+2s+t2−2t+1

2a

(R2) C3 ∧ C4 ∧ C6
2as2+2s2+2as−4ats−2ts+t2

2a

(R3) C3 ∧ C4 ∧ C6
−a2s2+2as2+2s2+2as−2ats−2ts

2a

(R4) C2 ∧ C4 ∧ C6
s2+2as−2ats−2ts+2s+2t2−2t

2a

(R5) C2 ∧ C4 ∧ C6
−a2s2+s2+2as−2ts+2s+a2t2+t2−2at−2t+1

2a

(R6) C1 ∧ C2 ∧ C4 ∧ C6
−a2s2+s2+2as−2ts+2s+t2−2t

2a

(R7) C2 ∧ C3 ∧ C4 ∧ C6
a2s2+2as2+2s2−2ats−2ts+2t2−2t+1

2a

(R8) C2 ∧ C3 ∧ C4 ∧ C6
2as2+2s2−2ts+a2t2+t2−2at−2t+2

2a
...

...
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Polyhedral subdivision

Example: a = 1.4

Domain of definition of A(s, t, a)

{(s, t, a) : 0 6 s 6 t 6 1 ∧ a > 0}

is an infinite triangular prism in R3.
It is subdivided into 70 polyhedral regions.
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Minimize the area function A(s, t, a)

Lemma. For a > 0, the minimum of the function A(s, t, a)

m(a) := min
06s6t61

A(s, t, a)

is given by a piecewise rational function, depending on a:

s0 t0 m(a)

0 6 a 6 α1
(a−4)a

a3−a−4
−2a2+4a+2
−a3+a+4

−a4+2a3−2a2+6a−4

2(a3−a−4)

α1 6 a 6 α2
a(a2−3)
a4−8a−1

a3+a2−5a−1
a4−8a−1

a3−2a2+a−2

2(a4−8a−1)

α2 6 a 6 α3
−2a3+2a+1
−a4+8a+3

2a3+a2−6a−2
a4−8a−3

a6+a4−12a3+4a2−1

2a(a4−8a−3)
...

...
...

...

α7 6 a 6 1 (a+1)2

a(7a+4)
(a+1)(4a+1)

a(7a+4)
−7a4+6a3+6a2−2a−1

2a2(7a+4)

1 6 a 6 α8
(a+1)2

a4+2a3+3a2+2a+3

(a+1)(a2+2a+2)
a4+2a3+3a2+2a+3

a4−a2−2a+4

2a(a4+2a3+3a2+2a+3)

α8 6 a a+1
a2+2a+3

a2+2a+2
a2+2a+3

1

2a(a2+2a+3)
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Find the local minima
For each region (Ri), 1 6 i 6 70, on which A(s, t, a) is defined:

I View A(s, t, a) as a function in s, t with a parameter a.

I Compute the gradient
(
∂A
∂s ,

∂A
∂t

)
.

I Find all points (s, t) ∈ R2 where the gradient is zero.

I For each such point determine for which values of a it actually
lies in (Ri).

Example: On (R2) the gradient is
(
2as−2at+2s−t+a

a , t−2as−sa

)
,

which is zero for

(s, t) =

(
a

4a2 + 2a− 1
,
a(2a+ 1)

4a2 + 2a− 1

)
.

Definition of (R2): as+ t 6 1 ∧ t > as ∧ at > 1 ∧ 0 < s < t < 1.
Using CAD one finds the admissible range for a:

a > Root
(
2a3 − 3a2 − 2a+ 1, [1, 2]

)
= 1.889228559...
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Plot of the local minima

A(s0(a), t0(a), a)

0.5 1.0 1.5 2.0 2.5 3.0
a

0.1

0.2

0.3

0.4

0.5
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Find the global minimum

Note that A(s, t, a) is defined piecewise and therefore may not be
differentiable (it is, however, obvious from construction that it is
continuous). → Search for minima along boundaries of regions.

✵�✁ ✶�✵ ✶�✁ ✷�✵ ✷�✁ ✸�✵
❛

✵�✷

✵�✂

✵�✄

✵�☎

✶�✵
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Find the global minimum

Similarly, we consider the function values of A(s, t, a) at all
intersections of the lines defined by the Ci (these points depend
on a, and we get 348 cases to check).

✵�✁ ✶�✵ ✶�✁ ✷�✵ ✷�✁ ✸�✵
❛

✵�✷

✵�✂

✵�✄

✵�☎

✶�✵
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Location of the global minimum
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1.0

a = 1.00
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Location of the global minimum

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a = 1.50

26 / 31
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Location of the global minimum
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Location of the global minimum
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Location of the global minimum
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Exact lower bound for a = 2

Theorem 2. The minimal number of monochromatic generalized
Schur triples of the form (x, y, x+ 2y) that can be attained under
any 2-coloring of [n] of the form RsBt−sRn−t is

M(2)(n) =

⌊
n2 − 10n+ 33

44

⌋
.

Proof. Using the knowledge of A(s, t, a), we find (empirically)
that the minimum of M(2)(n, s, t) is attained at

s0 =

⌊
3n+ 1

11

⌋
, t0 =

⌊
10n

11

⌋
+

{
−1, if n = 22k + 10,

0, otherwise.

Analogous to the a = 1 case, make a case distinction according to
n = 22k + ` and apply CAD in each case.
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⌊
3n+ 1

11

⌋
, t0 =

⌊
10n

11

⌋
+

{
−1, if n = 22k + 10,

0, otherwise.

Analogous to the a = 1 case, make a case distinction according to
n = 22k + ` and apply CAD in each case.
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Exact lower bound for a = 3

Theorem 3. The minimal number of monochromatic generalized
Schur triples of the form (x, y, x+ 3y) that can be attained under
any 2-coloring of [n] of the form RsBt−sRn−t is

M(3)(n) =

⌊
n2 − 18n+ 101

108

⌋
+


1, if n = 54k + 36,

−1, if n = 54k + 30

or n = 54k + 42

0, otherwise.

Proof. Analogous to previous theorem, but 54 case distinctions.
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Exact lower bound for a = 4

Theorem 4. The minimal number of monochromatic generalized
Schur triples of the form (x, y, x+ 4y) that can be attained under
any 2-coloring of [n] of the form RsBt−sRn−t is

M(4)(n) =

⌊
n2 − 28n+ 245

216

⌋
−

{
1, if n = 108k + i for i ∈ I,
0, otherwise,

where the set I is given by

{0, 1, 27, 28, 43, 47, 48, 53, 58, 63, 67, 68, 69, 73, 78, 83, 88, 89, 93}.

Proof. Analogous to previous theorem, but 108 case distinctions.
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Exact lower bound for a = 1
2

Theorem 1
2 . The minimal number of monochromatic generalized

Schur triples of the form
(
x, y, x+ b12yc

)
that can be attained

under any 2-coloring of [n] of the form RsBt−sRn−t is given by

M(1/2)(n) =

⌊
15n2 + 72

76

⌋
+


1, if n = 38k + 18 or n = 38k + 20

−1, if n = 38k + 19,

0, otherwise.

Counter-example. For n = 4 the theorem predicts a minimum of
four MSTs, under the coloring

{
1 , 2 , 3 , 4

}
, namely(

1 , 1 , 1
)
,
(

4 , 1 , 4
)
,
(

2 , 2 , 3
)
,
(

2 , 3 , 3
)
.

However, for the coloring
{

1 , 2 , 3 , 4
}

we get only three MSTs:(
1 , 1 , 1

)
,
(

3 , 1 , 3
)
,
(

2 , 4 , 4
)
.
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True minimum for a = 1
2

Conjecture. For n > 12, the minimal number of monochromatic
generalized Schur triples of the form

(
x, y, x+ b12yc

)
that can be

attained under any 2-coloring of [n] is given by⌊
n2 + 5

6

⌋
,

and it occurs at the coloring RsBt−sRu−tBn−u for

s =

⌊
n+ 3

6

⌋
, t =

⌊
n+ 1

2

⌋
, u =

⌊
5n+ 3

6

⌋
.
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