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The Ismail-Zhang formula
Classical expansion formula of the plane wave in terms of

ultraspherical polynomials C
(ν)
m (x) (“Gegenbauer polynomials”):

eirx =

(
2

r

)ν
Γ(ν)

∞∑
m=0

im(ν +m) Jν+m(r)C(ν)
m (x).

Ismail and Zhang (1994) had found the following q-analog:

Eq(x; iω) =
(q; q)∞ ω

−ν

(qν ; q)∞ (−qω2; q2)∞

×
∞∑
m=0

im(1− qν+m) qm
2/4J

(2)
ν+m(2ω; q)Cm(x; qν |q),

where (a; q)n :=

n−1∏
k=0

(1− aqk) is the q-Pochhammer symbol.
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n=0

q(ν+n)n
(−1)n(z/2)ν+2n

(q; q)n(qν+1; q)n
,

and where the continuous q-ultraspherical (q-Gegenbauer)
polynomials Cm(x; qν |q), x = cos(θ), are defined as

Cm(cos θ;β|q) :=

m∑
k=0

(β; q)k (β; q)m−k
(q; q)k (q; q)m−k

ei(m−2k)θ.
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Implementations (in Mathematica, created at RISC):
GeneratingFunctions, fastZeil, MultiSum, qZeil, qMultiSum,
pqTelescope, HolonomicFunctions

3 / 19



Implementations (in Mathematica, created at RISC):
GeneratingFunctions, fastZeil, MultiSum, qZeil, qMultiSum,
pqTelescope, HolonomicFunctions

3 / 19



The holonomic systems approach

1. Functions and sequences are represented by their relations:
recurrences and differential equations (and initial values).

2. Identities are proven by deriving relations for both sides
and by comparing initial values.

3. Such relations are represented in a suitable operator algebra
as “annihilating left ideals”, also called “annihilators”.

4. An annihilating left ideal is given by its Gröbner basis
(i.e., a finite set of generators that allows to decide
ideal membership and equality of ideals).

5. Integrals, sums, and q-sums are treated by the method of
creative telescoping.

6. The output is always given as an annihilating ideal, not as a
closed form.
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The basic exponential function
Recall: Eq(x; iω) := Cq(x;ω) + i Sq(x;ω) and

Cq(x;ω) :=
(−ω2; q2)∞
(−qω2; q2)∞

∞∑
j=0

(−qe2iθ

A2

; q2)j (−qe−2iθ

/A2

; q2)j
(q; q2)j (q2; q2)j

(−ω2)j

is the basic cosine function.

Let us denote the expression inside the sum by cj(ω).

CreativeTelescoping delivers a telescoper T and a certificate Q

T =

A2
(
q2ω2 + 1

)
S2
ω,q +

(
A4q2ω2 −A2q −A2 + q2ω2

)
Sω,q

+A2q
(
qω2 + 1

)

Q =

A2(qj − 1)(qj + 1)
(
q2j − q

)(
qω2 + 1

)
ω2 + 1

such that T
(
cj(ω)

)
+ dj+1(ω)− dj(ω) = 0 with dj(ω) := Q

(
cj(ω)

)
.

Notation for q-shift operator: Sω,q
(
f(ω)

)
:= f(qω)
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lim
q→1−

Cq
(
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lim
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Sq
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)
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Creative telescoping

In other words, we obtain the creative telescoping relation

A2
(
q2ω2 + 1

)
cj(q

2ω) +
(
A4q2ω2 −A2q −A2 + q2ω2

)
cj(qω)

+A2q
(
qω2 + 1

)
cj(ω) = −

(
dj+1(ω)− dj(ω)

)
where dj(ω) =

A2(qj − 1)(qj + 1)
(
q2j − q

)(
qω2 + 1

)
ω2 + 1

cj(ω).

Summing the right-hand side from j = 0 to j =∞ gives

A2(−1 + q0)(1 + q0)(q0 − q)(1 + qω2)

1 + ω2
c0(ω)−qA

2(1 + qω2)

1 + ω2
c∞(ω)

which equals zero.

Hence the telescoper T annihilates Cq(x;ω) =
∑∞

j=0 cj(ω).
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Annihilator for basic exp

Analogously, we find that the basic sine function Sq(x;ω) satisfies
the same q-difference equation (given by the operator T ):

A2
(
q2ω2 + 1

)
Sq(x; q2ω)

+
(
A4q2ω2 −A2q −A2 + q2ω2

)
Sq(x; qω)

+A2q
(
qω2 + 1

)
Sq(x;ω) = 0.

Since Eq(x; iω) = Cq(x;ω) + i Sq(x;ω), we could now apply the
closure property DFinitePlus. . .

However, since both Cq(x;ω) and Sq(x;ω) satisfy the same
q-recurrence, there is nothing to do.

Hence: we have the annihilator of Eq(x; iω).
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Annihilator of q-Gegenbauer
Recall the definition:

Cm(cos θ;β|q) :=

m∑
k=0

(β; q)k (β; q)m−k
(q; q)k (q; q)m−k

ei(m−2k)θ︸ ︷︷ ︸
summand

.

By applying the command CreativeTelescoping to the summand,
we obtain:{

Sω,q−1,−A
(
A2+1

)
V (Mq−1)SM,q+(V−1)

(
A2−V

)(
A2V−1

)
SV,q+

A2(V +1)
(
MV 2−1

)
, (V −1)(qV −1)

(
A2−qV

)(
A2qV −1

)
S2
V,q−

(V −1)
(
A4Mq2V 2−A4qV −A2Mq3V 3−A2Mq2V 3 +A2q+A2+

Mq2V 2 − qV
)
SV,q −A2q

(
MV 2 − 1

)(
MqV 2 − 1

)}
,

where we use the abbreviations

K = qk, M = qm, N = qn, V = qν , and ω = qw.
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Annihilator of Jackson’s q-Bessel function

Recall the definition:

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∞∑
n=0

q(ν+n)n
(−1)n(z/2)ν+2n

(q; q)n(qν+1; q)n
.

Analogously to the q-Gegenbauer polynomial, we compute the

annihilator of J
(2)
ν (z; q) by the creative telescoping method (where

we use the fact that the sum has natural boundaries):{
(−V ω−ω)SV,q+(qω4 +qω2 +ω2 +1)Sω,q+(ω2−V ), SM,q−1,

(q5V ω4+q3V ω2+q2V ω2+V )S2
ω,q+(q2V ω2+qV ω2−V 2−1)Sω,q+V

}
Note that we already included SM,q in the list of operator symbols,
for later use.
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Continue with the Ismail-Zhang formula

Eq(x; iω) =
(q; q)∞ ω

−ν

(qν ; q)∞ (−qω2; q2)∞

×
∞∑
m=0

im(1− qν+m) qm
2/4J

(2)
ν+m(2ω; q)Cm(x; qν |q)

We proceed by computing an annihilator for the factor

h1(ω,m, ν) := im(1− qν+m).

It doesn’t contain a sum, thus no creative telescoping is necessary.

The Annihilator command delivers the following output:{
Sω,q−1, (MV −1)SV,q+(1−MqV ), (MV −1)SM,q+(i−iMqV )

}
.

Note that in fact it is trivial to compute the generators of this
ideal, just consider the quotients

h1(qω,m, ν)

h1(ω,m, ν)
,

h1(ω,m+ 1, ν)

h1(ω,m, ν)
, and

h1(ω,m, ν + 1)

h1(ω,m, ν)
.
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The annihilator of qm
2/4

When trying to compute the annihilating ideal of

h2(m) := qm
2/4

by the Annihilator command, the HolonomicFunctions package
is trapped by the factor 1

4 in the exponent and delivers the
fourth-order operator

S4
M,q − q4M2.

This is not wrong, but not optimal (it is a left multiple of the
minimal-order annihilating operator).

Hence, we figure out the minimal-order annihilator by hand, and
convert it into the same Ore algebra as the previous annihilators:{

SV,q − 1, Sω,q − 1, S2
M,q −Mq

}
.
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Combine h1 and h2

We have computed annihilators for both h1 and h2

h1(m, ν) = im(1− qν+m)

h2(m) = qm
2/4

with respect to the variables ω, m, ν (recall M = qm, V = qν).

In order to obtain an annihilator for h1 · h2, we combine them
using the DFiniteTimes and obtain:{
Sω,q−1, (MV−1)SV,q+(1−MqV ), (MV−1)S2

M,q+(M2q3V−Mq)
}
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Annihilator for the summand
Recall the summand on the RHS of the Ismail-Zhang formula:

im(1− qν+m) qm
2/4J

(2)
ν+m(2ω; q)Cm(x; qν |q).

We had derived an annihilator for J
(2)
ν (z; q); apply the command

DFiniteSubstitute with the substitution ν → ν +m to it.

Then we combine everyting using again DFiniteTimes:{
(1+q2ω2+q3ω2+q5ω4)MV S2

ω,q+(qMV ω2+q2MV ω2−M2V 2−1)Sω,q+MV,

(−A2MV ω2+. . .−q5A2M5V 9ω2)S2
V,q+(A2MV ω+. . .+q6A2M5V 8ω5)SV,qSω,q+

(−qA2M2V 2ω− . . .+q5A2M5V 8ω3)SV,q+(−A2+ . . .+q7A2M6V 8ω4)Sω,q+

(A2MV − . . .+ q6A2M6V 8ω2),

(−A2V 2ω2+. . .+q4A2M5V 5ω2)S2
M,q+(qA2MV ω−. . .−q4A2M4V 7ω5)SV,qSω,q+

(−q2A2M2V 2ω+. . .−q3A2M4V 7ω3)SV,q+(−A2+. . .−q6A2M5V 7ω4)Sω,q+

(A2MV − . . .− q5A2M5V 7ω2)
}

(full output fills about two pages)
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Doing the sum

In principle, we should now apply CreativeTelescoping to this
annihilator.

However, the computation does not terminate in reasonable time.

Explanation: CreativeTelescoping implements Chyzak’s
algorithm, which is very sensitive about the holonomic rank
(our annihilator has holonomic rank 8!).

This means that the certificate is of the form

r1 + r2 · Sω,q + r3 · SM,q + r4 · SV,q + r5 · Sω,qSM,q

+ r6 · Sω,qSV,q + r7 · SM,qSV,q + r8 · Sω,qSM,qSV,q

with ci ∈ Q(ω,M, V ).

Chyzak’s algorithm determines the denominators of r1, . . . , r8 by
solving a coupled system q-difference equations of dimension 8.
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Alternative Approach
A more direct approach (proposed in 2010 by CK) uses heuristics
to “guess” the denominators and then solves a linear system to the
telescoper.

Applying the corresponding command FindCreativeTelescoping
to our annihilator, we obtain. . . nothing!

The reason is that the heuristic fails. To overcome this problem,
we figure out the denominators by hand (by trial and error).

Then everything works fine (the computation takes only 18
seconds), and the telescopers are

(V − 1)SV,q + ω, (−q5A2ω4 − q3A2ω2 − q2A2ω2 −A2)S2
ω,q +

(−q2A4V ω2 + qA2V +A2V − q2V ω2)Sω,q − qA2V 2

(the certificate is large).
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Annihilators for both sides

This does not quite match with the annihilator of the left-hand
side, but we are still missing the factor in front of the sum:

Eq(x; iω) =
(q; q)∞ ω

−ν

(qν ; q)∞ (−qω2; q2)∞

×
∞∑
m=0

im(1− qν+m) qm
2/4J

(2)
ν+m(2ω; q)Cm(x; qν |q)

Performing DFiniteTimes with the annihilator of the reciprocal of
this factor, we obtain exactly the same annihilating operator as for
the basic exponential function.

The proof is completed by comparing two initial values.
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