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Gentle Introduction to Knot Theory
Knot:

• embedding of a circle in the Euclidean space R3

• think of a knotted (closed) string

• knot complement: R3 \K

Examples:

• unknot: ©
• trefoil (“Kleeblattknoten”):
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Gentle Introduction to Knot Theory
Link:

• several knots

• entangled with each other

Examples:

• unlink: ©©
• Hopf link:
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Gentle Introduction to Knot Theory

Equivalence of knots:

• if one can be transformed into the other

• “without cutting the string”

4 / 32



Gentle Introduction to Knot Theory

Knot diagram:

• planar diagram

• obtained by a projection of the knot onto the plane

• such that there are only finitely many crossings

Wild knot:

• no projection with finitely many crossings is possible

Tame knot:

• there exists a projection with finitely many crossings

• from now on: consider only tame knots
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Gentle Introduction to Knot Theory

Theorem (Reidemeister, 1927):
Two knot diagrams represent the same knot if and only if they can
be transformed into each other by a finite sequence of
Reidemeister moves.

Reidemeister moves:

• Type I: twist and untwist

• Type II: move one loop completely over another

• Type III: move a string completely over or under a crossing
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Gentle Introduction to Knot Theory

Irreducible knot:

• connected sum of two knots: K1#K2

• a knot is irreducible if it cannot be written as connected sum
of two nontrivial knots

• “unique factorization” of knots

• Rolfsen’s table contains only irreducible knots

Demo:
See www.katlas.org
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Gentle Introduction to Knot Theory

Fundamental problem:
Determine whether two descriptions (e.g., knot diagrams)
represent the same knot.

Knot invariants:

• knot polynomials

• knot groups

Knot polynomials:

• Alexander polynomial (1928)

• Jones polynomial (1984, Fields medal!)

• Kauffman polynomial

• A-polynomial

• HOMFLY polynomial
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Gentle Introduction to Knot Theory

Skein relation:

• skein = “Strang”, “Strähne”

• are used to define many polynomial invariants

• three-term relation connecting the polynomials of knots which
differ only locally.

Example: Skein relation for the Jones polynomial

q−1J(L+)− qJ(L−) = (q1/2 − q−1/2)J(L0)

where L+ and L− denote a positive resp. negative crossing and L0

no crossing. Initial condition:

J(©) = 1.
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The A-polynomial

A-polynomial of a knot:

• difficult to compute (e.g., using elimination)

• difficult to understand (“The A-polynomial of a knot
parametrizes the affine variety of SL(2,C) representations of
the knot complement, viewed from the boundary torus.”)

• even unknown for some knots with only 9 crossings.
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The Colored Jones Function

Colored Jones function: For each knot K, define

JK,n(q) ∈ Z[q±1]N,

a sequence of Laurent polynomials.

Definitions:

• by the n-th parallel of a knot

• via state sums

For a knot with m crossings, the state sum is an m-fold sum with
q-hypergeometric summand.
−→ The colored Jones function is a q-holonomic sequence!
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Excursion: q-Holonomic Sequences

Notation:

• K: field of characteristic zero

• q: indeterminate, transcendental over K

A univariate sequence
(
fn(q)

)
n∈N is called q-holonomic

if it satisfies a nontrivial linear recurrence with coefficients
that are polynomials in q and qn:

d∑
j=0

cj(q, q
n)fn+j(q) = 0 (n ∈ N)

where d is a nonnegative integer and cj(u, v) ∈ K[u, v] are
bivariate polynomials for j = 0, . . . , d with cd(u, v) 6= 0.

(Zeilberger 1990)
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The noncommutative A-polynomial

Introduce operator notation:

(Lf)n(q) = fn+1(q), (Mf)n(q) = qnfn(q)

and let
W = K(q,M)〈L〉/(LM − qML).

Noncommutative A-polynomial:
Denoted by AK(q,M,L) for a knot K, is defined to be the
(homogeneous and content-free) q-holonomic recurrence for
JK,n(q) that has minimal order.
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The AJ Conjecture

There is a close relation between the A-polynomial AK(M,L) and
the recurrence (given as an operator AK(q,M,L) ∈W) for the
colored Jones function:

AJ Conjecture:
For every knot K the following identity holds:

AK(1,M,L) = poly(M) ·AK(M1/2, L)

−→ The AJ conjecture has been verified (rigorously /
non-rigorously) for some knots with few crossings, by explicit
computations, as well as for some special families of knots.
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Double Twist Knots

One such family are the so-called double twist knots Kp,p′ :

−→ Interesting family because their A-polynomials are reducible.
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Colored Jones Function of Kp,p′

Using the Habiro theory of the colored Jones function, we get

JKp,p′ ,n(q) =

n−1∑
k=0

(−1)kcp,k(q)cp′,k(q)q−kn−
k(k+3)

2 (qn−1; q−1)k(q
n+1; q)k

where (a; q)n denotes the q-Pochhammer symbol defined as

(a; q)n =

n−1∏
j=0

(1− aqj)

and where

cp,n(q) =

n∑
k=0

(−1)k+nq−
k
2
+ k2

2
+ 3n

2
+n2

2
+kp+k2p (1− q2k+1)(q; q)n

(q; q)n−k(q; q)n+k+1
.

−→ Perfect application for HolonomicFunctions!
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Apply HolonomicFunctions

Consider the case p = p′ = 2, i.e., the knot K2,2 which
corresponds to the entry 74 in Rolfsen’s table.

Result:

• Recurrence of order 5, with M -degree 24 and q-degree 65

• corresponds to 4 printed pages

Problem:
Creative telescoping doesn’t necessarily give the minimal-order
recurrence.

Strategy:
To prove minimality, we show that the corresponding operator is
irreducible.
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An Easy Sufficient Criterion for Irreducibility

Consider

A(q,M,L) =

d∑
j=0

aj(q,M)Lj ∈W

with d > 1 and assume

• A(1,M,L) ∈ K(M)[L] is well-defined,

• irreducible,

• and a0(1,M)ad(1,M) 6= 0.

Then A(q,M,L) is irreducible in W.

−→ Unfortunately, we cannot apply this criterion, since A(1,M,L)
in our case is reducible (double twist knots!).

18 / 32



An Easy Sufficient Criterion for Irreducibility

Consider

A(q,M,L) =

d∑
j=0

aj(q,M)Lj ∈W

with d > 1 and assume

• A(1,M,L) ∈ K(M)[L] is well-defined,

• irreducible,

• and a0(1,M)ad(1,M) 6= 0.

Then A(q,M,L) is irreducible in W.

−→ Unfortunately, we cannot apply this criterion, since A(1,M,L)
in our case is reducible (double twist knots!).

18 / 32



Exterior Powers

Shifted analogue of the Wronskian:

For k sequences f
(i)
n , i = 1, . . . , k, it is given by

W
(
f (1), . . . , f (k)

)
n
= det

0≤j≤k−1
1≤i≤k

f
(i)
n+j =

∣∣∣∣∣∣∣
f
(1)
n · · · f

(k)
n

...
...

f
(1)
n+k · · · f

(k)
n+k

∣∣∣∣∣∣∣ .

Exterior Powers:

• P ∈W with degL(P ) = d

• notation:
∧kP (“k-th exterior power of P”)

• definition: minimal-order operator for W
(
f (1), . . . , f (k)

)
n

• where f (1), . . . , f (k) are assumed to be linearly independent
solutions of Pf = 0.
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Lemma

Lemma
Let P = Ld +

∑d−1
j=0 ajL

j ∈W with a0 6= 0, let
{
f
(1)
n , . . . , f

(d)
n

}
be a fundamental solution set of the equation Pf = 0, and let
w = W (f (1), . . . , f (d)). Then wn+1 − (−1)da0wn = 0.

Proof.
This is proven by an elementary calculation

wn+1 =

∣∣∣∣∣∣∣
f
(1)
n+1 · · · f

(d)
n+1

...
...

f
(1)
n+d · · · f

(d)
n+d

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

f
(1)
n+1 · · · f

(d)
n+1

...
...

f
(1)
n+d−1 · · · f

(d)
n+d−1

−a0f (1)
n · · · −a0f (d)

n

∣∣∣∣∣∣∣∣∣∣
= (−1)da0wn

(use f
(i)
n+d = −

∑d−1
j=0 ajf

(i)
n+j and row operations).
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A Necessary and Sufficient Criterion for Irreducibility

Theorem
Let P,Q,R ∈W such that P = QR is a factorization of P , and
let k denote the order of R, i.e., k = degL(R). Then

∧kP has a
linear right factor of the form L− a for some a ∈ K(q,M).

Proof.

• Let F =
{
f (1), . . . , f (k)

}
be a fundamental solution set of R.

• By the lemma it follows that w = W (f (1), . . . , f (k)) satisfies a
recurrence of order 1, say wn+1 = awn, a ∈ K(q,M).

• But F is also a set of linearly independent solutions of Pf = 0
and therefore w is contained in the solution space of

∧kP .

• It follows that
∧kP has the right factor L− a.
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Computation of Exterior Powers
As before let d denote the L-degree of P .

1. Ansatz for
∧kP :

c`(q,M)wn+` + · · ·+ c1(q,M)wn+1 + c0(q,M)wn = 0.

2. Replace all occurrences of wn+j by the expansion of the
Wronskian, e.g., for k = 2:

wn+j = f
(1)
n+jf

(2)
n+j+1 − f

(1)
n+j+1f

(2)
n+j .

3. Rewrite each f
(i)
n+j with j ≥ d as a K(q,M)-linear

combination of f
(i)
n , . . . , f

(i)
n+d−1, using the equation

Pf (i) = 0.

4. Coefficient comparison with respect to f
(i)
n+j , 1 ≤ i ≤ k,

0 ≤ j < d, yields a linear system for c0, . . . , c`.
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Exterior Powers of P74

Some statistics concerning P74 and its exterior powers, according
to the factorization of P74(1,M,L):

L-degree M -degree q-degree ByteCount

P74 5 24 65 463,544∧2P74 10 134 749 37,293,800∧3P74 10 183 1108 62,150,408

−→ We now have to prove that
∧2P74 and

∧3P74 have no linear
right factors.
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qHyper
Let P (q,M,L) = pd(q,M)Ld + · · ·+ p0(q,M), pi ∈ K[q,M ].

The qHyper algorithm (Abramov+Paule+Petkovšek 1998)
attempts to find a right factor L− r(q,M) of P where

r(q,M) = z(q)
a(q,M)

b(q,M)

c(q, qM)

c(q,M)
, a, b, c ∈ K[q,M ]

is assumed to be in normal form, defined by the conditions

gcd
(
a(q,M), b(q, qnM)

)
= 1 for all n ∈ N,

gcd
(
a(q,M), c(q,M)

)
= 1,

gcd
(
b(q,M), c(q, qM)

)
= 1.

It is not difficult to show that under these assumptions

a(q,M) | p0(q,M) and b(q,M) | pd(q, q1−dM).

−→ qHyper proceeds by testing all admissible choices of a and b.
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Application of qHyper
Now let’s apply qHyper to P (2)(q,M,L) :=

∧2P74 whose trailing
and leading coefficients are given by

p0(q,M) = q162M44(M − 1)

( 9∏
i=6

(qiM − 1)

)

×
( 10∏

i=6

(qiM + 1)(q2i+1M2 − 1)

)
F1(q,M)

p10(q, q
−9M) = q−397(q2M − 1)

( 7∏
i=4

(M − qi)

)

×
( 8∏

i=4

(M + qi)(M2 − q2i+1)

)
F2(q,M)

where F1 and F2 are large irreducible polynomials, related by
q280F1(q,M) = F2(q, q

10M).
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Application of qHyper

p0(q,M) = q162M44(M − 1)

( 9∏
i=6

(qiM − 1)

)

×
( 10∏

i=6

(qiM + 1)(q2i+1M2 − 1)

)
F1(q,M)

p10(q, q
−9M) = q−397(q2M − 1)

( 7∏
i=4

(M − qi)

)

×
( 8∏

i=4

(M + qi)(M2 − q2i+1)

)
F2(q,M)

−→ A blind application of qHyper would result in
45 · 216 · 216 = 193 273 528 320 possible choices for a and b.
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Confine the Number of qHyper’s Test Cases
We exploit two facts:

Fact 1: Study the image under q = 1:

P (2)(1,M,L) = R1(M) · (L−M4) ·Q1(M,L) ·Q2(M,L)

where Q1 and Q2 are irreducible of L-degree 3 and 6, respectively.
Thus we need only to test pairs (a, b) which satisfy the condition

(∗) a(1,M) = M4b(1,M).

Fact 2: a and b must fulfill the gcd condition:

gcd(a(q,M), b(q, qnM)) = 1 for all n ∈ N.

−→ These two facts allow to exclude most of the admissible
choices for a and b.
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Structure of Leading and Trailing Coefficient

p0(q,M) = q162M44(M − 1)
(∏9

i=6
(qiM − 1)

)
×
(∏10

i=6
(qiM + 1)(q2i+1M2 − 1)

)
F1(q,M)

p10(q, q
−9M) = q−397(q2M − 1)

(∏7

i=4
(M − qi)

)
×
(∏8

i=4
(M + qi)(M2 − q2i+1)

)
F2(q,M)

p0(q,M) p10(q, q
−9M)

qiM − 1 0, 6, 7, 8, 9 −7, −6, −5, −4, 2

qiM + 1 6, 7, 8, 9, 10 −8, −7, −6, −5, −4
qiM2 − 1 13, 15, 17, 19, 21 −17, −15, −13, −11, −9

Linear and quadratic factors of the leading and trailing coefficients;
each cell contains the values of i of the corresponding factors.
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Which Combinations to Test

1. (*) implies that either both F1 and F2 must be present or
none of them; the gcd condition then excludes them entirely.

2. Clearly the factor M4 in (*) can only come from M44 in p0;
thus all other (linear and quadratic) factors in
a(1,M)/b(1,M) must cancel completely.

3. The most simple admissible choice is a(q,M) = M4 and
b(q,M) = 1.

4. Because of the gcd condition, a cancellation can almost never
take place among factors which are equivalent under the
substitution q = 1. This is reflected by the fact that the
entries in the first column of the table are (row-wise) larger
than those in the second column, e.g., (q6M + 1) | a(q,M)
and (q−4M + 1) | b(q,M) violates the gcd condition.
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Which Combinations to Test
5. The only exception is that (M − 1) | a(q,M) cancels with

(q2M − 1) | b(q,M) in a(1,M)/b(1,M). In that case, the
gcd condition excludes further factors of the form qiM − 1,
and together with (*) we see that no other factors at all can
occur. This gives the choice a(q,M) = M4(M − 1) and
b(q,M) = q2M − 1.

6. We may assume that a(q,M) contains some of the quadratic
factors qiM2 − 1. For q = 1 they factor as (M − 1)(M + 1)
and therefore can be canceled with corresponding pairs of
linear factors in b(q,M). The gcd condition forces a(q,M) to
be free of linear factors and b(q,M) to be free of quadratic

factors. Thus we obtain
∑5

m=1

(
5
m

)3
= 2251 possible choices.

7. Analogously a(q,M) can have some linear factors which for
q = 1 must cancel with quadratic factors in b(q,M); this gives
2251 further choices.

−→ Summing up, we have to test 4504 cases only!
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Results for Double Twist Knots
K2,2 = 74:

• rigorous computation of A(q,M,L)

• rigorous proof that it is of minimal order

K3,3:

• rigorous computation of A(q,M,L)

• (q,M,L)-degree = (458, 74, 11)

• minimality proof out of scope (requires
∧5P and

∧6P )

K4,4:

• A(q,M,L) guessed

• (q,M,L)-degree = (2045, 184, 19)

K5,5:

• A(q,M,L) guessed

• (q,M,L)-degree = (6922, 396, 29), ByteCount = 8GB
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Palindromicity

We say that an operator P ∈ K(q)〈M±1, L±1〉/(LM − qML) is
palindromic if and only if there exist integers a, b ∈ Z such that

P (q,M,L) = (−1)aqbm/2MmLbP (q,M−1, L−1)L`−b

where m = degM (P ) + ldegM (P ) and ` = degL(P ) + ldegL(P ).

If P =
∑

i,j pi,jM
iLj then this implies that

pi,j = (−1)aqb(i−m/2)pm−i,`−j for all i, j ∈ Z.

−→ All operators here are palindromic! Exploit this for guessing!
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