Unboundedness of Linear Regions
of Deep ReLU Neural Networks*

Anton Ponomarchuk?, Christoph Koutschan!, and Bernhard Moser?

L Johann Radon Institute for Computational and Applied Mathematics (RICAM), OAW, Austria
2 Software Competence Center Hagenberg (SCCH), Austria

Abstract. Recent work concerning adversarial attacks on ReLU neural networks
has shown that unbounded regions and regions with a sufficiently large volume
can be prone to containing adversarial samples. Finding the representation of lin-
ear regions and identifying their properties are challenging tasks. In practice, one
works with deep neural networks and high-dimensional input data that leads to
polytopes represented by an extensive number of inequalities, and hence demand-
ing high computational resources. The approach should be scalable, feasible and
numerically stable. We discuss an algorithm that finds the H-representation of
each region of a neural network and identifies if the region is bounded or not.

Keywords: Neural network, unbounded polytope, linear programming, ReLU activa-
tion function

1 Introduction

In recent years, neural networks have become the dominant approach to solving tasks in
domains like speech recognition, object detection, image generation, and classification.
Despite their high prediction performance, there still exist undesirable network prop-
erties that are not fully understood. We investigate phenomena related to unbounded
regions in the network’s input space: the network should not provide high confidence
predictions for data far away from training data. Concrete examples show how un-
bounded regions can be used to produce fooling images or out-of-distribution images
that lead to misclassification of the network [4,7,8,10,13]. Robustness against such ad-
versarial attacks is of utmost importance in critical applications like autonomous driving
or medical diagnosis. There are still open questions concerning the correct processing
and the meaning of unbounded linear regions for neural network accuracy.

A neural network F' can be viewed as a function that maps an input vector x € R"™°
to an output vector in R, by propagating it through the L hidden layers of the network.
Each layer performs an affine-linear transformation, followed by a nonlinear activation
function. Here we use the ReLU-activation function o(z) := max(0, =), and therefore
F: R™ — R™ is a continuous piecewise linear function. It splits the input space R™°

* The research reported in this paper has been partly funded by BMK, BMDW, and the Province
of Upper Austria in the frame of the COMET Programme managed by FFG in the COMET
Module S3AI

2 A. Ponomarchuk et al.

into a finite set of linear regions (polytopes), on each of which the function F' is linear,
i.e., it can be described as x — A - x + b for some A € R"£*X"0 b ¢ R"L,

It has been shown [6] that neural networks with ReLU activation function and soft-
max as output (the network is then called a classifier) achieve overconfident predictions
in all unbounded linear regions. Moreover, it is not clear what impact unbounded re-
gions have on the neural network’s calibration [12]. It is beneficial to know that the
trained model provides accurate predictions and the ones that describe the confidence
in the output class correctness. This leads us to the task of deciding which linear re-
gions are bounded and which are unbounded. For the bounded regions the next ques-
tion is if their volume is sufficiently large to contain adversarial examples. Determining
the volume of a convex polytope is a polynomial problem. It can be done either by
triangulation [1] or by volume approximation using Monte Carlo sampling or random
walk methods [3,11]. The recent approximation approaches achieve the complexity of
O(Nng) steps, where ny is the dimension of the input space and N is the number of
inequalities defining the given polytope. As a result, it is challenging to apply them in
practice for high-dimensional input spaces and deep neural networks.

We discuss an algorithm for checking the boundedness of a polytope H C R"™°. In
order to do so, we first revise the algorithm from [16] that for any point x € R™ calcu-
lates a maximal linear region H such that x € H. Then by using the H -representation
of the polytope H we provide an algorithm to check whether H is bounded or not.

2 Preliminaries

A function F': R™ — R" defined by a neural network propagates an input vec-
tor x € R™ through L hidden layers to some output vector in R™Z, where n; de-
notes the number of neurons in the i-th layer. More precisely, the i-th hidden layer,
i € {1,..., L}, performs the mapping a;, which is described by the following compo-
sition of functions:
a;(x) = oo fi(x),

where f;: R™-1 — R™ is an affine mapping and ¢: R — R is a non-linear function
that acts componentwise on vectors. Each affine mapping f; is represented by a linear
function f;(x) = A;x + b;, where A; € R"*"i-1 and b; € R™, and where the
non-linear part is the ReLU activation function o(x) := max(x,0). Hence, a neural
network F': R™0 — R™~ has the form

F(x):= frooofr_10...000 fi(x).

Since F'(x) is a composition of affine and ReLU activation functions, it follows that it
is piecewise linear. This property of F'(x) implies that the input space R™® is split into
a finite set of linear regions {H;}7_;, such that the function F'(x) is linear in each H;
and R™ = U;Ll H;. It can been shown [16] that all the regions are polytopes and for
each one its so-called H-representation can be determined: every polytope H C R™°
can be represented as a finite intersection of halfspaces, i.e., as the set of all points that
satisfy a finite list of linear inequalities:

H::{xeR”“\Wxgv},

Unboundedness of Linear Regions of Deep ReLU Neural Networks 3

where W € RV¥*m0 v ¢ RN and N = nq + --- 4+ ny, denotes the total number of
neurons of the network F'. Moreover, an algorithm was proposed in [16] that computes
for a given point x € R™ the corresponding polytope H(x) C R™ (see Appendix A).

3 Representation and analysis via code space

With the preparations introduced above, we can now present an algorithm that checks
whether the polytope H(x) is bounded or not, for a given point x € R"™°. Without
loss of generality, we can assume that the H-representation of H(x) does not have
any duplicated inequalities, i.e., the augmented matrix (W|v) € RY*(0+1) does not
have any repeated rows. Let us denote by ker(W) the null space of the matrix W. The
following lemma enables us to check the boundedness of H(x).

Lemma 1. A non-empty polytope H = {x € R™ | Wx < b} is bounded if and only
if ker(W) = {0} and the following linear program admits a feasible solution:

min ||y||; subjectto W'y =0andy > 1. (D)

Proof. (“=") Assume, that H is bounded and non-empty. Then it follows that the null
space of W is trivial, because otherwise, there would exist a non-zero vector v &
ker (W) such that for all scalars A € R and any point x € H the following holds:

W(x+Av)<b = x+AveH.

As a result, the polytope H is unbounded, contradicting our assumption.

Now, let us assume that the linear program (1) does not have a solution. It can
only be the case when the set of feasible solutions that is described by the restrictions
W7y = 0andy > 1 is empty. By Stiemke’s Lemma, see Appendix C, it follows that
there exists a vector v € R™° such that Wv > 0. Thereby, for all vectors x € H and
for all non-positive scalars A € R we have:

W(x+Av)=Wx+AWv<b = x+ veH.

As a result, the polytope H is unbounded, that is contradiction. Thus, if the given poly-
tope H is bounded then the given linear program has a solution and the null space of
the matrix W is trivial.

(“«<=") Assume that the null space of the matrix W is trivial and the linear pro-
gram (1) has a solution. If the given (non-empty) polytope H was unbounded, then
for all vectors x € H there would exist a nonzero vector v € R™°, such that for all
non-negative A € R holds x + Av € H. It follows that

AMWv < b - Wx, 2)

where b — Wx > 0. If at least one of the entries of W is positive, then there exists
A > 0 such that the inequality (2) breaks. Thus Wv < 0, and Stiemke’s Lemma,
together with the trivial null space of W, leads to a contradiction. U

4 A. Ponomarchuk et al.

Concerning the complexity, note that in the worst case, it is necessary to compute
the null space of the matrix W and to solve the linear program described in Lemma 1.
The basic algorithm to solve the linear programming problem is an interior-point algo-
rithm [15]. It has the worst-case complexity O(,/ngL), where L is the length of the
binary encoding of the input data:

N no
L:=> " [log,(Jwi;| +1)+1],
i=0 j=0
where w;p = b; and wg; = 1. The complexity of the solver depends on the input

dimension ng and the number N of inequalities. The HiGHS [9] implementation of the
interior-point method finds an optimal solution even faster in practice.

On the other hand, the complexity for computing the null space of the matrix W €
R™0*N s at most O(ngN min(ng, N)). Hence, the total-worst case time complexity
for the given approach is at most O(noN min(ng, N) + \/noL). In practice, modern
implementations interior-point algorithms, like HIGHS, use techniques for speeding up
computation, for instance, parallelization.

We implemented Lemma 1 and the polytope computation algorithm, see Appendix A,
in Python with libraries for scientific and deep learning computing: SciPy [18], NumPy [5],
PyTorch [14]. For time execution measurements we used the basic Python library timeit.
For creating the graphics we used the matplotlib library [2].

1.04 1.04

0.84 0.84

®

0.6 1 0.6 1

o

0.4 0.4

IS

0.2 0.2

N

0.0 1 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Decision surfaces splitted into polytopes for depths L = 2, 3. In each polytope a neural
network is linear. The leftmost and rightmost regions are unbounded.

4 Experiments

In this section we are going to discuss some preliminary experiments that we carried
out with our implementation.

The first experiment is based on a neural network that is defined recursively. On the
unit interval [0, 1] we define the function F'(x) := max{—3z + 1,0, 3z — 2}. Its nested

Unboundedness of Linear Regions of Deep ReLU Neural Networks 5

time sec
time sec

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
input space total neurons number

Fig. 2. Time needed for checking whether the calculated polytope is bounded. The left plot shows
timings for different input spaces and a fixed neural network with N = 1074 neurons. In the right
plot, the input space is fixed (ng = 1024) and the total number of neurons varies.

composition is the following: F'™!(z) := F(F'(z)) and F'(z) = F(z), see Fig. 1.
The decision boundary is defined as the upper border of the regions:

H, = {(e.y) € 0,1 | y < L(FL(a) + 1)}

The network F'Z(x) is used to test the algorithm. The reason is that this network could
generate any number of explicit linear regions. The greater recursion L, the greater is
the number of linear regions the network generates. While experimenting with this net-
work, we found several problems that could occur during the execution of the algorithm.
Firstly, after computing the H -representation of a polytope, all identical rows should be
removed from the corresponding matrix W. If the matrix contains identical rows, it can
provide incorrect results. Secondly, not all linear problem solvers can handle problems
with floating point numbers in practice. For example, the basic interior-point linear pro-
gram solver in SciPy failed to solve such problems due to numerical problems. On the
other hand, the HIGHS implementation succeeded.

The second experiment evaluates the time dependency on the dimension ng of the
input space and the number N of neurons. For this experiment, fully-connected neural
networks were generated with random weights. Suppose that the number of neurons is
smaller than the dimension of the input space N < nyg. In this case, any region H is
unbounded because the corresponding matrix W will have a non-trivial null space. As
a result, there is no need for solving the linear program task in such a situation. Also,
one can see the “drop” in the time measurements in the left plot of Fig. 2 because of
it. Otherwise, if ng < N, then there are cases where one needs to compute the null
space and the linear program for the given W. As a result, in the right plot, the jump at
N = 1024 is explained because not all null spaces are non-trivial beyond this point.

5 Outlook and future work

The algorithms presented in the paper are the first step in further understanding the
properties of the linear regions that correspond to a neural network. There is an open

6

A. Ponomarchuk et al.

question of detecting linear regions prone to containing adversarial examples. Is there a
relation between the region’s volume and this problem? What should one do to bypass
the problem in such networks? Also, the same questions relate to unbounded regions.

Furthermore, there is an open question of how geometric knowledge about the tes-

sellation of the input space can help us create better validation and test sets? Using
these algorithms, one can work with polytopes that correspond to training and valida-
tion points and compare them.

References

10.

11.

12.

13.

. Biieler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study.

In: Polytopes—combinatorics and computation. pp. 131-154. Springer (2000)

. Caswell, T.A., Droettboom, M., Lee, A., de Andrade, E.S., Hoffmann, T., Hunter, J., Kly-

mak, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J.H., Root, B., May, R., Elson, P,
Seppinen, J.K., Dale, D., Lee, J.J., McDougall, D., Straw, A., Hobson, P., hannah, Gohlke,
C., Vincent, A.F,, Yu, T.S., Ma, E., Silvester, S., Moad, C., Kniazev, N., Ernest, E., Ivanov,
P.: matplotlib/matplotlib: Rel: v3.5.1 (Dec 2021)

. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope

volume. In: Proceedings of the thirtieth annual symposium on computational geometry. pp.
318-327 (2014)

. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks.

In: International Conference on Machine Learning. pp. 1321-1330. PMLR (2017)

. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M.H., Brett, M., Haldane, A., del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array pro-
gramming with NumPy. Nature 585(7825), 357-362 (Sep 2020)

. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-confidence

predictions far away from the training data and how to mitigate the problem. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 41-50 (2019)

. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution

examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

. Hsu, Y.C,, Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: Detecting out-of-distribution image

without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020)

. Huangfu, Q., Hall, J.J.: Parallelizing the dual revised simplex method. Mathematical Pro-

gramming Computation 10(1), 119-142 (2018)

Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information
from deep neural networks for disease detection. Scientific reports 7(1), 1-14 (2017)
Mangoubi, O., Vishnoi, N.K.: Faster polytope rounding, sampling, and volume computa-
tion via a sub-linear ball walk. In: 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS). pp. 1338-1357. IEEE (2019)

Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran, D., Lucic,
M.: Revisiting the calibration of modern neural networks. Advances in Neural Information
Processing Systems 34 (2021)

Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2015)

Unboundedness of Linear Regions of Deep ReLU Neural Networks 7

14. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32, pp. 8024—8035. Curran Associates,
Inc. (2019)

15. Potra, F.A., Wright, S.J.: Interior-point methods. Journal of computational and applied math-
ematics 124(1-2), 281-302 (2000)

16. Shepeleva, N., Zellinger, W., Lewandowski, M., Moser, B.: ReLU code space: A basis for rat-
ing network quality besides accuracy. ICLR 2020 Workshop on Neural Architecture Search
(NAS 2020) (2020)

17. Stiemke, E.: Uber positive Losungen homogener linearer Gleichungen. Mathematische An-
nalen 76(2), 340-342 (1915)

18. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0: fundamental algo-
rithms for scientific computing in python. Nature methods 17(3), 261-272 (2020)

Appendix A: Polytope calculation for an input point x

Let us remind that the ReLU neural network F'(x) = froco f_j0...000 fi(x)isa
composition of L affine functions f;(x) = A;x + b;, where A; € R"*"i-1 and b; €
R™ for all © € {1,..., L}, with a point-wise non-linear function o(z) = max(z,0).
We denote the i-th hidden layer of the network F'(x) by a,;(x) = o o f;(x).

A binary activation state for an input vector x € R™ is the function

ik (x) = {1’ aZk (x) >0,

0, otherwise,

where a}* (x) is the ix-th output of the k-th hidden layer ay, forall k € {1,..., L} and
ir€{l,...,nx}.
A polar activation state for an input vector x € R™ is the function

me(x) = 261 (%) — 1,

forallk € {1,..., L} and 4 € {1,...,n}. Note that we defined two binary functions
which have the sets {0,1} and {—1,1} as codomains, respectively. By using ;" (x)
and 7;* (x), we now collect all states of a layer into a diagonal matrix form:

Qr(x) = diag(ﬂ (x),...,m" (x)),

o B (%)),

1

k

Qf(x) = diag (B (x), . ..

where k € {1,...,L}. We will use the matrix Qf (x) to model the behavior of the
activation function in the k-th layer. For each input vector x € R™, the matrices
Qf (x) and Qf (x) allow us to derive an H-representation of the corresponding poly-
tope H(x) € {H;}7_, in explicit form. More precisely, the H-representation is given
as a set of inequalities in the following way:

H(x) ::{X’ ER™ | Wi(x) - x' +vi(x) >0, k e {1,...,L}}, 3)

8 A. Ponomarchuk et al.

where
k=1
Wi(x) = QF(x)Ax [[Q1 (%) Ax—j,)
j=1
k k—1
vie(x) = QF(x) > _ | [Ak-i+1Q;_;(x) | bs,)
i=1 \j=1

such that W (x) € R™*"0 and vi(x) € R™*. According to (3), the polytope H(x) is
defined by exactly N = ny + ... 4+ n, inequalities. However, in practice, the number
of half-spaces whose intersection yields the polytope H(x) is typically smaller than N,
so that the above representation is not minimal in general.

Appendix B: Unbounded linear region problem

As mentioned in Appendix A, a ReLU neural network F' splits the input space R™° into
a set of linear regions R™° = U;‘]:1 H;. On each such linear region the network realizes
some affine function

Py, (x) == A;x+ by,

where A; € R"t*"0 b € R":, x; € H; andi € {1,...,J}. So the given network
F is represented by a set of affine functions Fyy,, each of which corresponds to some
linear region H; forall: € {1,...,J}.

Assume that A; does not contain identical rows for all i« € {1,...,J}, then for
almost all x € R™ and € > 0, there exists an &« > 0 and aclass k € {1,...,np} such
that for z = ax the following holds:

F
:LXp(k(2)) 1. ©)
j=1 exp(F;(z))

Inequality (6) shows that almost any point from the input space R™° can be scaled such
that the transformed input value will get an overconfident output for some class k €
{1,...,nr}. See reference [6] for a proof of the above statement.

Appendix C: Stiemke’s Lemma

Stiemke’s Lemma states the following:

Lemma 2. Let W € R™*" and Wx = 0 be a homogeneous system of linear inequal-
ities. Then only one of the following is true:

1. There exists a vector v € R™ such that the vector WTv > 0 with at least one
non-zero element.
2. There exists a vector x € R™ such that x > 0 and Wx = (.

This lemma has variants with different sign constraints that can be found in [17].

	 Unboundedness of Linear Regions of Deep ReLU Neural Networks

