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Linkages

Definition. A linkage is a mechanism which consists of

• several rigid bodies, called links;

• the links are connected by joints.

Examples: scissors, blackboard, etc.

Restriction: We consider only planar linkages.

There are two different types of joints:

1. rotational joints

2. translational joints

−→ Show animation!
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Motivation and Goal

Goal 1: For a given planar curve, construct a linkage that draws it.

−→ Problem was already solved by Kempe (1876).

• His construction yields very complicated linkages.

• We aim at an algorithm that gives much simpler linkages.

Theorem (Kempe’s Universality Theorem).
Let f ∈ R[x, y] be a polynomial, and let B ⊆ R2 be a closed disk.
Then there exists a planar linkage which draws the curve

B ∩
{
(x, y) ∈ R2 | f(x, y) = 0

}
.

Goal 2: Construct a linkage that realizes a certain planar motion.
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Model (Denavit-Hartenberg)

1. Not a single frame of reference for the configuration of a
linkage, but each link has its own frame of reference. Every
frame of reference is modeled by a Euclidean affine plane.

2. Self-collisions of the links are not taken into account.

3. Thus the actual shape of the links doesn’t matter, just the
position of the joints.
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Motions in the plane
Recall:

1. SE2 (Special Euclidean group): group of direct isometries of
the plane (rotations, translations, etc.).

2. Projective space P3
C
:=
(
C4 \ {0}

)
/∼ where

(x0, . . . , x3) ∼ (y0, . . . , y3) :⇐⇒
∃c ∈ C∗ : (x0, . . . , x3) = (cy0, . . . , cy3).

Denote a point in P3
C

with the coordinates (x1 : x2 : y1 : y2).

Embedding: We embed SE2 in P3
C

as the set of real points of the
open subset

U = P3
C \

{
(x1 : x2 : y1 : y2) ∈ P3

C | x21 + x22 = 0
}
.

Geometric interpretation: Hence U is the complement of the
two conjugate complex planes x1 + i x2 = 0 and x1 − i x2 = 0.
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Action

Let σ ∈ SE2 be a direct isometry, given by the projective point
(x1 : x2 : y1 : y2) ∈ P3

C
.

The action of σ on a point (x, y) in the plane is given by:

1

x21 + x22

[(
x21 − x22 −2x1x2
2x1x2 x21 − x22

)(
x
y

)
+

(
x1y1 − x2y2
x1y2 + x2y1

)]
.

Remarks:

• Note that the points for which x21 + x22 = 0 were excluded.

• The rotational part depends only on x1 and x2.

• The translational part vanishes if y1 = y2 = 0.

• Action is compatible with ∼ in P3
C

.
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Product
The product in SE2 becomes a bilinear map:

(x1 : x2 : y1 : y2) · (x′1 : x′2 : y′1 : y′2) =(
x1x

′
1 − x2x′2 : x1x′2 + x2x

′
1 : x1y

′
1 + x2y

′
2 + y1x

′
1 − y2x′2

: x1y
′
2 − x2y′1 + y1x

′
2 + y2x

′
1

)

Notation 1: Write a point (x1 : x2 : y1 : y2) as a pair of complex
numbers (z, w) where z = x1 + i x2 and w = y1 + i y2.

Using this notation, the product in SE2 can be rewritten as

(z, w) · (z′, w′) =
(
z z′, z w′ + z′w

)
where the bar (·) denotes complex conjugation.

Notation 2: This operation can be further simplified by using
“dual numbers”: write (z, w) as z + η w where η satisfies η z = z η
and η2 = 0. Denote K = C[η]/〈i η + η i, η2〉.
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Rational motions and motion polynomials

Definition. A rational motion is a map R −→ P3
C

given by four
real polynomials X1, X2, Y1, Y2 ∈ R[t] such that X2

1 +X2
2 is not

identically zero. Hence for almost every t this map yields a direct
isometry in SE2.

Definition. Using the notation introduced before, a rational
motion can be written as a single polynomial P (t) ∈ K[t], where
P (t) = Z(t) + ηW (t) with Z,W ∈ C[t]. A polynomial P ∈ K[t]
is called a motion polynomial.
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Set of rational motions

Definition. The set of rational motions is defined as K[t]/∼ where

P1(t) ∼ P2(t) :⇐⇒ ∃R1, R2 ∈ R[t] \ {0} : P1R1 = P2R2.

In other words, the (commutative) multiplication by a real
polynomial changes a motion polynomial, but not the rational
motion it describes.
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Normedness and boundedness

Let P = Z + ηW ∈ K[t] be a motion polynomial.

Definition. We say that P is normed if P is monic, i.e., Z is
monic and degW < degZ.

−→ Normedness ensures that limt→+∞ P (t) = (1 : 0 : 0 : 0) ∈ P3
C

which corresponds to the identity element of SE2.

Definition. We say that P is bounded if Z does not have real
roots.

−→ Recall the prefactor 1
x21+x

2
2

in the definition of the action.

If Z has a real root, this causes division by zero.
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Characterization of degree 1 motions

Lemma. Let L ⊆ P3
C

be a real line, namely a line defined by real
equations, and define LU = L ∩ U . Let X be the set-theoretical
intersection of L and the complement of U in P3

C
. Then:

1. if X has cardinality 1, then LU corresponds to the set of
isometries σ ∈ SE2 such that σ(L1) = L2 for some lines
L1, L2 ⊆ R2 (translational motion).

2. if X has cardinality 2, then LU corresponds to the set of
isometries σ ∈ SE2 such that σ(p1) = p2 for some fixed points
p1, p2 ∈ R2 (rotational motion = “revolution”).

Lemma. Let P ∈ K[t] be a normed motion polynomial of degree 1,
i.e., P (t) = t+ i x2 + η (y1 + i y2), x2, y1, y2 ∈ R. Then:

1. if x2 = 0 then P describes a translational motion in direction ( y1y2) .

2. if x2 6= 0 then P describes a revolution around the point 1
2x2

(−y2
y1

)
.
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Examples

1. Which motion does the motion polynomial t+ i describe?

−→ It gives a revolution around the origin (0, 0).

2. What about t+ η?
−→ This gives a translational motion along the line y = 0.

3. Multiplication of motion polynomials corresponds to
composition of motions, e.g.,

(t+ i) · (t− i+ η) = (t2 + 1) + η (t− i)

What is this?
−→ Translational motion since t2 + 1 is a real polynomial.

−→ The translational vector is given by 1
t2+1

(
t
−1
)
.

−→ This parametrizes the circle with radius 1
2 around the

point (0,−1
2). Hence we get a circular translation.
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Strategy

Task: Construct a linkage that realizes a given rational motion.

1. The motion is described by a motion polynomial P ∈ K[t].

2. Factor P into linear factors.

3. Each linear factor represents an “elementary” motion
(revolution, translational motion), which can be realized by a
single joint.

4. A factorization of P gives rise to an open chain of links,
which, among many others, realizes the desired motion.

5. Combine different factorizations in order to restrict the
degrees of freedom (to 1).

−→ Show demo!
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single joint.

4. A factorization of P gives rise to an open chain of links,
which, among many others, realizes the desired motion.

5. Combine different factorizations in order to restrict the
degrees of freedom (to 1).

−→ Show demo!
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Factorization into linear factors

Let P = Z + ηW ∈ K[t] be a normed and bounded motion
polynomial of degree n.

Goal: Factor P into linear motion polynomials, i.e., P = P1 · · ·Pn
with degPi = 1.

Consider normed linear factors: Pi = t− zi + η wi for wi, zi ∈ C.
Since

(Z + ηW ) · (Z ′ + ηW ′) = Z Z ′ + η (ZW ′ + Z ′W )

we see that Z(t) = (t− z1) · · · (t− zn), i.e., the zi are precisely the
complex roots of Z(t).

−→ The wi can be found by making an ansatz and solving a
linear system.
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Factorization into linear factors
Fix a certain permutation (z1, . . . , zn) of the complex roots of Z.
Multiply out:

n∏
i=1

(t−zi+ηwi) = Z(t)+η

n∑
k=1

( k−1∏
j=1

(t−zj)
)( n∏

j=k+1

(t−zj)
)
wk.

Hence we get the following condition on w1, . . . , wn

W (t) =

n∑
k=1

wkQk(t)

where the polynomials Qk(t) ∈ C[t] are defined as above:

Q1 = (t− z2) · · · (t− zn)
Q2 = (t− z1)(t− z3) · · · (t− zn)

...
Qk = (t− z1) · · · (t− zk−1)(t− zk+1) . . . (t− zn)

...
Qn = (t− z1) · · · (t− zn−1)
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Characterization of factorizable polynomials

Lemma. Let P = Z + ηW be normed and let (z1, . . . , zn) be a
fixed permutation of the roots of Z over C. Then P admits a
factorization P = P1 · · ·Pn where Pi(t) = (t− zi) + η wi with
wi ∈ C if and only if W lies in the linear span 〈Q1, . . . , Qn〉C.

Lemma. Let P = Z + ηW ∈ K[t] be a normed motion
polynomial such that Z has no pair of complex conjugated roots
(i.e., Z(z) = 0 =⇒ Z(z) 6= 0). Then for every permutation
(z1, . . . , zn) of the roots of Z, the polynomial P admits a
factorization into linear factors.

Note: This condition is only sufficient, but not necessary, for the
existence of a factorization.
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Sufficient condition
Z + ηW admits a factorization if and only if W ∈ 〈Q1, . . . , Qn〉C.

Clearly, this is always possible (for arbitrary W ) if the determinant
of the following matrix Mn ∈ Cn×n is nonzero:

Mn =


〈t0〉Q1 · · · 〈t0〉Qn
〈t1〉Q1 · · · 〈t1〉Qn

...
...

〈tn−1〉Q1 · · · 〈tn−1〉Qn


where 〈ti〉Qk denotes the coefficient of ti in Qk.

The matrix entries can be written in terms of the elementary
symmetric polynomials σi:

〈ti〉Qk = (−1)iσi(z(k)) where z(k) := (z1, . . . , zk−1, zk+1, . . . , zn).
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Evaluating the determinant

Lemma. Let Mn =
(
(−1)iσi(z(j))

)
1≤i,j≤n. Then we have

det(Mn) = (−1)bn/2c
∏

1≤i<j≤n

(
zi − zj

)
.

Remarks:

• The statement is very much reminiscent of the Vandermonde
determinant and it can be proved in a similar fashion.

• A similar determinant evaluation is given in (Lascoux/Pragacz
2002) where the zi appear without conjugation.

• The above formula is also a special case of a determinant
evaluation that appears in (Krattenthaler 1999).
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Condition for existence of a factorization

Proposition. Let P = Z + ηW ∈ K[t] be a normed motion
polynomial and let (z1, . . . , zn) be a fixed permutation of the roots
of Z. Then

W ∈ 〈Q1, . . . , Qn〉C ⇐⇒ W ∈ 〈Q1, . . . , Qn〉C[t].

Remarks:

• The ideal on the right-hand side is generated by a single
polynomial G := gcd(Q1, . . . , Qn).

• The condition on factorizability rephrases as G |W .

• Note that G depends on the permutation of the zi.
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No factorization?

Problem: What if G -W for any permutation z?

Solution: Multiply P by some real polynomial R ∈ R[t]!

• Note that this doesn’t change the motion itself.

• W.l.o.g. assume R = (t− z)(t− z) and put P ′ = PR.

• Clearly, W ′ =WR, so we add two roots to W .

• On the other hand, we can achieve G′ = G · (t− z) or
G′ = G · (t− z). Thus we add only a single root to G.

• Repeating this process, we finally achieve G |W , as desired.
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Computation of G

Definition. Let z = (z1, . . . , zn) ∈ Cn. A set

M ⊆
{
(i, j) : 1 ≤ i < j ≤ n ∧ zi = zj

}
is called a matching of z if for all (i1, j1), (i2, j2) ∈M we have
i1 6= i2 and j1 6= j2.

Lemma. Let Z ∈ C[t] have no real roots, and let z = (z1, . . . , zn)
be a permutation of its (not necessarily distinct) roots. Let M be
a matching of z of maximal size, and let Q1, . . . , Qn be defined as
before. Then we have

G := gcd(Q1, . . . , Qn) =
∏

(i,j)∈M

(t− zj)

(where the gcd is assumed to be a monic polynomial).
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Some examples

Let Z = (t− α)r(t− α)r+1. In the following table we consider
different permutations z of the roots of Z:

z G M

(α, . . . , α, α, . . . , α) (t− α)r {(1, r + 1), (2, r + 2), . . . , (r, 2r)}
(α, . . . , α, α, . . . , α) (t− α)r {(1, r+2), (2, r+3), . . . , (r, 2r+1)}
(α, α, α, α, . . . , α, α) (t− α)r(t− α)r {(1, 2), (2, 3), . . . , (2r, 2r + 1)}

The cases displayed above are the extreme ones:

• It is easy to see that r ≤ deg(G) ≤ 2r.

• For any G = (t− α)i(t− α)j with 0 ≤ i, j ≤ r and i+ j ≥ r
there exists a permutation z which produces this gcd G.
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Connections to combinatorics
Task: Count number of factorizations.

From now on consider only a single root and its complex
conjugate: Z(t) = (t− α)r(t− α)s. (The general case is easily
obtained using the multinomial coefficient.)

Thus a permutation z of the roots of Z can be viewed as a word λ
over the alphabet {α, α}.

Definition:

1. Let λ denote the component-wise complex conjugation of λ.

2. By `(λ) we denote the length of λ.

3. Let µ ≤ λ denote the fact that µ is a subword of λ, i.e.,
µ = (λi1 , . . . , λik) for 1 ≤ i1 < · · · < ik ≤ `(λ).

4. Associate steps in Z2 to the letters: α =
(

1
−1
)

and α = ( 11 ).

5. Identify a word λ with a lattice walk that starts at (0, 0).
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Dyck paths

Definition: The Dyck length D(λ) of a word λ is

D(λ) =
1

2
max
µ≤λ

µ Dyck path

`(µ).

Proposition. The gcd G = Gλ = gcd(Q1, . . . , Qr+s) associated
to λ is given by:

Gλ = (t− α)D(λ)(t− α)D(λ).

−→ Thus the number of factorizations corresponds to the num-
ber of words λ with certain Dyck lengths D(λ) and D(λ).

23 / 24



Dyck paths

Definition: The Dyck length D(λ) of a word λ is

D(λ) =
1

2
max
µ≤λ

µ Dyck path

`(µ).

Proposition. The gcd G = Gλ = gcd(Q1, . . . , Qr+s) associated
to λ is given by:

Gλ = (t− α)D(λ)(t− α)D(λ).

−→ Thus the number of factorizations corresponds to the num-
ber of words λ with certain Dyck lengths D(λ) and D(λ).

23 / 24



Dyck paths

Definition: The Dyck length D(λ) of a word λ is

D(λ) =
1

2
max
µ≤λ

µ Dyck path

`(µ).

Proposition. The gcd G = Gλ = gcd(Q1, . . . , Qr+s) associated
to λ is given by:

Gλ = (t− α)D(λ)(t− α)D(λ).

−→ Thus the number of factorizations corresponds to the num-
ber of words λ with certain Dyck lengths D(λ) and D(λ).

23 / 24



Outlook

Work in progress:

• Make construction of linkage precise, show that the result has
one degree of freedom, etc.

• Take care about cases where there are too few factorizations.

• Which class of curves can be drawn by this construction?

A similar construction can be done for 3D linkages. In that case
direct isometries in SE3 are represented by “dual quaternions”.
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