
Holonomic Function Identities

Christoph Koutschan

Research Institute for Symbolic Computation
Johannes Kepler Universität Linz, Austria

November 18, 2008



Motivation
n∑

k=0

(
n

k

)2(k + n

k

)2

=
n∑

k=0

(
n

k

)(
k + n

k

) k∑
j=0

(
k

j

)3

(1)

∫ ∞

0

1
(x4 + 2ax2 + 1)m+1 dx =

πP
(m+ 1

2
,−m− 1

2)
m (a)

2m+ 3
2 (a + 1)m+ 1

2

(2)

e−xxa/2n!La
n(x) =

∫ ∞

0
e−tt

a
2
+nJa

(
2
√

tx
)

dt (3)∫ ∞

−∞

∞∑
m=0

∞∑
n=0

Hm(x)Hn(x)rmsne−x2

m!n!
dx =

√
πe2rs (4)

∫ 1

−1

(
1− x2

)ν− 1
2 eiaxC(ν)

n (x) dx =
π21−νinΓ(n + 2ν)a−νJn+ν(a)

n!Γ(ν)
(5)

sin
(√

z2 + 2tz
)

z
=

∞∑
n=0

(−t)nyn−1(z)
n!

(6)



Historical Context

1990: Doron Zeilberger’s seminal paper “A holonomic
systems approach to special function identities”

1998: Extensions, refinements, and Maple implementa-
tion by Frédéric Chyzak

2008: Further improvements and Mathematica imple-
mentation by CK



Historical Context

1990: Doron Zeilberger’s seminal paper “A holonomic
systems approach to special function identities”

1998: Extensions, refinements, and Maple implementa-
tion by Frédéric Chyzak

2008: Further improvements and Mathematica imple-
mentation by CK



Historical Context

1990: Doron Zeilberger’s seminal paper “A holonomic
systems approach to special function identities”

1998: Extensions, refinements, and Maple implementa-
tion by Frédéric Chyzak

2008: Further improvements and Mathematica imple-
mentation by CK



Notation

• K: field of characteristic 0

• An = An(K): the n-th Weyl algebra

• Dx: differential operator w.r.t. x, i.e., Dx • f(x) = f ′(x)
• Sn: shift operator w.r.t. n, i.e., Sn • f(n) = f(n + 1)
• O: an Ore algebra

• AnnO f : the ideal of annihilating operators of f in O, i.e.,
AnnO f = {P ∈ O |P • f = 0}
Note: We often denote also subideals of the full annihilator
by AnnO f .



Definition: Ore Algebra (1)

Let F be a K-algebra (of “functions”), and let σ, δ ∈ EndKF with

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (skew Leibniz law).

The endomorphism δ is called a σ-derivation.

Let A be a K-subalgebra of F (e.g., A = K[x] or A = K(x)) and
assume that σ, δ restrict to a σ-derivation on A.

Define the skew polynomial ring O := A[∂;σ, δ]:
• polynomials in ∂ with coefficients in A
• usual addition

• product that makes use of the commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A



Definition: Ore Algebra (1)

Let F be a K-algebra (of “functions”), and let σ, δ ∈ EndKF with

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (skew Leibniz law).

The endomorphism δ is called a σ-derivation.

Let A be a K-subalgebra of F (e.g., A = K[x] or A = K(x)) and
assume that σ, δ restrict to a σ-derivation on A.

Define the skew polynomial ring O := A[∂;σ, δ]:
• polynomials in ∂ with coefficients in A
• usual addition

• product that makes use of the commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A



Definition: Ore Algebra (1)

Let F be a K-algebra (of “functions”), and let σ, δ ∈ EndKF with

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (skew Leibniz law).

The endomorphism δ is called a σ-derivation.

Let A be a K-subalgebra of F (e.g., A = K[x] or A = K(x)) and
assume that σ, δ restrict to a σ-derivation on A.

Define the skew polynomial ring O := A[∂;σ, δ]:
• polynomials in ∂ with coefficients in A
• usual addition

• product that makes use of the commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A



Definition: Ore Algebra (2)

We turn F into an O-module by defining an action of elements in
O on a function f ∈ F , e.g., by

a • f := a · f (a ∈ A),
∂ • f := δ(f).

Remark: In other cases we define the action ∂ • f := σ(f).

Example 1: A = K[x], σ = 1, δ = d
dx .

Then K[x][Dx; 1, d
dx ] = K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: A = K[n], σ(n) = n + 1, σ(c) = c for c ∈ K, δ = 0.

Then K[n][Sn;Sn, 0] is a shift algebra.

Example 3: K(n, x, y)[Sn;Sn, 0][Dx; 1, Dx][Dy; 1, Dy]



Definition: Ore Algebra (2)

We turn F into an O-module by defining an action of elements in
O on a function f ∈ F , e.g., by

a • f := a · f (a ∈ A),
∂ • f := δ(f).

Remark: In other cases we define the action ∂ • f := σ(f).

Example 1: A = K[x], σ = 1, δ = d
dx .

Then K[x][Dx; 1, d
dx ] = K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: A = K[n], σ(n) = n + 1, σ(c) = c for c ∈ K, δ = 0.

Then K[n][Sn;Sn, 0] is a shift algebra.

Example 3: K(n, x, y)[Sn;Sn, 0][Dx; 1, Dx][Dy; 1, Dy]



Definition: Ore Algebra (2)

We turn F into an O-module by defining an action of elements in
O on a function f ∈ F , e.g., by

a • f := a · f (a ∈ A),
∂ • f := δ(f).

Remark: In other cases we define the action ∂ • f := σ(f).

Example 1: A = K[x], σ = 1, δ = d
dx .

Then K[x][Dx; 1, d
dx ] = K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: A = K[n], σ(n) = n + 1, σ(c) = c for c ∈ K, δ = 0.

Then K[n][Sn;Sn, 0] is a shift algebra.

Example 3: K(n, x, y)[Sn;Sn, 0][Dx; 1, Dx][Dy; 1, Dy]



Holonomic functions

Definition:
A function f(x1, . . . , xn) ∈ F is said to be holonomic if
An/ AnnAn f is a holonomic An-module, i.e., the Bernstein
dimension is minimal (according to Bernstein’s inequality).

Definition:
A sequence f(k1, . . . , kn) ∈ CNn

is holonomic if its multivariate
generating function

F (x1, . . . , xn) =
∞∑

k1=0

· · ·
∞∑

kn=0

f(k1, . . . , kn)xk1
1 · · ·x

kn
n

is a holonomic function.



Holonomic functions

Definition:
A function f(x1, . . . , xn) ∈ F is said to be holonomic if
An/ AnnAn f is a holonomic An-module, i.e., the Bernstein
dimension is minimal (according to Bernstein’s inequality).

Definition:
A sequence f(k1, . . . , kn) ∈ CNn

is holonomic if its multivariate
generating function

F (x1, . . . , xn) =
∞∑

k1=0

· · ·
∞∑

kn=0

f(k1, . . . , kn)xk1
1 · · ·x

kn
n

is a holonomic function.



Properties of holonomic functions

Closure properties:

• sum

• product

• definite integration

• . . .

Elimination property:
Given an ideal I in An s.t. An/I is holonomic; then for any choice
of n + 1 among the 2n generators of An there exists a nonzero
operator in I that depends only on these. In other words, we can
eliminate n− 1 variables.



Properties of holonomic functions

Closure properties:

• sum

• product

• definite integration

• . . .

Elimination property:
Given an ideal I in An s.t. An/I is holonomic; then for any choice
of n + 1 among the 2n generators of An there exists a nonzero
operator in I that depends only on these. In other words, we can
eliminate n− 1 variables.



Definite integration via elimination
Given: Integration bounds a, b ∈ R ∪ {−∞,∞} and AnnO f , the
annihilator of a holonomic function f(x, y) in the Ore algebra
O = K[x, y][Dx; 1, Dx][Dy; 1, Dy] = A2

Find: A differential equation for F (y) =
∫ b
a f(x, y) dx

Since O/ AnnO f is holonomic, there exists P ∈ AnnO f that does
not contain x (by elimination property). Write

P (y, Dx, Dy) = Q(y, Dy) + Dx ·R(y, Dx, Dy)

Apply
∫ b
a . . . dx to P • f = 0:∫ b

a
Q(y, Dy) • f dx +

∫ b

a
DxR(y, Dx, Dy) • f dx = 0

Q(y, Dy) • F (y) +
[
R(y, Dx, Dy) • f

]x=b

x=a
= 0



Definite integration via elimination
Given: Integration bounds a, b ∈ R ∪ {−∞,∞} and AnnO f , the
annihilator of a holonomic function f(x, y) in the Ore algebra
O = K[x, y][Dx; 1, Dx][Dy; 1, Dy] = A2

Find: A differential equation for F (y) =
∫ b
a f(x, y) dx

Since O/ AnnO f is holonomic, there exists P ∈ AnnO f that does
not contain x (by elimination property). Write

P (y, Dx, Dy) = Q(y, Dy) + Dx ·R(y, Dx, Dy)

Apply
∫ b
a . . . dx to P • f = 0:∫ b

a
Q(y, Dy) • f dx +

∫ b

a
DxR(y, Dx, Dy) • f dx = 0

Q(y, Dy) • F (y) +
[
R(y, Dx, Dy) • f

]x=b

x=a
= 0



Definite integration via elimination
Given: Integration bounds a, b ∈ R ∪ {−∞,∞} and AnnO f , the
annihilator of a holonomic function f(x, y) in the Ore algebra
O = K[x, y][Dx; 1, Dx][Dy; 1, Dy] = A2

Find: A differential equation for F (y) =
∫ b
a f(x, y) dx

Since O/ AnnO f is holonomic, there exists P ∈ AnnO f that does
not contain x (by elimination property). Write

P (y, Dx, Dy) = Q(y, Dy) + Dx ·R(y, Dx, Dy)

Apply
∫ b
a . . . dx to P • f = 0:∫ b

a
Q(y, Dy) • f dx +

∫ b

a
DxR(y, Dx, Dy) • f dx = 0

Q(y, Dy) • F (y) +
[
R(y, Dx, Dy) • f

]x=b

x=a
= 0



Definite summation via elimination
Given: Summation bounds a, b ∈ R ∪ {−∞,∞} and AnnO f , the
annihilator of a holonomic sequence f(k, n) in the Ore algebra
O = K[k, n][Sk;Sk, 0][Sn;Sn, 0]
Find: A recurrence for F (n) =

∑b
k=a f(k, n)

By the elimination property there exists P ∈ AnnO f that does not
contain k. Write

P (n, Sk, Sn) = Q(n, Sn) + (Sk − 1) ·R(n, Sk, Sn)

Sum over the equation P • f = 0:

b∑
k=a

Q(n, Sn) • f +
b∑

k=a

(Sk − 1)R(n, Sk, Sn) • f = 0

Q(n, Sn) • F (n) +
[
R(n, Sk, Sn) • f(k, n)

]k=b+1

k=a
= 0



Example: Orthogonality of Hermite polynomials (1)

The Hermite polynomials Hn(x) are a family of orthogonal
polynomials w.r.t. to the weight funtion e−x2

.
Let’s prove this, i.e.,∫ ∞

−∞
e−x2

Hm(x)Hn(x) dx = δm,n

√
π2nn!

First we compute an annihilator of the integrand:

ann = Annihilator[Exp[-x^2]*HermiteH[m,x]*HermiteH[n,x],
{Der[x], S[m], S[n]}]

{−2x + Dx + Sm + Sn,
S2
n − 2xSn + 2n + 2,

S2
m − 2xSm + 2m + 2}



Example: Orthogonality of Hermite polynomials (1)

The Hermite polynomials Hn(x) are a family of orthogonal
polynomials w.r.t. to the weight funtion e−x2

.
Let’s prove this, i.e.,∫ ∞

−∞
e−x2

Hm(x)Hn(x) dx = δm,n

√
π2nn!

First we compute an annihilator of the integrand:

ann = Annihilator[Exp[-x^2]*HermiteH[m,x]*HermiteH[n,x],
{Der[x], S[m], S[n]}]

{−2x + Dx + Sm + Sn,
S2
n − 2xSn + 2n + 2,

S2
m − 2xSm + 2m + 2}



Example: Orthogonality of Hermite polynomials (2)

Next step is to compute a Gröbner basis w.r.t. lexicographical
order in order to eliminate x:

gb = OreGroebnerBasis[
ann, OreAlgebra[x, m, n, Der[x], S[m], S[n]],
MonomialOrder -> Lexicographic]

{−DxSn − SmSn + 2n + 2,
−DxSm − SmSn + 2m + 2,
Dx + Sm + Sn − 2x }



Example: Orthogonality of Hermite polynomials (3)

In the first operator, the part R = −Sn, in the second R = −Sm.
We have to check that [R • f ]x=∞

x=−∞ indeed vanishes. Clearly

lim
x→±∞

−e−x2
Hm(x)Hn+1(x) = 0

Hence we take the first two operators (which do not involve the
integration variable x) and set Dx to 0:

OrePolynomialSubstitute[Take[gb, 2], {Der[x] -> 0}]

{−SmSn + 2n + 2,−SmSn + 2m + 2}



Example: Orthogonality of Hermite polynomials (3)

In the first operator, the part R = −Sn, in the second R = −Sm.
We have to check that [R • f ]x=∞

x=−∞ indeed vanishes. Clearly

lim
x→±∞

−e−x2
Hm(x)Hn+1(x) = 0

Hence we take the first two operators (which do not involve the
integration variable x) and set Dx to 0:

OrePolynomialSubstitute[Take[gb, 2], {Der[x] -> 0}]

{−SmSn + 2n + 2,−SmSn + 2m + 2}



Example: Orthogonality of Hermite polynomials (4)

By computing again a Gröbner basis of the previous, we get a nicer
result:

OreGroebnerBasis[%, OreAlgebra[m, n, S[m], S[n]]]

{m− n,−SmSn + 2n + 2}

This proves that the right hand side can only be nonzero if m = n.

By similar computations we obtain the recurrence(
4n2 + 8n + 4

)
f(n) + (−4n− 6)f(n + 1) + f(n + 2) = 0

for the right hand side when we set m = n.
Together with the initial values f(0) =

√
π and f(1) = 2

√
π we

have a full and simple description of the desired result.



Example: Orthogonality of Hermite polynomials (4)

By computing again a Gröbner basis of the previous, we get a nicer
result:

OreGroebnerBasis[%, OreAlgebra[m, n, S[m], S[n]]]

{m− n,−SmSn + 2n + 2}

This proves that the right hand side can only be nonzero if m = n.
By similar computations we obtain the recurrence(

4n2 + 8n + 4
)
f(n) + (−4n− 6)f(n + 1) + f(n + 2) = 0

for the right hand side when we set m = n.
Together with the initial values f(0) =

√
π and f(1) = 2

√
π we

have a full and simple description of the desired result.



Definite integration with Takayama’s algorithm

Given: a, b ∈ R ∪ {−∞,∞} and AnnO f , the annihilator of a
holonomic function f(x, y) (which must have natural boundaries at
a and b) in the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y) dx in the Ore algebra

O′ = K[y][Dy; 1, Dy]

Compute a P ∈ AnnO f that can be written in the form

P (x, y, Dx, Dy) = Q(y, Dy) + Dx ·R(x, y, Dx, Dy)

By the same reasoning as before, we get

Q(y, Dy) • F (y) = 0

The operator Q can be computed with Takayama’s algorithm.



Definite integration with Takayama’s algorithm

Given: a, b ∈ R ∪ {−∞,∞} and AnnO f , the annihilator of a
holonomic function f(x, y) (which must have natural boundaries at
a and b) in the Ore algebra O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y) dx in the Ore algebra

O′ = K[y][Dy; 1, Dy]
Compute a P ∈ AnnO f that can be written in the form

P (x, y, Dx, Dy) = Q(y, Dy) + Dx ·R(x, y, Dx, Dy)

By the same reasoning as before, we get

Q(y, Dy) • F (y) = 0

The operator Q can be computed with Takayama’s algorithm.



Comparison

Zeilberger:

1. eliminate x

2. reduce modulo DxO
Takayama (variant due to Chyzak/Salvy):

1. reduce modulo DxO
2. eliminate x



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ

�
�

�
��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP

6=



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed any more!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



Takayama’s algorithm

Eliminate x by computing a Gröbner basis in the O′-module w.r.t.
the basis xα, α ∈ N:

x2(1+ y)+xDx = x2(1+ y)+Dxx− 1 ≡ x2(1+ y)− 1 mod DxO
−→ gives (−1, 0, 1 + y, 0, . . . )

x + DxDy + y ≡ x + y mod DxO
−→ gives (y, 1, 0, . . . )

As an input for this Gröbner basis computation, we take the
generators of AnnO f plus some multiples by xα, e.g.,
x2 + xDxDy + xy = x2 + DxxDy − xDy + xy ≡ x2 − x(Dy + y)
−→ gives (0, Dy + y, 1, 0, . . . )
Task: We have to find an element of the form (Q, 0, 0, . . . ).



Takayama’s algorithm

Eliminate x by computing a Gröbner basis in the O′-module w.r.t.
the basis xα, α ∈ N:

x2(1+ y)+xDx = x2(1+ y)+Dxx− 1 ≡ x2(1+ y)− 1 mod DxO
−→ gives (−1, 0, 1 + y, 0, . . . )

x + DxDy + y ≡ x + y mod DxO
−→ gives (y, 1, 0, . . . )

As an input for this Gröbner basis computation, we take the
generators of AnnO f plus some multiples by xα, e.g.,
x2 + xDxDy + xy = x2 + DxxDy − xDy + xy ≡ x2 − x(Dy + y)
−→ gives (0, Dy + y, 1, 0, . . . )
Task: We have to find an element of the form (Q, 0, 0, . . . ).



Takayama’s algorithm

Eliminate x by computing a Gröbner basis in the O′-module w.r.t.
the basis xα, α ∈ N:

x2(1+ y)+xDx = x2(1+ y)+Dxx− 1 ≡ x2(1+ y)− 1 mod DxO
−→ gives (−1, 0, 1 + y, 0, . . . )

x + DxDy + y ≡ x + y mod DxO
−→ gives (y, 1, 0, . . . )

As an input for this Gröbner basis computation, we take the
generators of AnnO f plus some multiples by xα, e.g.,
x2 + xDxDy + xy = x2 + DxxDy − xDy + xy ≡ x2 − x(Dy + y)
−→ gives (0, Dy + y, 1, 0, . . . )
Task: We have to find an element of the form (Q, 0, 0, . . . ).



Takayama’s algorithm

Eliminate x by computing a Gröbner basis in the O′-module w.r.t.
the basis xα, α ∈ N:

x2(1+ y)+xDx = x2(1+ y)+Dxx− 1 ≡ x2(1+ y)− 1 mod DxO
−→ gives (−1, 0, 1 + y, 0, . . . )

x + DxDy + y ≡ x + y mod DxO
−→ gives (y, 1, 0, . . . )

As an input for this Gröbner basis computation, we take the
generators of AnnO f plus some multiples by xα, e.g.,
x2 + xDxDy + xy = x2 + DxxDy − xDy + xy ≡ x2 − x(Dy + y)
−→ gives (0, Dy + y, 1, 0, . . . )
Task: We have to find an element of the form (Q, 0, 0, . . . ).



Takayama’s algorithm

Input: a set of generators {G1, . . . , Gm} for AnnO f
Output: AnnO′ F

1. set d = max1≤i≤m degx Gi

2. set A = {G1, . . . , Gm} ∪
⋃m

i=1{xαGi | 1 ≤ α ≤ degx Gi}
3. reduce all elements in A modulo DxO
4. compute a Gröbner basis in the corresponding (truncated)

module in order to eliminate x

5. if no (Q, 0, . . . , 0) is found, increase d

Since f is holonomic the algorithm is guaranteed to terminate.



Example: Proof of Gessel’s conjecture (1)
(joint work with M. Kauers and D. Zeilberger)

Definition: A Gessel walk is a walk in the integer lattice N2 which
uses only steps from the set {←,→,↙,↗}. Let f(n; i, j) denote
the number of Gessel walks with exactly n steps starting at the
origin (0, 0) and ending at the point (i, j).

Ira Gessel in 2001 conjectured that

f(n; 0, 0) =

{
16k (5/6)k(1/2)k

(2)k(5/3)k
if n = 2k

0 if n is odd

The function f(n; 0, 0) counts the number of closed Gessel walks
of length n.



Example: Proof of Gessel’s conjecture (1)
(joint work with M. Kauers and D. Zeilberger)

Definition: A Gessel walk is a walk in the integer lattice N2 which
uses only steps from the set {←,→,↙,↗}. Let f(n; i, j) denote
the number of Gessel walks with exactly n steps starting at the
origin (0, 0) and ending at the point (i, j).

Ira Gessel in 2001 conjectured that

f(n; 0, 0) =

{
16k (5/6)k(1/2)k

(2)k(5/3)k
if n = 2k

0 if n is odd

The function f(n; 0, 0) counts the number of closed Gessel walks
of length n.



Example: Proof of Gessel’s conjecture (2)

Let O = Q(i, j, n)[Si;Si, 0][Sj ;Sj , 0][Sn;Sn, 0].

The quasi-holonomic ansatz: Find an operator
R ∈ AnnO f(n; i, j) of the form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

• R(n, i, j, Sn, Si, Sj) annihilates f(n; i, j)
• set i = j = 0
• P (n, Sn) annihilates f(n; 0, 0)

Problem: R(n, i, j, Sn, Si, Sj) is too big to be computed.



Example: Proof of Gessel’s conjecture (2)

Let O = Q(i, j, n)[Si;Si, 0][Sj ;Sj , 0][Sn;Sn, 0].

The quasi-holonomic ansatz: Find an operator
R ∈ AnnO f(n; i, j) of the form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

• R(n, i, j, Sn, Si, Sj) annihilates f(n; i, j)

• set i = j = 0
• P (n, Sn) annihilates f(n; 0, 0)

Problem: R(n, i, j, Sn, Si, Sj) is too big to be computed.



Example: Proof of Gessel’s conjecture (2)

Let O = Q(i, j, n)[Si;Si, 0][Sj ;Sj , 0][Sn;Sn, 0].

The quasi-holonomic ansatz: Find an operator
R ∈ AnnO f(n; i, j) of the form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

• R(n, i, j, Sn, Si, Sj) annihilates f(n; i, j)
• set i = j = 0

• P (n, Sn) annihilates f(n; 0, 0)
Problem: R(n, i, j, Sn, Si, Sj) is too big to be computed.



Example: Proof of Gessel’s conjecture (2)

Let O = Q(i, j, n)[Si;Si, 0][Sj ;Sj , 0][Sn;Sn, 0].

The quasi-holonomic ansatz: Find an operator
R ∈ AnnO f(n; i, j) of the form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

• R(n, i, j, Sn, Si, Sj) annihilates f(n; i, j)
• set i = j = 0
• P (n, Sn) annihilates f(n; 0, 0)

Problem: R(n, i, j, Sn, Si, Sj) is too big to be computed.



Example: Proof of Gessel’s conjecture (2)

Let O = Q(i, j, n)[Si;Si, 0][Sj ;Sj , 0][Sn;Sn, 0].

The quasi-holonomic ansatz: Find an operator
R ∈ AnnO f(n; i, j) of the form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

• R(n, i, j, Sn, Si, Sj) annihilates f(n; i, j)
• set i = j = 0
• P (n, Sn) annihilates f(n; 0, 0)

Problem: R(n, i, j, Sn, Si, Sj) is too big to be computed.



Example: Proof of Gessel’s conjecture (3)

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

We use a variant of Takayama’s algorithm:

1. substitute i→ 0 and j → 0 for all generators of AnnO f

2. eliminate Si and Sj

Remark: The result will be P (n, Sn) as above, but Q1 and Q2 are
not computed at all.
−→ Computation becomes feasible!



Example: Proof of Gessel’s conjecture (3)

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

We use a variant of Takayama’s algorithm:

1. substitute i→ 0 and j → 0 for all generators of AnnO f

2. eliminate Si and Sj

Remark: The result will be P (n, Sn) as above, but Q1 and Q2 are
not computed at all.
−→ Computation becomes feasible!



Example: Proof of Gessel’s conjecture (3)

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

We use a variant of Takayama’s algorithm:

1. substitute i→ 0 and j → 0 for all generators of AnnO f

2. eliminate Si and Sj

Remark: The result will be P (n, Sn) as above, but Q1 and Q2 are
not computed at all.
−→ Computation becomes feasible!



Example: Proof of Gessel’s conjecture (3)

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj)
+ jQ2(n, i, j, Sn, Si, Sj)

We use a variant of Takayama’s algorithm:

1. substitute i→ 0 and j → 0 for all generators of AnnO f

2. eliminate Si and Sj

Remark: The result will be P (n, Sn) as above, but Q1 and Q2 are
not computed at all.
−→ Computation becomes feasible!



Example: Proof of Gessel’s conjecture (4)

We found an operator P (n, Sn) annihilating f(n; 0, 0) with

• order 32

• polynomial coefficients of degree 172

• and integer coefficients up to 385 digits.

The computation took 7 hours.



Example: Proof of Gessel’s conjecture (5)

Doron Zeilberger’s bet:
“I offer a prize of one hundred (100) US-dollars for a short,
self-contained, human-generated (and computer-free) proof of
Gessel’s conjecture, not to exceed five standard pages typed in
standard font. The longer that prize would remain unclaimed, the
more (empirical) evidence we would have that a proof of Gessel’s
conjecture is indeed beyond the scope of humankind.”



∂-finite functions
Definition: A “function” f(x1, . . . , xn) is called ∂-finite w.r.t.
O = K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn] if it is 0 or if
0 < dimK(x1,...,xn) O/ AnnO f <∞.

In other words, f is ∂-finite if all its “derivatives” span a
finite-dimensional K(x1, . . . , xn)-vector space.

Example: All derivatives (w.r.t. x and y) of sin
(

x+y
x−y

)
are of the

form

r1(x, y) sin
(

x + y

x− y

)
+ r2(x, y) cos

(
x + y

x− y

)
, r1, r2 ∈ Q(x, y)

e.g.,

D3
x D2

y • sin
(

x+y
x−y

)
=

32(3x4+12yx3−30y2x2−4y3x+9y4)
(x−y)9

sin
(

x+y
x−y

)
−16(6x5−33yx4+80y3x2−54y4x+3y5)

(x−y)10
cos

(
x+y
x−y

)



∂-finite functions
Definition: A “function” f(x1, . . . , xn) is called ∂-finite w.r.t.
O = K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn] if it is 0 or if
0 < dimK(x1,...,xn) O/ AnnO f <∞.

In other words, f is ∂-finite if all its “derivatives” span a
finite-dimensional K(x1, . . . , xn)-vector space.

Example: All derivatives (w.r.t. x and y) of sin
(

x+y
x−y

)
are of the

form

r1(x, y) sin
(

x + y

x− y

)
+ r2(x, y) cos

(
x + y

x− y

)
, r1, r2 ∈ Q(x, y)

e.g.,

D3
x D2

y • sin
(

x+y
x−y

)
=

32(3x4+12yx3−30y2x2−4y3x+9y4)
(x−y)9

sin
(

x+y
x−y

)
−16(6x5−33yx4+80y3x2−54y4x+3y5)

(x−y)10
cos

(
x+y
x−y

)



∂-finite functions
Definition: A “function” f(x1, . . . , xn) is called ∂-finite w.r.t.
O = K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn] if it is 0 or if
0 < dimK(x1,...,xn) O/ AnnO f <∞.

In other words, f is ∂-finite if all its “derivatives” span a
finite-dimensional K(x1, . . . , xn)-vector space.

Example: All derivatives (w.r.t. x and y) of sin
(

x+y
x−y

)
are of the

form

r1(x, y) sin
(

x + y

x− y

)
+ r2(x, y) cos

(
x + y

x− y

)
, r1, r2 ∈ Q(x, y)

e.g.,

D3
x D2

y • sin
(

x+y
x−y

)
=

32(3x4+12yx3−30y2x2−4y3x+9y4)
(x−y)9

sin
(

x+y
x−y

)
−16(6x5−33yx4+80y3x2−54y4x+3y5)

(x−y)10
cos

(
x+y
x−y

)



Closure properties of ∂-finite functions

Closure properties:

• sum

• product

• application of an Ore operator

• algebraic substitution (of a continuous variable)

• subsequence / Q-linear substitution (of a discrete variable)

• definite summation and integration

In contrast to holonomic closure properties, the closure properties
for ∂-finite functions can be computed quite easily (using linear
algebra and an FGLM-like algorithm).



Closure properties of ∂-finite functions

Closure properties:

• sum

• product

• application of an Ore operator

• algebraic substitution (of a continuous variable)

• subsequence / Q-linear substitution (of a discrete variable)

• definite summation and integration

In contrast to holonomic closure properties, the closure properties
for ∂-finite functions can be computed quite easily (using linear
algebra and an FGLM-like algorithm).



Holonomic vs. ∂-finite

holonomic description: K[x1, . . . , xn][∂1;σ1, δ1] · · · [∂n;σn, δn]
∂-finite description: K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn]

In a pure differential setting, both notions coincide.

In the shift case there are only some subtle exceptions:

• 1
k2+n2 is ∂-finite but not holonomic.

• δi,j is holonomic but not ∂-finite.

In practice, consider functions that are both holonomic and
∂-finite:

• ∂-finite: better algorithmic treatment

• holonomic: guarantees termination of algorithms



Holonomic vs. ∂-finite

holonomic description: K[x1, . . . , xn][∂1;σ1, δ1] · · · [∂n;σn, δn]
∂-finite description: K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn]

In a pure differential setting, both notions coincide.

In the shift case there are only some subtle exceptions:

• 1
k2+n2 is ∂-finite but not holonomic.

• δi,j is holonomic but not ∂-finite.

In practice, consider functions that are both holonomic and
∂-finite:

• ∂-finite: better algorithmic treatment

• holonomic: guarantees termination of algorithms



Holonomic vs. ∂-finite

holonomic description: K[x1, . . . , xn][∂1;σ1, δ1] · · · [∂n;σn, δn]
∂-finite description: K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn]

In a pure differential setting, both notions coincide.

In the shift case there are only some subtle exceptions:

• 1
k2+n2 is ∂-finite but not holonomic.

• δi,j is holonomic but not ∂-finite.

In practice, consider functions that are both holonomic and
∂-finite:

• ∂-finite: better algorithmic treatment

• holonomic: guarantees termination of algorithms



Holonomic vs. ∂-finite

holonomic description: K[x1, . . . , xn][∂1;σ1, δ1] · · · [∂n;σn, δn]
∂-finite description: K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn]

In a pure differential setting, both notions coincide.

In the shift case there are only some subtle exceptions:

• 1
k2+n2 is ∂-finite but not holonomic.

• δi,j is holonomic but not ∂-finite.

In practice, consider functions that are both holonomic and
∂-finite:

• ∂-finite: better algorithmic treatment

• holonomic: guarantees termination of algorithms



Implementation of ∂-finite closure properties
The function Annihilator automatically executes ∂-finite closure
properties.
The base cases are stored in a “database”.

Up to now it contains:
Exp, Log, Sqrt, Sin, Cos, ArcSin, ArcCos, ArcTan, ArcCot, ArcSec,
ArcCsc, Sinh, Cosh, ArcSinh, ArcCosh, ArcTanh, ArcCoth,
ArcSech, ArcCsch, BesselJ, BesselY, BesselI, BesselK, HankelH1,
HankelH2, AiryAi, AiryAiPrime, AiryBi, AiryBiPrime, StruveH,
StruveL, KelvinBei, KelvinBer, KelvinKei, KelvinKer,
SphericalBesselJ, SphericalBesselY, SphericalHankelH1,
SphericalHankelH2, Fibonacci, LucasL, HermiteH, LaguerreL,
LegendreP, ChebyshevT, ChebyshevU, GegenbauerC, JacobiP,
Fibonacci, Factorial, Factorial2, Pochhammer, Binomial,
Multinomial, CatalanNumber, Gamma, GammaRegularized,
Subfactorial, PolyGamma, HarmonicNumber, Beta,
BetaRegularized, Erf, Erfc, Erfi, FresnelS, FresnelC, ExpIntegralE,
ExpIntegralEi, SinIntegral, CosIntegral, SinhIntegral, CoshIntegral,
HypergeometricPFQ, EllipticE, EllipticK, EllipticPi



Implementation of ∂-finite closure properties
The function Annihilator automatically executes ∂-finite closure
properties.
The base cases are stored in a “database”. Up to now it contains:
Exp, Log, Sqrt, Sin, Cos, ArcSin, ArcCos, ArcTan, ArcCot, ArcSec,
ArcCsc, Sinh, Cosh, ArcSinh, ArcCosh, ArcTanh, ArcCoth,
ArcSech, ArcCsch, BesselJ, BesselY, BesselI, BesselK, HankelH1,
HankelH2, AiryAi, AiryAiPrime, AiryBi, AiryBiPrime, StruveH,
StruveL, KelvinBei, KelvinBer, KelvinKei, KelvinKer,
SphericalBesselJ, SphericalBesselY, SphericalHankelH1,
SphericalHankelH2, Fibonacci, LucasL, HermiteH, LaguerreL,
LegendreP, ChebyshevT, ChebyshevU, GegenbauerC, JacobiP,
Fibonacci, Factorial, Factorial2, Pochhammer, Binomial,
Multinomial, CatalanNumber, Gamma, GammaRegularized,
Subfactorial, PolyGamma, HarmonicNumber, Beta,
BetaRegularized, Erf, Erfc, Erfi, FresnelS, FresnelC, ExpIntegralE,
ExpIntegralEi, SinIntegral, CosIntegral, SinhIntegral, CoshIntegral,
HypergeometricPFQ, EllipticE, EllipticK, EllipticPi



Creative telescoping:
Chyzak’s extension of Zeilberger’s fast algorithm

Given: AnnO f , the annihilator of a ∂-finite function f(x, y) in
the Ore algebra O = K(x, y)[Dx; 1; Dx][Dy; 1, Dy].
Find: Q(y, Dy) and R(x, y, Dx, Dy) such that
Q + Dx ·R ∈ AnnO f .

1. compute a Gröbner basis G of AnnO f in order to know the
set U = {u1, . . . , uk} of monomials that can not be reduced
by AnnO f , i.e., the elements under the stairs of G

2. make an ansatz for Q(y, Dy) =
∑d

i=0 ηi(y)Di
y and

R(x, y, Dx, Dy) =
∑k

j=1 φj(x, y)uj

3. reduce Q + Dx ·R with G and set all coefficients to zero

4. solve the corresponding coupled system of differential
equations (for rational solutions)

5. if there is no solution, increase d



Example: One of Olver’s problems (1)

Prove the following identity:

1
z

sinh
√

z2 − 2izt =
∞∑

n=0

(−it)n

n!

√
π

2z
I 1

2
−n(z)

For the left hand side, we can immediately compute annihilating
operators:

F[t_,z_] := Sinh[Sqrt[z^2 - 2*I*z*t]]/z
lhs = Annihilator[F[t,z], {Der[t], Der[z]}]

{(−t− iz)Dt + zDz + 1,
(−z4 + 3itz3 + 2t2z2)D2

z + (−2z3 + 6itz2 + 5t2z)Dz

+(z4 − 3itz3 − 3t2z2 + it3z + t2)}



Example: One of Olver’s problems (1)

Prove the following identity:

1
z

sinh
√

z2 − 2izt =
∞∑

n=0

(−it)n

n!

√
π

2z
I 1

2
−n(z)

For the left hand side, we can immediately compute annihilating
operators:

F[t_,z_] := Sinh[Sqrt[z^2 - 2*I*z*t]]/z
lhs = Annihilator[F[t,z], {Der[t], Der[z]}]

{(−t− iz)Dt + zDz + 1,
(−z4 + 3itz3 + 2t2z2)D2

z + (−2z3 + 6itz2 + 5t2z)Dz

+(z4 − 3itz3 − 3t2z2 + it3z + t2)}



Example: One of Olver’s problems (2)
On the right hand side

∑∞
n=0

(−it)n

n!

√
π
2z I 1

2
−n(z), we do creative

telescoping:

f[n_,t_,z_] := (-I*t)^n/n!*Sqrt[Pi/2/z]*BesselI[-n+1/2,z];
{opQ, opR} =
CreativeTelescoping[f[n,t,z], S[n]-1, {Der[t],Der[z]}]

We obtain two operators Q1 + (Sn − 1) ·R1 ∈ Ann f and
Q2 + (Sn − 1) ·R2 ∈ Ann f where

Q1 = −t(t + iz)Dt + tzDz + t,

Q2 = (t + iz)(2t + iz)z2D2
z − z(−5t2 − 6izt + 2z2)Dz

+i(−iz4 − 3tz3 + 3it2z2 + t3z − it2),
R1 = −inz,

R2 = i(n2 + n)(t + iz)zSn + 2t2n2 − z2n2 + 3itzn2 − t2n

+z2n− 3itzn



Example: One of Olver’s problems (3)

Next we have to verify that [R1 • f ]n=0 = 0 and that R1 • f tends
to 0 when n goes to infinity (the same for R2):

ApplyOreOperator[opR, f[n,t,z]] /. n->0

{0, 0}

−→ The delta part vanishes.
Hence Q1 and Q2 are annihilating operators for the sum. In fact,
we find that they agree with the annihilating operators that we
computed for the left hand side.



Example: One of Olver’s problems (4)
In order to establish equality, we have to compare initial values.
Look at the vector space under the stairs of the Gröbner basis:

u = UnderTheStaircase[lhs]

{1, Dz}
This means we have to compute two initial values:

ApplyOreOperator[u, F[t,z]] /. {t->0,z->1} //FullSimplify

{sinh(1), 1
e}

ApplyOreOperator[u, f[n,t,z]] /. {t->0,z->1}0n
√

π
2 I 1

2
−n(1)

n!
,
0n

√
π
2

(
I−n− 1

2
(1) + I 3

2
−n(1)

)
2n!

−
0n

√
π
2 I 1

2
−n(1)

2n!


% /. (0^n)->1 /. n->0 // FullSimplify

{sinh(1), 1
e}



Application in Finite Element Methods (1)
(joint work with Joachim Schöberl, RWTH Aachen)

Task: Compute electromagnetic waves using the Maxwell
equations:

dH

dt
= curl E,

dE

dt
= − curlH

where H and E are the magnetic and the electric field respectively.
Method: Divide the domain into small triangles (finite elements).
Approximate the solution by certain basis functions that are
defined on each finite element.
In this application we define the basis functions as follows:

ϕi,j(x, y) := (1− x)iP
(2i+1,0)
j (2x− 1)Pi

(
2y

1− x
− 1

)
In order to solve the above equations, one needs to represent the
partial derivatives of ϕi,j(x, y) in the basis (i.e., as linear
combinations of the ϕi,j(x, y) itself).



Application in Finite Element Methods (2)

phi[i_,j_,x_,y_] :=
LegendreP[i,2*y/(1-x)-1]*(1-x)^i*JacobiP[j,2*i+1,0,2*x-1]
ann = Annihilator[phi[i,j,x,y], {Der[x], S[i], S[j]}]

〈quite big output〉

In order to see better the structure of the output, we look only at
the support of each operator:

Support /@ ann

{{S2
j , Sj , 1}, {SiSj , Dx, Si, Sj , 1}, {S2

i , Dx, Si, Sj , 1},
{DxSj , Dx, Si, Sj , 1}, {DxSi, Dx, Si, Sj , 1}, {D2

x , Dx, Si, Sj , 1}}

−→ We see that the second and the third operator match exactly
our needs!



Application in Finite Element Methods (3)

BUT: The numerists need a relation that is free of x and y! In
change, they allow also shifts in the derivative, i.e., we are now
looking for a relation of the following form:∑
(k,l)∈A

ak,l(i, j) d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

where A,B ⊂ N2 are finite index sets.

• Use Gröbner basis computation in order to eliminate x and y.

• After some time we get an operator of the desired form, that
is even not too big (about 2 pages).

• Because of extension/contraction problem we can not be sure
that we obtain the smallest operator.



Application in Finite Element Methods (3)

BUT: The numerists need a relation that is free of x and y! In
change, they allow also shifts in the derivative, i.e., we are now
looking for a relation of the following form:∑
(k,l)∈A

ak,l(i, j) d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

where A,B ⊂ N2 are finite index sets.

• Use Gröbner basis computation in order to eliminate x and y.

• After some time we get an operator of the desired form, that
is even not too big (about 2 pages).

• Because of extension/contraction problem we can not be sure
that we obtain the smallest operator.



Application in Finite Element Methods (4)

∑
(k,l)∈A

ak,l(i, j) d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

New idea: Similar approach as in creative telescoping.

1. we work in O = K(i, j, x, y)[Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]
2. choose index sets A and B

3. reduce the corresponding ansatz with the Gröbner basis of
AnnO ϕ

4. do coefficient comparison w.r.t. x and y

5. solve the resulting linear system for ak,l and bm,n in K(i, j)



Application in Finite Element Methods (5)

With this method, we find (in less than 1 minute) the following
relation:

(2i + j + 3)(2i + 2j + 7) d
dxϕi,j+1(x, y)

+2(2i + 1)(i + j + 3) d
dxϕi,j+2(x, y)

−(j + 3)(2i + 2j + 5) d
dxϕi,j+3(x, y)

+(j + 1)(2i + 2j + 7) d
dxϕi+1,j(x, y)

−2(2i + 3)(i + j + 3) d
dxϕi+1,j+1(x, y)

−(2i + j + 5)(2i + 2j + 5) d
dxϕi+1,j+2(x, y) =

2(i + j + 3)(2i + 2j + 5)(2i + 2j + 7)ϕi,j+2(x, y)
+2(i + j + 3)(2i + 2j + 5)(2i + 2j + 7)ϕi+1,j+1(x, y)

Schöberl: “Now I am really impressed: this is exactly what I need!”



Application in Finite Element Methods (5)

With this method, we find (in less than 1 minute) the following
relation:

(2i + j + 3)(2i + 2j + 7) d
dxϕi,j+1(x, y)

+2(2i + 1)(i + j + 3) d
dxϕi,j+2(x, y)

−(j + 3)(2i + 2j + 5) d
dxϕi,j+3(x, y)

+(j + 1)(2i + 2j + 7) d
dxϕi+1,j(x, y)

−2(2i + 3)(i + j + 3) d
dxϕi+1,j+1(x, y)

−(2i + j + 5)(2i + 2j + 5) d
dxϕi+1,j+2(x, y) =

2(i + j + 3)(2i + 2j + 5)(2i + 2j + 7)ϕi,j+2(x, y)
+2(i + j + 3)(2i + 2j + 5)(2i + 2j + 7)ϕi+1,j+1(x, y)

Schöberl: “Now I am really impressed: this is exactly what I need!”



Thank you for your attention!


