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Abstract. In theory and practice of inverse problems, linear operator
equations Tz = y with compact linear forward operators T having a non-
closed range R(T) and mapping between infinite dimensional Hilbert
spaces plays some prominent role. As a consequence of the ill-posedness
of such problems, regularization approaches are required, and due to
its unlimited qualification spectral cut-off is an appropriate method for
the stable approximate solution of corresponding inverse problems. For
this method, however, the singular system {o;(T"), u;(T),v;(T)}52; of
the compact operator T is needed, at least for i = 1,2, ..., N, up to some
stopping index N. In this note we consider n-fold integration operators
T =J"(n=1,2,..) in L*([0,1]) occurring in numerous applications,
where the solution of the associated operator equation is characterized by
the n-th generalized derivative z = 3™ of the Sobolev space function y €
H"([0,1]). Almost all textbooks on linear inverse problems present the
whole singular system {o;(J'), u;(J"),v;(J")}52; in an explicit manner.
However, they do not discuss the singular systems for J", n > 2. We will
emphasize that this seems to be a consequence of the fact that for higher
n the eigenvalues o7 (J™) of the associated ODE boundary value problems
obey transcendental equations, the complexity of which is growing with
n. We present the transcendental equations for n = 2,3, ... and discuss
and illustrate the associated eigenfunctions and some of their properties.

1 Introduction
For the stable approximate solution of the ill-posed linear operator equation
Tz=y, yeR(T), (1)

with a compact linear operator T" mapping between the infinite dimensional
Hilbert spaces X and Y with norms || - || and inner products (-,-) and range
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R(T) # R(T) =Y the spectral cut-off method is appropriate due to its unlim-
ited qualification which avoids saturation of the method (cf., e.g., [6, Example 4]).
However, the use of spectral cut-off requires the knowledge of the singular system
{04(T), u;(T),v;(T)}2, of the compact operator T, at least for i = 1,2,..., N,
up to some stopping index N, which plays the role of a regularization parameter
and occurs in case of noisy data y° € Y obeying the noise model ||y — y°| < §
with noise level 6 > 0 inside the regularization procedure

(T))ui(T)

(cf., e.g., [4, p.36]).

In this note, we restrict our considerations with respect to equation (3) to
the family of Riemann-Liouville fractional integral operators T := J% defined
for all exponents 0 < a < 0o as compact operators

[Jo%](s) = / Msg(t) dt, 0<s<l, (2)

mapping in the separable infinite dimensional Hilbert space X =Y := L%(]0,1])
of quadratic integrable Lebesgue-measurable real functions over the unit interval
[0, 1], which are of particular interest in the mathematical literature. Namely the
linear operator equation

J% =y, y € R(JY), (3)

is solved in a unique manner by applying the a-fold Riemann-Liouville fractional
derivative D to the right-hand side y, which is assumed to belong to the range
R(J%) of the operator J*. For the left inverse D* of J* there exists the explicit
formula

[DYyY|(t) = jt/(lf(_ls_):;y(s) ds, 0<t<1,
0

in the case 0 < o < 1. If @ = n + & with positive integer n and 0 < a <1 we
have D%y = D%y("),

The following facts are well-known from the literature (see, for example, [1,
2,5]):

Fact 1 For all real numbers 0 < a < oo the linear convolution operators J<
mapping in L*([0,1]) are injective and compact, and so are the adjoint operators

1
7ta 1
((J /5 A(s)ds, 0<t<1, (4)
I
t

too. Hence, the range R(J*) is a dense and non-closed subset of L*([0,1]).
Consequently, the operator equation (3) is ill-posed of type II in the sense of
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Nashed [7]. The linear Volterra integral operators J* are linear Fredholm in-
tegral operators with quadratically integrable kernel and hence Hilbert-Schmidt
operators whenever 3 < o < 00.

Fact 2 For all real numbers 0 < o < oo the operator J* possesses a singular
system {o;(J), u;(J), v;(J*)}32, with the uniquely determined ordered sin-
gular values o1(J*) > oa(J%) > ... > 0, where lim;_,o 0;(J*) = 0, and two
orthonormal systems {u;(J*)}2, and {v;(J*)}2,, which are both complete in
L?([0,1]), such that fori=1,2,...

T (J¥) = o;(J) 0 (J¥)  and  (J*) v (JY) = o3 (J¥) ui (JY) . (5)

The focus of the present note is on the case & = n with natural numbers n =
1,2, ..., where D™y = 3™ coincides with the n-fold generalized derivative of the
Sobolev space function y € R(J™) C H™(]0, 1]). We try to answer the frequently
asked question why the complete singular system {o;(J™), u;(J™), v;(J™)}32, of
J™ is made explicit only for n = 1 in many textbooks and papers, but for n > 2
such a detailed discussion is mostly avoided. One of the reasons may be that
there are no nice explicit formulas for the singular systems. We describe them
by implicit transcendental equations which become increasingly unhandy as n
grows. Therefore we employ symbolic computation (in form of the computer
algebra system Mathematica) to derive some of the formulas presented here.
Also the arbitrary-precision arithmetic that is available through such a system
is crucial for finding some of the numerical approximations.

2 Singular value asymptotics of Riemann-Liouville
fractional integral operators

Many authors have discussed upper and lower bounds for the singular values
o;(J*) of J* aimed at deriving a singular value asymptotics with respect to the
Riemann-Liouville fractional integral operators mapping in L2([0, 1]) in the case
of specific exponents o and exponent intervals. However, in the paper [9] we find
the complete asymptotics:

Proposition 1. For all 0 < a < oo there exist constants
0 <cla) <t(a) < oo

such that
c(a)i™® <oy (JY) <ea)i™ .

As a consequence of Proposition 1 the degree of ill-posedness (cf. [3]) of
the operator equation (3) is « and grows with the level of integration. Abel
integral equations (0 < « < 1) are weakly ill-posed and the problem of n-fold
differentiation with a = n € N and

c(n)i ™ <oy (J") <e(n)i ", i=1,2,.. (6)

is mildly ill-posed. No severely (exponentially) ill-posed problem occurs in the
context of equation (3).
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3 The boundary value problem for the singular value
decomposition

By deriving u;(J™) (i € N) from the well-known equations

[T (J™)] ) = iy (J™) = 0i(J") i (S,
(") v (T = (=) 0i(J") = o3 (J™) [ui (J™)] 7,

one can verify the singular system of J" from the following boundary value
problem of an ordinary differential equation of order 2n:

Au) (1) 4 (=1)(HDy(t) = 0, 0<t<l,
u(l) =/ (1) = ... =uV(1) =0, (7)
u™(0) = u™t(0) = ... = w1 (0) = 0.

More precisely, we are searching for all eigenvalues A > 0 such that the sys-
tem (7) possesses nontrivial solutions 0 # u € L?([0,1]). According to Propo-
sition 1, there will be with A = )\; an infinite sequence Ay > Ay > ... > 0
of ordered eigenvalues \; := (0;(J"))? which are the i-largest eigenvalues of
both operators (J")*J™ and J"(J™)*. Moreover, with u := u;(J") there will be
an associated orthonormal eigensystem {u;(J™)}5°; which leads with v;(J") :=
ﬁt}"ui(t}”) to the orthonormal eigensystem {v;(J™)}$2;. Thus the singular
system {o;(J™),u;(J™),v;(J")}52, of J™ is complete.

The computation of the eigensystem follows a schema listed in the algorithm
below that has been frequently used in the literature for the case n = 1 (for
results see Section 4) and can be applied to any larger integer n € N. This
approach is based on the zeros v of the characteristic polynomial

Pa(v) = A" 4 (1) (8)

of the homogeneous differential equation Au(?™(t) + (=1)"+Vy(t) = 0 of or-
der 2n occurring in the boundary value problem (7). It is clear that these zeros v
obey the equation

M = (=1)". (9)

For fixed A > 0, the solutions u of this ODE are characterized by a corresponding
fundamental system

{oet) | k=0,....,2n — 1}

such that
2n—1
u(t) = > yeer(t). (10)
k=0
Each non-zero coefficient vector v = (9,71, - - - ,fygn,l)T € R?™ represents a non-

trivial solution of the ODE. Taking into account the required initial and terminal
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conditions of the boundary value problem (7), the vector v must satisfy the linear
system A, (A)y = 0 with a singular quadratic matrix

wo(1) e1(1) ... pan—1(1)
A0 AW )
An(\) = A0 ) D) | e e, (11)
ed”(0) M) ... el (0)
S0 (0) 27D (0) ... p2mD(0)

This means that only those A > 0 for which
det(A,(N) =0 (12)

yield non-zero vectors v such that « in (10) is non-trivial. It can be seen that
only a countable set {\;}2; of values A > 0 satisfies (12). This set consists of
the eigenvalues of JJ, with associated eigenfunctions

2n—1

= Z 7;(:)90@1@(75)
k=0

where {®i0,...,¢iom—1} is the fundamental system associated to the eigen-
value \;, and the vector v(*) = (fy(gi), e ,'yézn) 1) € R2" satisfies the linear system
Ay (M) = 0 and is normalized such that |Ju;|| 2,1y = 1.

Now we are ready to formulate the algorithm for obtaining the desired eigen-
values and eigensystems.

Algorithm 1

(i) Compute, by solving equation (9), the 2n zeros of the characteristic polyno-
mial p, (V) of the ODE occurring in problem (7).
(ii) Construct the fundamental system {r(t) | k =0,...,2n — 1} of the ODE
for arbitrary A > 0.
(iii) Form the (2n x 2n)-matriz A,(\) that expresses the initial and terminal
conditions occurring in (7).
(iv) Determine the eigenvalues \;, i = 1,2, ..., of JtJ, by solving the equation
det(A,(N\;)) =0.
(v) Calculate the eigenfunctions u; = Zinol“/kz i k(t) for alli=1,2, ..., such
that ||ui||L2(0_’1) =1.

Although this algorithm seems to be straightforward, we will see that only steps
(i)-(iii) can be done explicitly.
Proposition 2. The zeros of the characteristic polynomial (8) are given by
1
1\?" 2mk
Vk:()\) exp(iW), k=0,...,2n—1, (13)
where [n]y :=n mod 2 for n € N.
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Proof. For n even, we have to solve the equation v?" = 1/\. Its zeros are given
as

1 2n 50
uk:() eiB k=0,...,2n—1. (14)
For n odd, the equation reads
V= — = (15)

having the roots

1
1 2n rd2nk
Vk:() FTEE L k=020 1. (16)

O

As roots of the characteristic polynomial, the v are either real, or if one root
is complex, then its conjugate is also a root. In detail, we have the assertions of
the following proposition.

Proposition 3. For n even, there exist two real zeros

Vg = A" 2n (17)
Up = —A" 70 (18)

Additionally, we have
Uk = Von—i, k=1,...,n—1. (19)

If n is odd, all zeros are complex and satisfy
Tk:VQn—(k+1)7 k:(),,nfl (20)

Proof. If n is even, the values of v for k = 0 and k = n are evident. Moreover,
we have for k=1,...,n—1

. 2n—k
rpin—K

_ _ 1 izk L iR — L imT
Ug =\ 2ne " =)\ 2ne =\"?e = Vop—k- (21)
In the case that n is odd, the zeros are given by
= (1+2k)
vp = A"Te (22)

and as there is no k£ € N such that 1 + 2k equals zero or a multiple of 2n, there
are no real roots. Additionally, we have
i _im i AT oy _g_ L
)\%7:62"(1*—%)26 IT (142k)+2 :en(z k—3)

im (L4 (2n—(k+1)) 1
=e = A2 Vop_(k41)-
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It is well known that a complex root and its complex conjugate create a pair of
real fundamental solutions of an ODE. Specifically, a complex root vy = ax £i05x
with multiplicity one creates the two real fundamental solutions

e " cos(By, - 1), et sin(fy, - t). (23)

For what follows, let us denote the roots of the characteristic polynomial p,, ()
by V,ie) if n is even and by IJ£O) if n is odd. Then we obtain the following result.

Proposition 4. Let l/](:’o) = a;:’o) Jriﬂ,ie’o) denote the roots of the characteristic
polynomial (8) and

{@Oa Sola"wSOanl} (24)
the fundamental system of the ODE occurring in (7). Then we have:
(a) If n is even then, for k =1,...,n — 1, the system (24) is characterized as
(A—l/Zn,).t
(7

wo(t
—1/2n

)t

e

e
por(t) = e cos(B - 1)
Pok+1(t) = e sin(8, - ).

(b) If n is odd then, for k=1,...,n — 1, the system (24) is characterized as
pan(t) = e T cos(B) - 1)

), .

parir(t) = e sin(B 1),
Proof. Taking into account (23), the proof follows by the characterization of the
roots and their complex conjugates in Proposition 3. ad

A
)

)
e1(t)
)
)

4 The onefold integration operator

Along the lines outlined above in the algorithm and frequently presented in the
literature one finds the singular system for n = 1, i.e. for the simple integration
operator J!, from the ODE system

Au”(t) +u(t) =0, 0<t<l1,

u(l) =0,

' (0)=0.
The explicit structure of this singular system is outlined in the following propo-
sition.

Proposition 5. For n =1 we have the explicitly given singular system
{o: = Gitiys wi(t) = V2cos((i — §)mt), vs(t) = V2sin((i — )mt) }

of the operator J* mapping in the Hilbert space L*([0,1]). Hence, formula (6)
applies in the form

o0
=

1 2
it <o) < =it i=1,2,....
i i
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5 The twofold integration operator

5.1 General assertions

In the case n = 2, ie., for the twofold integration operator J%, the ODE-
system (7) attains the form:

Au® () —u(t) =0, 0<t<l1,
u(l) =4'(1) =0, (25)
u”(0) = u""(0) = 0.

For the eigenfunctions u = u;(J?) it is a necessary condition that they satisfy
the homogeneous fourth-order differential equation in (25), which implies the
ansatz structure via the corresponding fundamental system as

u(t) = 71 exp ()\f/zl) + 2 exp (—)\f/4> + 93 sin <)\1t/4> + 74 COS ()\f/4> )
To obtain such u # 0, the linear (4 x 4)-system of equations
As(p) - (71572,73,72) T = (0,0,0,0)7  with g := A~/4
must have a singular matrix As(u), which means that

et e M sin(pu) cos(p)

et —e M cos(p) —sin(p)
det 1 1 0 = 4(cos(p) cosh(p) +1) =0.
1 -1 -1 0

This leads to the following proposition:

Proposition 6. The eigenvalues \ of the operator (J?)*J? are the solutions of
the nonlinear transcendental equation

1 1
oS <)\1/4> - cosh <)\1/4> +1=0. (26)

In the next subsection we motivate the fact that the sequence {\;}52, of
solutions to (26) is of the form \; = m (i =1,2,...), where the sequence
$)mtei
{€:}52, tends to zero exponentially fast. This gives evidence that the singular
values o;(J?) are very close to

N
(i +3)7)?

for sufficiently large i, which is in accordance with the assertion of Proposition 1
in the case o := 2.

(i=1,2,..)
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5.2 On the zeros of the function f(z) = cos(z)cosh(z) +1 =0

To our knowledge there does not exist a closed form for the zeros of the transcen-
dental equation f(z) = cos(z)cosh(z) + 1 = 0. From the form of the equation
it becomes apparent that there are infinitely many zeros, whose distribution
is approximately m-periodic. Applying Newton’s method to f(z), we find the
following numeric values for the first few positive roots:

z1 = 1.875104068711961166445308241078214...
29 = 4.694091132974174576436391778019812...
z3 = 7.854757438237612564861008582764570...
z4 = 10.99554073487546699066734910785470...
zs = 14.13716839104647058091704681255177...

The almost-periodic behavior of {z;}$°, suggests to write
zZ; = (’L - %)7’( + Eiy (27)

where the sequence {¢;}$2; tends to zero exponentially fast. Our first goal is
to derive a bound on the absolute value of g;, thereby proving the claimed
asymptotic behavior of {e;}5°;.

For this purpose, consider the function

g(z) = f(z) — 1 = cos(z) cosh(z),

whose zeros are at the positions

The locations where the graph of g(z) intersects the line y = —1 are exactly
the zeros of f(z). From ¢”(z) = —2sin(z)sinh(z) we see that g(z) is convex if
sin(z) < 0 and that g(z) is concave when sin(z) > 0.

Lemma 1. Ifi > 1 is an odd integer, then 0 < g; < 2e~ .

Proof. If i is odd, then ¢'({;) = — cosh((;). Hence g has a negative slope at (;
and therefore €; > 0. Since g is concave in the interval (Q — 5,6+ %), it follows
that in this interval the tangent to g at (; is above g. This tangent intersects the
line y = —1 at ¢; + 1/ cosh((;), which yields the desired upper bound on &;:

< 1 2 < 2
€ = .
cosh((;)  eSi+e=Si el

Lemma 2. Ifi > 2 is an even integer, then 0 < —&; < 4e~ 5.
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Proof. In this case, ¢'({;) = cosh((;). Hence g is increasing, which means that
its graph intersects y = —1 left to (;, thus ¢; < 0. Moreover, ¢ is convex in
the interval (Q -5 G+ g), and therefore the tangent to g at (; is below g.
Unfortunately, the intersection between this tangent and y = —1 does not deliver
an upper bound on |g;].

Instead, we define &; := (; — 4e~% and show that g(&;) < —1, yielding the
claimed bound on ¢;. Equivalently, we show —g(&;) > 1:

—g(&) =sin(4e™¢) cosh(&;)

= % sin(4 e_c'i) (e& + e_éi)

> 1sin(4 e_Ci) et

= % sin(4 e_c") ebi exp(—4 e_Ci)

= sin(4z) e 1 with z = e ¢,

2z

The function h(z) = (sin(4z)/(2x))e~** is monotonically decreasing in the in-
terval (0,6‘41) with h(0) = 2 and h(e‘<2) ~ 1.92899. In particular, we have
h(z) > 1 in this interval and therefore h(e=%) > 1 for all i > 2, which implies
our claim on ¢(&;). The asserted bound on ¢; follows. O

Remark 1. The factor 4 in the previous lemma is because of our crude estimate;
actually we have for even and odd 4

lei| ~ 2% for i — oo.

Remark 2. Analogous statements can be made about the negative roots of the
function f(z); they follow immediately by symmetry since f is an even function.

Instead of a bound on &;, we can also derive an exact expression for it in
the form of an infinite series. Plugging the representation (27) into the equation
f(zi) = 0, one obtains

(—1)"sin(e;) cosh((i — 3)m +&;) = —1,
or equivalently
2

sin(si)—&-(—l)iﬂ =0 with w; = exp(—(i — 3)m —&;).
) K]

We expand the left-hand side as a geometric series in w?, which gives

oo

sin(ez % § k 2k+1

k=0

Next, we write (—1)'w; = z; - exp(—e;) with z; = (—1)"exp(—(i + 3)7), and
perform Taylor expansion with respect to ¢;:

o0
(=17 L2+ g2kt 2k—1 &
= (23_4_1! S +22 Z i



Singular value decomposition of integration operators 11

Formally speaking, this is a bivariate power series in the variables x; and ¢;.
Making an ansatz for €;, i.e., substituting for ¢; a power series in x; with unde-
termined coeflicients,
o0
_ i
€ = E Qa;iZ;,
i=1

we obtain a univariate series:

(a1 + 2)z; + (a2 — 2a1)2} + (a3 — 2az — %a? +ai —2) )

2

+ (a4 — 2a3 — %a?ag + 2a1a9 — %af + 6a1) x? + ...

Coefficient comparison with respect to z; then allows us to compute the unknown
coefficients a;; note that in the coefficient of ¥ the indeterminate aj appears
linearly and can therefore be easily computed from the previous ones:

34 112 _ 2006

_ _ _ _ _ _ 1516
a1 = —2, ag = —4, a3 = —73, 4= =73, 05 = =5, g = ——3

T
Remark 3. We have computed the first 100 coefficients a; symbolically, but we
were not able to identify a nice closed form for them. They do not satisfy a
(nice) linear recurrence equation with polynomial coefficients, either. Also in the
OEIS [8], we could not find any information about these numbers.

5.3 Eigenfunctions

With the acquired knowledge on the eigenvalues A of the operator (J2)*J2,
we are able to derive the corresponding eigenfunctions u;, at least numerically.
Recall the fundamental system

t t . t t
71 exp<)\1/4) + 2 €xXp (—/\1/4) + 73 sm(/\1/4> + Y4 COS(W)'

By plugging the computed values for \;, 1 < ¢ < 5, into the matrix As()\),
we can determine the constants 1, vz, vs,v4. The results are shown in Table 1
(after the normalization |lu;||z2([0,1) = 1) and the eigenfunctions themselves are
plotted in Figure 1.

‘ Ai Y1 Y2 3 Ya
0.08089068 0.13295224 0.86704776 —0.73409551 1.00000000
0.00205965 —0.00923366 1.00923370 —1.01846730 1.00000000
0.00026271 0.00038775 0.99961225 —0.99922450 1.00000000
0.00006841 —0.00001678 1.00001680 —1.00003360 1.00000000
0.00002504 0.00000072 0.99999928 —0.99999855 1.00000000

Table 1.

S N
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Fig. 1. Eigenfunctions u1,...,us for n = 2

6 The n-fold integration operator

With the notation wy, = exp(£X(2k + [n]2)), the roots vy of the characteristic
polynomial (8), pn(r) = A2" 4+ (=1)"1, can be written as v, = A~ 2wy,
k=0,...,2n —1. Let z = A~27 and write the fundamental system of the ODE
in (7) in terms of the complex exponential functions () = e“**!, then the
matrix A, given in (11) attains the following form

with a;fz) (2) =

An(z) = (agnk) z ;

( ) wpzle¥ g <n,
0<j,k<2n—1

wizj, j>n.

We want to determine the values of z # 0 for which det(A,(z)) = 0. Hence
the common factor z7 from the j-th row can be removed. In order to obtain an
explicit expression for the determinant of A, (z), we first study the more general
matrix

j .
. W2k, J<n
M, = (m%)) with m(nk) =q Lo
PP 0<j k<on—1 I wi, j>n,
where zg, ..., zo0,_1 are indeterminates. The matrix looks as follows:
20 Z1 Z2 te Zon—1
wozo w121 Waz2 - Wap—-122n—1
2 2 2 2
Wy <o Wizl Wyzo -t Wy, _1%2n—1
Mn = n—.l n;l n;l n—1 '
Wy 20 Wy 21 Wy 22 1t Wop 122n—1
n n n n
) Wi Wy Wan—1
2n—1 2n—1 2n—1 2n—1

Wo Wi Wa Wop—1
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For zg = ... = 29,1 = 1, the matrix M, equals exactly the Vandermonde
matrix V(wp,...,ws,—1), which for even n is the Fourier matrix, since in this
case the wy are precisely the 2n-th complex roots of unity.

For symbolic indeterminates zg, ..., zon_1, the determinant of M, is a poly-
nomial in zy, ..., z2,—1 that is homogeneous of degree n and linear in each vari-
able z;. Let I C {0,1,...,2n — 1} be an index set with |I| = n. We aim at com-
puting the coefficient of the monomial [], ., zx in det(M,,). This corresponds to
setting z;, = 0 for all k € C :={0,1,...,2n — 1} \ I. By permuting its columuns,
the matrix M,, can be transformed into a block matrix of the form

V((wr)ker) 'diag((zk)kel)‘ 0

. IV ((wirec) - diag (@] rec)

Moving all columns with index in I to the first n positions requires ), ; k
%n(nfl) swaps of neighboring columns. Hence for the coefficient of the monomial

[I1c; 2 in det(M,,) one obtains:
(—l)zkef k=3n(n=1)  {et V((Wk)ke[) . detV wk keC H wp. (28)
keC

From the definition of wy, it follows immediately that w}? = (—1)¥ if n is even, and
wyl = i-(—1)* if n is odd. Hence the term ], . wj turns into iz (—1)Xkeck,
The sign in (28) can now be determined by the parity of

2n—1

Zk— +Zk:2k—n7_1
kel keC
B 2n(2n—1) n(n—1)
T2 2
~nBn-1) nn+1)
—#—n(n—l)—i—T.

In addition, by employing the well-known formula for the Vandermonde deter-
minant, Equation (28) simplifies to

(=1)nn+D/2 jlnleon < IT (we —wk)> ( IT (we —wk)> —: M. (29)

kel k,teC
k<t k<t

Hence the determinant of M,, can be written as follows:

det(M,)= > &= (30)
1c{0,...,2n—1} kel
[ I|=n
Note that for computational purposes the Vandermonde products in the def-
inition of cgn) can always be expressed in terms of 2n-th roots of unity, even
if n is odd. In this case one has to extract the factor {»~! which simplifies in
combination with the term (™27 namely "~ . i[2n =,
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Theorem 1. Let wy, = exp(Z(2k + [n]2)) and an) be as before, and define
ay = Re(zkelwk) and By := Im(zkel wk). Then

det(A,(2) = 2"®7D . 3™ " cosh(agz) cos(Br2). (31)
1c{0,...,2n—1}

|I|l=n

Proof. We show that det(A4,(z)) is basically a special case of (30) (up to the
factor 227~ which comes from the common row factors z7 that were omitted
in the definition of M,). Recall that the variables z; in the matrix M, have
replaced the exponential functions e“** that appear in the matrix A, (z). Thus,
with z; = e“*# one obtains

IIz= exp(z : Zwk> =exp(z - (a7 +iBr)).

kel kel

As before, let C' := {0,...,2n—1}\I be the set complement of I. From } _, _; wi+
Y okec Wk = Ziigl wy = 0, it follows immediately that

ac =—ay and fo=—fr.
Moreover, define B
I'={2n—[n]s —kmod2n |k el},

which corresponds to reflecting the set {wy}rer across the real axis. Then it
follows that

af=ar and fBfF=-p3;.
Apparently, for those sets I for which I = I holds, one has 3; = 0. In such
cases, we can combine the exponentials that correspond to I and to C, using the
identity

e 4+ e~ = 2 cosh(az).
Otherwise, if I # I, then I,I,C,C are four pairwise distinct sets, and their
corresponding exponentials can be combined as follows:

elatiB)z 4 ola—iB)z | o(—atif)z | o(-a—if)z _ 4 cosh(az) cos(Bz).

The asserted formula follows by observing that c(In) = cg—n) = cgl) = c(g) (which
is obvious from symmetry arguments). O

Ezxample 1. For n = 2, we deduce again the transcendental equation satisfied by
1
z = A~ 1, but now using Theorem 1:

— For I ={0,2} one has I = I and C = C = {1, 3}; it follows that

S = (103 (wo — wo) - (ws — wy) = —4,
ar =pr=0.
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— For I = {0,1} one has I = {0,3}, C = {2,3} and C = {1,2}; it follows that

M = —(wy — wo)(ws —ws) = —(i — 1)(—i+ 1) = —2i,

oy = Re(wo —|—w1) =1,
Br =Im(wy +wy) = 1.

Summing over all possible subsets I C {0,1,2,3}, we get
2 - (—44) cosh(0) cos(0) + 4 - (—2i) cosh(2) cos(z) = —8i - (1 + cosh(z) cos(z)),
which is in accordance with our previous result (Proposition 6).

Corollary 1. In the case n = 3, i.e., for the threefold integration operator J°,
the eigenvalues X\ of the operator (J3)*J? are the solutions of the monlinear
transcendental equation

8005(/\*%) +cos(2)fé) +2cos( )cosh(\f/\ )
+ 16 COS(%)FE) cosh(@)ﬁé) +9=0.
Corollary 2. In the casen = 4, i.e., for the fourfold integration operator J*, the

eigenvalues \ of the operator (J*)*J* are the solutions of the nonlinear transcen-
dental equation (which is obtained from Theorem 1 after further simplifications):

cos(\/ﬁ)\_%) + cosh(\/i)\_%) + 2 cos()\_é) cosh()\_é)
+ 3(cos(\/§)\*%) + cosh(\@)\*%)) cos()\*%) cosh()\*é)

+8<cos<f%>+cosh<x%)>cos(%x%>cosh< AH)

+4\f2s1n(/\*%)s1n( é)cosh( 12)\* )
1
§

74\[2(308(%)\ 8)smh()\ 1) nh( L\~ )
+2\/§sm( _%)sm(\[)\ )cosh()\ )

72\[2COS( 8)smh( *g)smh(\f)\ 8)+6:0.

e

The transcendental equations given in Corollaries 1 and 2 can be used to
compute accurate approximations to the eigenvalues \;, using Newton’s method,
for example. In Table 2 the values for /\;1/6 (resp. )\;1/8) fori=1,...,5 are
displayed. As in the case n = 2, one observes that the i-th value is close to
(2 —1)% (we give an explanation of this phenomenon in the next section). The
corresponding eigenfunctions u; are shown in Figures 2 and 3.

7 Distribution of the eigenvalues \;

In Theorem 1 we have stated that the determinant of A,,(z) can be written as
a sum of expressions of the form ¢ - cosh(az) - cos(8z) with ¢ # 0 and «, 8 € R.
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n =3 (Cor. 1)

n =4 (Cor. 2)

Z1
22
23
24
25

Table 2. Numerical approximations of the first five zeros z; of the transcendental
equations in Corollary 1 (with z = A~'/¢) and Corollary 2 (with z = A~%/8)

2.2247729764011889
4.8026572459190195
7.8476475910871745
10.9951601546635699
14.1371941952108977

Fig. 3. Eigenfunctions w1, .

2.5902718684989891
5.0106222998859963
7.8970686069935174
10.9949247590502524
14.1366518856561214

Fig. 2. Eigenfunctions u1,...,us for n =3

..,us form =4
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The location of the zeros of this determinant is mostly governed by the summand
whose cosh(az) term has the fastest asymptotic growth, i.e., whose scaling fac-
tor « is largest. Recall that the a’s are obtained as the real parts of sums (with

n summands) of different wy, = exp (<X (2k + [n]2)). Figure 4 shows all possible
16

8) = 12870 sums, some of which

pairs («a, 8) when n = 8; note that there are (
add up to the same values.

If n is even, then obviously {i, —i} C {wy | £k = 0,...,2n — 1}. Due to the
“correction term” [n]q, the same is true for odd n. Hence, there are exactly n—1
numbers among the w; with strictly positive real part. By choosing them, plus
one out of {i, —i} (w.l.o.g. we choose %), their sum will clearly exhibit the largest
real part among all n-sums of the wy.

We now study this sum in more detail. For even n we obtain (by combining
pairs of complex conjugates):

n/2 n/2 n/2—1
Z W = Z exp(i%) =i+1+ Z 2Re(exp(i%))
k=—n/2+1 k=—n/2+1 k=1
n/2-1
=i+1+ Y 2cos(ZE) =i+ cot(L£).
k=1

For odd n we obtain

(n-1)/2 (n—1)/2 (n—1)/2-1
Z Wy = Z exp(i2T5AT) = + Z 2 Re(exp(i275£T))
k=—(n-1)/2  k=—(n—1)/2 k=0
(n—1)/2-1
=i+ Z 2 cos(ZHET) = i + cot ().
k=0

Note that the result is the same for even and for odd n. Hence the behavior of
det(A,(2)) is dominated by the term c- cosh(az) - cos(8z) with o = cot (5% ) and
B =1, as z goes to infinity. This implies that for large z the zeros of det(A4,,(2))
tend to the zeros of cos(z), which is exactly what was observed in Section 5.2

for the special case n = 2, and in Section 6 for the cases n = 3 and n = 4.
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-6

Fig.4. The set {3, ., wk | I €{0,...,2n —1},|I| = n} plotted in the complex plane
(for n = 8); the two arrows point to those two numbers which dominate the asymp-
totics, i.e., with largest real part.

8 Conclusions

In the paper, we have further investigated the Singular Value Decomposition of
the n-fold integration operators J". We have presented an algorithm that can
be used to compute the eigenvalues and eigenfunctions of (J™)*J™. Out of the
5 steps of the algorithm, the first three can be done explicitely, but for the last
two it seem impossible to solve them explicitely. The reason lies in the fact that
the computation of the eigenvalues requires to solve a transcendental equation.
However, for the cases n = 2, 3,4 we computed some of the eigenvalues as well as
their eigenfunctions approximately. It needs to be mentioned that the numerical
computation of the eigenvalues requires a computer program that allows compu-
tations in arbitrary precision—systems like MATLAB failed to deliver reasonable
approximations to the eigenvalues.
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