The combinatorics of motion polynomials

Christoph Koutschan

(with Matteo Gallet, Zijia Li, Georg Regensburger, Josef Schicho)

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences

22 July 2014 Combinatorics Seminar Nagoya

Linkages

Definition. A linkage is a mechanism which consists of

- several rigid bodies, called links;
- the links are connected by **joints**.

Linkages

Definition. A **linkage** is a mechanism which consists of

- several rigid bodies, called links;
- the links are connected by joints.

Examples: scissors, blackboard, etc.

Linkages

Definition. A **linkage** is a mechanism which consists of

- several rigid bodies, called links;
- the links are connected by joints.

Examples: scissors, blackboard, etc.

Restriction: We consider only **planar linkages**.

There are two different types of joints:

- 1. rotational joints
- 2. translational joints
- → Show animation!

Goal 1: For a given planar curve, construct a linkage that draws it.

Goal 1: For a given planar curve, construct a linkage that draws it.

- \longrightarrow Problem was already solved by Kempe (1876).
 - His construction yields very complicated linkages.
 - We aim at an algorithm that gives much simpler linkages.

Goal 1: For a given planar curve, construct a linkage that draws it.

- \longrightarrow Problem was already solved by Kempe (1876).
 - His construction yields very complicated linkages.
 - We aim at an algorithm that gives much simpler linkages.

Theorem (Kempe's Universality Theorem).

Let $f \in \mathbb{R}[x,y]$ be a polynomial, and let $B \subseteq \mathbb{R}^2$ be a closed disk. Then there exists a planar linkage which draws the curve

$$B \cap \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}.$$

Goal 1: For a given planar curve, construct a linkage that draws it.

- \longrightarrow Problem was already solved by Kempe (1876).
 - His construction yields very complicated linkages.
 - We aim at an algorithm that gives much simpler linkages.

Theorem (Kempe's Universality Theorem).

Let $f \in \mathbb{R}[x,y]$ be a polynomial, and let $B \subseteq \mathbb{R}^2$ be a closed disk. Then there exists a planar linkage which draws the curve

$$B \cap \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}.$$

Goal 2: Construct a linkage that realizes a certain planar motion.

Model (Denavit-Hartenberg)

- 1. Not a single frame of reference for the configuration of a linkage, but each link has its own frame of reference. Every frame of reference is modeled by a Euclidean affine plane.
- 2. Self-collisions of the links are not taken into account.
- Thus the actual shape of the links doesn't matter, just the position of the joints.

Motions in the plane

Recall:

1. SE_2 (Special Euclidean group): group of **direct isometries** of the plane (rotations, translations, etc.).

Motions in the plane

Recall:

- 1. SE_2 (Special Euclidean group): group of **direct isometries** of the plane (rotations, translations, etc.).
- 2. Projective space $\mathbb{P}^3_{\mathbb{C}}:=\left(\mathbb{C}^4\setminus\{0\}\right)/\!\sim$ where

$$(x_0, \dots, x_3) \sim (y_0, \dots, y_3) : \iff$$

 $\exists c \in \mathbb{C}^* : (x_0, \dots, x_3) = (cy_0, \dots, cy_3).$

Denote a point in $\mathbb{P}^3_{\mathbb{C}}$ with the coordinates $(x_1:x_2:y_1:y_2)$.

Motions in the plane

Recall:

- 1. SE_2 (Special Euclidean group): group of **direct isometries** of the plane (rotations, translations, etc.).
- 2. Projective space $\mathbb{P}^3_{\mathbb{C}} := (\mathbb{C}^4 \setminus \{0\})/\sim$ where

$$(x_0,\ldots,x_3)\sim (y_0,\ldots,y_3):\iff$$

$$\exists c\in\mathbb{C}^*:(x_0,\ldots,x_3)=(cy_0,\ldots,cy_3).$$

Denote a point in $\mathbb{P}^3_{\mathbb{C}}$ with the coordinates $(x_1:x_2:y_1:y_2)$.

Embedding: We embed SE_2 in $\mathbb{P}^3_{\mathbb{C}}$ as the set of real points of the open subset

$$\mathcal{U} = \mathbb{P}^3_{\mathbb{C}} \setminus \{ (x_1 : x_2 : y_1 : y_2) \in \mathbb{P}^3_{\mathbb{C}} \mid x_1^2 + x_2^2 = 0 \}.$$

Geometric interpretation: Hence \mathcal{U} is the complement of the two conjugate complex planes $x_1 + i x_2 = 0$ and $x_1 - i x_2 = 0$.

Let $\sigma \in SE_2$ be a direct isometry, given by the projective point $(x_1:x_2:y_1:y_2) \in \mathbb{P}^3_{\mathbb{C}}$.

The action of σ on a point (x, y) in the plane is given by:

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \end{bmatrix}.$$

Let $\sigma \in SE_2$ be a direct isometry, given by the projective point $(x_1:x_2:y_1:y_2) \in \mathbb{P}^3_{\mathbb{C}}$.

The action of σ on a point (x, y) in the plane is given by:

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \end{bmatrix}.$$

Remarks:

• Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.

Let $\sigma \in SE_2$ be a direct isometry, given by the projective point $(x_1:x_2:y_1:y_2) \in \mathbb{P}^3_{\mathbb{C}}$.

The action of σ on a point (x, y) in the plane is given by:

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \end{bmatrix}.$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- The rotational part depends only on x_1 and x_2 .

Let $\sigma \in SE_2$ be a direct isometry, given by the projective point $(x_1:x_2:y_1:y_2) \in \mathbb{P}^3_{\mathbb{C}}$.

The action of σ on a point (x, y) in the plane is given by:

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \end{bmatrix}.$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- The rotational part depends only on x_1 and x_2 .
- The translational part vanishes if $y_1 = y_2 = 0$.

Let $\sigma \in SE_2$ be a direct isometry, given by the projective point $(x_1:x_2:y_1:y_2) \in \mathbb{P}^3_{\mathbb{C}}$.

The action of σ on a point (x, y) in the plane is given by:

$$\frac{1}{x_1^2 + x_2^2} \begin{bmatrix} \begin{pmatrix} x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix} \end{bmatrix}.$$

Remarks:

- Note that the points for which $x_1^2 + x_2^2 = 0$ were excluded.
- The rotational part depends only on x_1 and x_2 .
- The translational part vanishes if $y_1 = y_2 = 0$.
- Action is compatible with \sim in $\mathbb{P}^3_{\mathbb{C}}$.

The product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$(x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2$$

$$: x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$

The product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$(x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2 : x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$

Notation 1: Write a point $(x_1:x_2:y_1:y_2)$ as a pair of complex numbers (z,w) where $z=x_1+i\,x_2$ and $w=y_1+i\,y_2$.

The product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$(x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2 : x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$

Notation 1: Write a point $(x_1:x_2:y_1:y_2)$ as a pair of complex numbers (z,w) where $z=x_1+i\,x_2$ and $w=y_1+i\,y_2$.

Using this notation, the product in SE_2 can be rewritten as

$$(z, w) \cdot (z', w') = \left(z \, z', \overline{z} \, w' + z' \, w\right)$$

where the bar $\overline{(\cdot)}$ denotes complex conjugation.

The product in SE_2 becomes a bilinear map:

$$(x_1 : x_2 : y_1 : y_2) \cdot (x'_1 : x'_2 : y'_1 : y'_2) =$$

$$(x_1 x'_1 - x_2 x'_2 : x_1 x'_2 + x_2 x'_1 : x_1 y'_1 + x_2 y'_2 + y_1 x'_1 - y_2 x'_2 : x_1 y'_2 - x_2 y'_1 + y_1 x'_2 + y_2 x'_1)$$

Notation 1: Write a point $(x_1:x_2:y_1:y_2)$ as a pair of complex numbers (z,w) where $z=x_1+i\,x_2$ and $w=y_1+i\,y_2$.

Using this notation, the product in SE_2 can be rewritten as

$$(z,w)\cdot(z',w')=\left(z\,z',\overline{z}\,w'+z'\,w\right)$$

where the bar $\overline{(\cdot)}$ denotes complex conjugation.

Notation 2: This operation can be further simplified by using "dual numbers": write (z,w) as $z+\eta\,w$ where η satisfies $\eta\,z=\overline{z}\,\eta$ and $\eta^2=0$. Denote $\mathbb{K}=\mathbb{C}[\eta]/\langle i\,\eta+\eta\,i,\eta^2\rangle$.

Rational motions and motion polynomials

Definition. A **rational motion** is a map $\mathbb{R} \longrightarrow \mathbb{P}^3_{\mathbb{C}}$ given by four real polynomials $X_1, X_2, Y_1, Y_2 \in \mathbb{R}[t]$ such that $X_1^2 + X_2^2$ is not identically zero. Hence for almost every t this map yields a direct isometry in SE_2 .

Rational motions and motion polynomials

Definition. A **rational motion** is a map $\mathbb{R} \longrightarrow \mathbb{P}^3_{\mathbb{C}}$ given by four real polynomials $X_1, X_2, Y_1, Y_2 \in \mathbb{R}[t]$ such that $X_1^2 + X_2^2$ is not identically zero. Hence for almost every t this map yields a direct isometry in SE_2 .

Definition. Using the notation introduced before, a rational motion can be written as a single polynomial $P(t) \in \mathbb{K}[t]$, where $P(t) = Z(t) + \eta \, W(t)$ with $Z, W \in \mathbb{C}[t]$. A polynomial $P \in \mathbb{K}[t]$ is called a **motion polynomial**.

Set of rational motions

Definition. The set of rational motions is defined as $\mathbb{K}[t]/\sim$ where

$$P_1(t) \sim P_2(t) : \iff \exists R_1, R_2 \in \mathbb{R}[t] \setminus \{0\} : P_1R_1 = P_2R_2.$$

Set of rational motions

Definition. The set of rational motions is defined as $\mathbb{K}[t]/\sim$ where

$$P_1(t) \sim P_2(t) : \iff \exists R_1, R_2 \in \mathbb{R}[t] \setminus \{0\} : P_1R_1 = P_2R_2.$$

In other words, the (commutative) multiplication by a real polynomial changes a motion polynomial, but not the rational motion it describes.

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a motion polynomial.

Definition. We say that P is **normed** if P is monic, i.e., Z is monic and $\deg W < \deg Z$.

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a motion polynomial.

Definition. We say that P is **normed** if P is monic, i.e., Z is monic and $\deg W < \deg Z$.

 \longrightarrow Normedness ensures that $\lim_{t\to+\infty}P(t)=(1:0:0:0)\in\mathbb{P}^3_{\mathbb{C}}$ which corresponds to the identity element of SE_2 .

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a motion polynomial.

Definition. We say that P is **normed** if P is monic, i.e., Z is monic and $\deg W < \deg Z$.

 \longrightarrow Normedness ensures that $\lim_{t\to+\infty}P(t)=(1:0:0:0)\in\mathbb{P}^3_{\mathbb{C}}$ which corresponds to the identity element of SE_2 .

Definition. We say that P is **bounded** if Z does not have real roots.

Let $P = Z + \eta W \in \mathbb{K}[t]$ be a motion polynomial.

Definition. We say that P is **normed** if P is monic, i.e., Z is monic and $\deg W < \deg Z$.

 \longrightarrow Normedness ensures that $\lim_{t\to+\infty}P(t)=(1:0:0:0)\in\mathbb{P}^3_{\mathbb{C}}$ which corresponds to the identity element of SE_2 .

Definition. We say that P is **bounded** if Z does not have real roots.

 \longrightarrow Recall the prefactor $\frac{1}{x_1^2+x_2^2}$ in the definition of the action. If Z has a real root, this causes division by zero.

Characterization of degree 1 motions

Lemma. Let $L\subseteq \mathbb{P}^3_{\mathbb{C}}$ be a real line, namely a line defined by real equations, and define $L_{\mathcal{U}}=L\cap \mathcal{U}$. Let X be the set-theoretical intersection of L and the complement of \mathcal{U} in $\mathbb{P}^3_{\mathbb{C}}$. Then:

- 1. if X has cardinality 1, then $L_{\mathcal{U}}$ corresponds to the set of isometries $\sigma \in \operatorname{SE}_2$ such that $\sigma(L_1) = L_2$ for some lines $L_1, L_2 \subseteq \mathbb{R}^2$ (translational motion).
- 2. if X has cardinality 2, then $L_{\mathcal{U}}$ corresponds to the set of isometries $\sigma \in \operatorname{SE}_2$ such that $\sigma(p_1) = p_2$ for some fixed points $p_1, p_2 \in \mathbb{R}^2$ (rotational motion = "revolution").

Characterization of degree 1 motions

Lemma. Let $L \subseteq \mathbb{P}^3_{\mathbb{C}}$ be a real line, namely a line defined by real equations, and define $L_{\mathcal{U}} = L \cap \mathcal{U}$. Let X be the set-theoretical intersection of L and the complement of \mathcal{U} in $\mathbb{P}^3_{\mathbb{C}}$. Then:

- 1. if X has cardinality 1, then $L_{\mathcal{U}}$ corresponds to the set of isometries $\sigma \in \operatorname{SE}_2$ such that $\sigma(L_1) = L_2$ for some lines $L_1, L_2 \subseteq \mathbb{R}^2$ (translational motion).
- 2. if X has cardinality 2, then $L_{\mathcal{U}}$ corresponds to the set of isometries $\sigma \in \operatorname{SE}_2$ such that $\sigma(p_1) = p_2$ for some fixed points $p_1, p_2 \in \mathbb{R}^2$ (rotational motion = "revolution").

Lemma. Let $P \in \mathbb{K}[t]$ be a normed motion polynomial of degree 1, i.e., $P(t) = t + i x_2 + \eta (y_1 + i y_2), x_2, y_1, y_2 \in \mathbb{R}$. Then:

- 1. if $x_2=0$ then P describes a translational motion in direction $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.
- 2. if $x_2 \neq 0$ then P describes a revolution around the point $\frac{1}{2x_2} \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix}$.

1. Which motion does the motion polynomial t+i describe?

1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).

- 1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$?

- 1. Which motion does the motion polynomial t + i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$?
 - \longrightarrow This gives a translational motion along the line y=0.

- 1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$? —> This gives a translational motion along the line y = 0.
- Multiplication of motion polynomials corresponds to composition of motions, e.g.,

$$(t+i) \cdot (t-i+\eta) = (t^2+1) + \eta (t-i)$$

What is this?

Examples

- 1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$? \longrightarrow This gives a translational motion along the line y = 0.
- Multiplication of motion polynomials corresponds to composition of motions, e.g.,

$$(t+i) \cdot (t-i+\eta) = (t^2+1) + \eta (t-i)$$

What is this?

 \longrightarrow Translational motion since t^2+1 is a real polynomial.

Examples

- 1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$?

 This gives a translational motion along the line y = 0.
- 3. Multiplication of motion polynomials corresponds to composition of motions, e.g.,

$$(t+i) \cdot (t-i+\eta) = (t^2+1) + \eta (t-i)$$

What is this?

- \longrightarrow Translational motion since $t^2 + 1$ is a real polynomial.
- \longrightarrow The translational vector is given by $\frac{1}{t^2+1}\begin{pmatrix} t \\ -1 \end{pmatrix}$.

Examples

- 1. Which motion does the motion polynomial t+i describe? \longrightarrow It gives a revolution around the origin (0,0).
- 2. What about $t + \eta$?
 - \longrightarrow This gives a translational motion along the line y=0.
- Multiplication of motion polynomials corresponds to composition of motions, e.g.,

$$(t+i)\cdot(t-i+\eta) = (t^2+1) + \eta(t-i)$$

What is this?

- \longrightarrow Translational motion since $t^2 + 1$ is a real polynomial.
- \longrightarrow The translational vector is given by $\frac{1}{t^2+1} \begin{pmatrix} t \\ -1 \end{pmatrix}$.
- This parametrizes the circle with radius $\frac{1}{2}$ around the point $(0, -\frac{1}{2})$. Hence we get a circular translation.

Strategy

Task: Construct a linkage that realizes a given rational motion.

- 1. The motion is described by a motion polynomial $P \in \mathbb{K}[t]$.
- 2. Factor P into linear factors.
- Each linear factor represents an "elementary" motion (revolution, translational motion), which can be realized by a single joint.
- 4. A factorization of P gives rise to an open chain of links, which, among many others, realizes the desired motion.
- 5. Combine different factorizations in order to restrict the degrees of freedom (to 1).

Strategy

Task: Construct a linkage that realizes a given rational motion.

- 1. The motion is described by a motion polynomial $P \in \mathbb{K}[t]$.
- 2. Factor P into linear factors.
- Each linear factor represents an "elementary" motion (revolution, translational motion), which can be realized by a single joint.
- 4. A factorization of P gives rise to an open chain of links, which, among many others, realizes the desired motion.
- 5. Combine different factorizations in order to restrict the degrees of freedom (to 1).

 \longrightarrow Show demo!

Let $P=Z+\eta W\in\mathbb{K}[t]$ be a normed and bounded motion polynomial of degree n.

Goal: Factor P into linear motion polynomials, i.e., $P = P_1 \cdots P_n$ with $\deg P_i = 1$.

Let $P=Z+\eta W\in\mathbb{K}[t]$ be a normed and bounded motion polynomial of degree n.

Goal: Factor P into linear motion polynomials, i.e., $P = P_1 \cdots P_n$ with $\deg P_i = 1$.

Consider normed linear factors: $P_i = t - z_i + \eta w_i$ for $w_i, z_i \in \mathbb{C}$. Since

$$(Z + \eta W) \cdot (Z' + \eta W') = Z Z' + \eta (\overline{Z} W' + Z' W)$$

we see that $Z(t)=(t-z_1)\cdots(t-z_n)$, i.e., the z_i are precisely the complex roots of Z(t).

Let $P=Z+\eta W\in\mathbb{K}[t]$ be a normed and bounded motion polynomial of degree n.

Goal: Factor P into linear motion polynomials, i.e., $P = P_1 \cdots P_n$ with $\deg P_i = 1$.

Consider normed linear factors: $P_i = t - z_i + \eta w_i$ for $w_i, z_i \in \mathbb{C}$. Since

$$(Z + \eta W) \cdot (Z' + \eta W') = Z Z' + \eta (\overline{Z} W' + Z' W)$$

we see that $Z(t)=(t-z_1)\cdots(t-z_n)$, i.e., the z_i are precisely the complex roots of Z(t).

 \longrightarrow The w_i can be found by making an ansatz and solving a linear system.

Fix a certain permutation (z_1, \ldots, z_n) of the complex roots of Z. Multiply out:

$$\prod_{i=1}^n (t-z_i+\eta w_i) = Z(t) + \eta \sum_{k=1}^n \bigg(\prod_{j=1}^{k-1} (t-\overline{z_j})\bigg) \bigg(\prod_{j=k+1}^n (t-z_j)\bigg) w_k.$$

Hence we get the following condition on w_1, \ldots, w_n

$$W(t) = \sum_{k=1}^{n} w_k Q_k(t)$$

where the polynomials $Q_k(t) \in \mathbb{C}[t]$ are defined as above:

$$Q_1 = (t - z_2) \cdots (t - z_n)$$

$$Q_2 = (t - \overline{z_1})(t - z_3) \cdots (t - z_n)$$

$$\vdots$$

$$Q_k = (t - \overline{z_1}) \cdots (t - \overline{z_{k-1}})(t - z_{k+1}) \cdots (t - z_n)$$

$$\vdots$$

$$Q_n = (t - \overline{z_1}) \cdots (t - \overline{z_{n-1}})$$

Characterization of factorizable polynomials

Lemma. Let $P=Z+\eta W$ be normed and let (z_1,\ldots,z_n) be a fixed permutation of the roots of Z over $\mathbb C$. Then P admits a factorization $P=P_1\cdots P_n$ where $P_i(t)=(t-z_i)+\eta \,w_i$ with $w_i\in\mathbb C$ if and only if W lies in the linear span $\langle Q_1,\ldots,Q_n\rangle_{\mathbb C}$.

Characterization of factorizable polynomials

Lemma. Let $P=Z+\eta\,W$ be normed and let (z_1,\ldots,z_n) be a fixed permutation of the roots of Z over $\mathbb C$. Then P admits a factorization $P=P_1\cdots P_n$ where $P_i(t)=(t-z_i)+\eta\,w_i$ with $w_i\in\mathbb C$ if and only if W lies in the linear span $\langle Q_1,\ldots,Q_n\rangle_{\mathbb C}$.

Lemma. Let $P=Z+\eta\,W\in\mathbb{K}[t]$ be a normed motion polynomial such that Z has no pair of complex conjugated roots (i.e., $Z(z)=0 \implies Z(\overline{z})\neq 0$). Then for every permutation (z_1,\ldots,z_n) of the roots of Z, the polynomial P admits a factorization into linear factors.

Note: This condition is only sufficient, but not necessary, for the existence of a factorization.

Sufficient condition

 $Z + \eta W$ admits a factorization if and only if $W \in \langle Q_1, \dots, Q_n \rangle_{\mathbb{C}}$.

Clearly, this is always possible (for arbitrary W) if the determinant of the following matrix $M_n \in \mathbb{C}^{n \times n}$ is nonzero:

$$M_n = \begin{pmatrix} \langle t^0 \rangle Q_1 & \cdots & \langle t^0 \rangle Q_n \\ \langle t^1 \rangle Q_1 & \cdots & \langle t^1 \rangle Q_n \\ \vdots & & \vdots \\ \langle t^{n-1} \rangle Q_1 & \cdots & \langle t^{n-1} \rangle Q_n \end{pmatrix}$$

where $\langle t^i \rangle Q_k$ denotes the coefficient of t^i in Q_k .

The matrix entries can be written in terms of the elementary symmetric polynomials σ_i :

$$\langle t^i \rangle Q_k = (-1)^i \sigma_i(\boldsymbol{z}^{(k)}) \quad \text{where } \boldsymbol{z}^{(k)} := (\overline{z_1}, \dots, \overline{z_{k-1}}, z_{k+1}, \dots, z_n).$$

Evaluating the determinant

Lemma. Let
$$M_n = \left((-1)^i \sigma_i(\boldsymbol{z}^{(j)})\right)_{1 \leq i,j \leq n}$$
. Then we have

$$\det(M_n) = (-1)^{\lfloor n/2 \rfloor} \prod_{1 \le i < j \le n} (\overline{z_i} - z_j).$$

Remarks:

- The statement is very much reminiscent of the Vandermonde determinant and it can be proved in a similar fashion.
- A similar determinant evaluation is given in (Lascoux/Pragacz 2002) where the z_i appear without conjugation.
- The above formula is also a special case of a determinant evaluation that appears in (Krattenthaler 1999).

Condition for existence of a factorization

Proposition. Let $P=Z+\eta\,W\in\mathbb{K}[t]$ be a normed motion polynomial and let (z_1,\ldots,z_n) be a fixed permutation of the roots of Z. Then

$$W \in \langle Q_1, \dots, Q_n \rangle_{\mathbb{C}} \iff W \in \langle Q_1, \dots, Q_n \rangle_{\mathbb{C}[t]}.$$

Condition for existence of a factorization

Proposition. Let $P=Z+\eta\,W\in\mathbb{K}[t]$ be a normed motion polynomial and let (z_1,\ldots,z_n) be a fixed permutation of the roots of Z. Then

$$W \in \langle Q_1, \dots, Q_n \rangle_{\mathbb{C}} \iff W \in \langle Q_1, \dots, Q_n \rangle_{\mathbb{C}[t]}.$$

Remarks:

- The ideal on the right-hand side is generated by a single polynomial $G := \gcd(Q_1, \ldots, Q_n)$.
- The condition on factorizability rephrases as $G \mid W$.
- Note that G depends on the permutation of the z_i .

No factorization?

Problem: What if $G \nmid W$ for any permutation z?

No factorization?

Problem: What if $G \nmid W$ for any permutation z?

Solution: Multiply P by some real polynomial $R \in \mathbb{R}[t]!$

- Note that this doesn't change the motion itself.
- W.l.o.g. assume $R=(t-z)(t-\overline{z})$ and put P'=PR.
- Clearly, W' = WR, so we add two roots to W.
- On the other hand, we can achieve $G' = G \cdot (t z)$ or $G' = G \cdot (t \overline{z})$. Thus we add only a single root to G.
- Repeating this process, we finally achieve $G\mid W$, as desired.

Computation of G

Definition. Let $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$. A set

$$M \subseteq \left\{ (i,j) : 1 \le i < j \le n \land z_i = \overline{z_j} \right\}$$

is called a **matching** of z if for all $(i_1, j_1), (i_2, j_2) \in M$ we have $i_1 \neq i_2$ and $j_1 \neq j_2$.

Computation of G

Definition. Let $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$. A set

$$M \subseteq \left\{ (i,j) : 1 \le i < j \le n \land z_i = \overline{z_j} \right\}$$

is called a **matching** of z if for all $(i_1,j_1),(i_2,j_2)\in M$ we have $i_1\neq i_2$ and $j_1\neq j_2.$

Lemma. Let $Z \in \mathbb{C}[t]$ have no real roots, and let $z = (z_1, \ldots, z_n)$ be a permutation of its (not necessarily distinct) roots. Let M be a matching of z of maximal size, and let Q_1, \ldots, Q_n be defined as before. Then we have

$$G := \gcd(Q_1, \dots, Q_n) = \prod_{(i,j) \in M} (t - z_j)$$

(where the gcd is assumed to be a monic polynomial).

Some examples

Let $Z=(t-\alpha)^r(t-\overline{\alpha})^{r+1}$. In the following table we consider different permutations z of the roots of Z:

z	G	M
$(\alpha,\ldots,\alpha,\overline{\alpha},\ldots,\overline{\alpha})$	$(t-\overline{\alpha})^r$	$\{(1,r+1),(2,r+2),\ldots,(r,2r)\}$
$(\overline{\alpha},\ldots,\overline{\alpha},\alpha,\ldots,\alpha)$	$(t-\alpha)^r$	$\{(1,r+2),(2,r+3),\ldots,(r,2r+1)\}$
$(\overline{\alpha}, \alpha, \overline{\alpha}, \alpha, \dots, \alpha, \overline{\alpha})$	$(t-\alpha)^r(t-\overline{\alpha})^r$	$\{(1,2),(2,3),\ldots,(2r,2r+1)\}$

The cases displayed above are the extreme ones:

- It is easy to see that $r \leq \deg(G) \leq 2r$.
- For any $G=(t-\alpha)^i(t-\overline{\alpha})^j$ with $0\leq i,j\leq r$ and $i+j\geq r$ there exists a permutation z which produces this gcd G.

Connections to combinatorics

Task: Count number of factorizations.

From now on consider only a single root and its complex conjugate: $Z(t)=(t-\alpha)^r(t-\overline{\alpha})^s$. (The general case is easily obtained using the multinomial coefficient.)

Thus a permutation z of the roots of Z can be viewed as a word λ over the alphabet $\{\alpha, \overline{\alpha}\}.$

Definition:

- 1. Let $\overline{\lambda}$ denote the component-wise complex conjugation of λ .
- 2. By $\ell(\lambda)$ we denote the length of λ .
- 3. Let $\mu \leq \lambda$ denote the fact that μ is a subword of λ , i.e., $\mu = (\lambda_{i_1}, \dots, \lambda_{i_k})$ for $1 \leq i_1 < \dots < i_k \leq \ell(\lambda)$.
- 4. Associate steps in \mathbb{Z}^2 to the letters: $\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\overline{\alpha} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 5. Identify a word λ with a lattice walk that starts at (0,0).

Dyck paths

Definition: The Dyck length $D(\lambda)$ of a word λ is

$$D(\lambda) = \frac{1}{2} \max_{\substack{\mu \leq \lambda \\ \mu \text{ Dyck path}}} \ell(\mu).$$

Dyck paths

Definition: The Dyck length $D(\lambda)$ of a word λ is

$$D(\lambda) = rac{1}{2} \max_{\stackrel{\mu \leq \lambda}{\mu \; ext{ Dyck path}}} \ell(\mu).$$

Proposition. The gcd $G = G_{\lambda} = \gcd(Q_1, \dots, Q_{r+s})$ associated to λ is given by:

$$G_{\lambda} = (t - \alpha)^{D(\lambda)} (t - \overline{\alpha})^{D(\overline{\lambda})}.$$

Dyck paths

Definition: The Dyck length $D(\lambda)$ of a word λ is

$$D(\lambda) = \frac{1}{2} \max_{\substack{\mu \leq \lambda \\ \mu \text{ Dyck path}}} \ell(\mu).$$

Proposition. The gcd $G = G_{\lambda} = \gcd(Q_1, \dots, Q_{r+s})$ associated to λ is given by:

$$G_{\lambda} = (t - \alpha)^{D(\lambda)} (t - \overline{\alpha})^{D(\overline{\lambda})}.$$

Thus the number of factorizations corresponds to the number of words λ with certain Dyck lengths $D(\lambda)$ and $D(\overline{\lambda})$.

Outlook

Work in progress:

- Make construction of linkage precise, show that the result has one degree of freedom, etc.
- Take care about cases where there are too few factorizations.
- Which class of curves can be drawn by this construction?

A similar construction can be done for 3D linkages. In that case direct isometries in SE_3 are represented by "dual quaternions".