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Abstract We derive exact and sharp lower bounds for the number of monochromatic
generalized Schur triples (x, y, x + ay) whose entries are from the set {1,...,n},
subject to a coloring with two different colors. Previously, only asymptotic formulas
for such bounds were known, and only for a € N. Using symbolic computation
techniques, these results are extended here to arbitrary a € R. Furthermore, we
give exact formulas for the minimum number of monochromatic Schur triples for
a =1,2,3,4, and briefly discuss the case 0 < a < 1.

1 Introduction and historical background

Let N denote the set of positive integers. A triple (x, y, z) € N? is called a Schur
triple if its entries satisfy the equation x + y = z. The set {1, ..., n} of all positive
integers up to n will be denoted by [n]. A coloring of [n] is a map y: [n] — C for
some finite set C of colors. For example, amap y: [n] — {red, blue} is a 2-coloring.
We say that a Schur triple is monochromatic (with respect to a given coloring) if all
of its entries have been assigned the same color; we will abbreviate “monochromatic
Schur triple” by MST.
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With these notations, one can ask questions like: given n € N and a coloring y
of [n], how many MSTs are there in [1]>? Let us denote this number as follows:

M x) =[{y el iz=x+y A x(x) = x(0) =x@}. D)

For our purposes, two Schur triples (x, y, x + y) and (y, x, x + y) are considered
distinct if x # y. We emphasize this convention since sometimes in the literature
these two triples are counted only once, which is equivalent to imposing the extra
condition x < y. For example, there are exactly four monochromatic Schur triples
on [6] = {1,...,6} when 2 and 4 are colored red and 1,3, 5, 6 are colored blue,
namely (1,5,6), (2,2,4), (3,3,6), and (5,1,6). We will use a short-hand notation
for 2-colorings, namely as words on the alphabet {R, B}: the i-th letter is R if
the integer i is colored red and B if it is blue. So the above 2-coloring would be
denoted by BRBRBB. We will also make use of the power notation for words, e.g.,
R’B® = RRBBB.

The namesake of the triples in this work refers to Issai Schur [11], who in 1917
studied a modular version of Fermat’s last theorem (first formulated and proved by
Leonard Dickson). In order to give a simpler proof of the theorem, Schur introduced
a Hilfssatz confirming the existence of a least positive integer n = n(m) such that for
any m-coloring of [n] an MST exists (this is nowadays known as Schur’s theorem).
In 1927, Van der Waerden [15] generalized this result to monochromatic arithmetic
progressions of any length k. Then in 1928, Ramsey proved his eponymous theorem,
showing the existence of a least positive integer n such that every edge-coloring of a
complete graph on n vertices, with the colors red and blue, admits either a complete
red subgraph or a complete blue subgraph. However, a real increase in the popularity
of these kinds of Ramsey-theoretic problems came with the rediscovery of Ramsey’s
theorem in a 1935 paper of Erdés and Szekeres [4], which ultimately led to a simpler
proof of Schur’s theorem, indicating their close connections. For the curious reader,
this rich history is beautifully depicted in a book by Landman and Robertson [8].

We now arrive at a point of more than just questions of existence. In 1959, Alan
Goodman [5] studied the minimum number of monochromatic triangles under a 2-
edge coloring of a complete graph on n vertices. Then in 1996, Graham, Rédl, and
Rucinski [6] found it natural to extend the problem of “determining the minimum
number under any 2-coloring” to Schur triples. In fact, Graham offered a prize of
100 USD for an answer to such a question; it has subsequently been successfully
answered many times over, in an asymptotic sense. In order to give some more
context to this problem, we first introduce some additional notation.

We start by wondering about what we can say about the number of MSTs on
[n] if we do not prescribe a particular coloring. It is not difficult to calculate that
there are exactly ¥/ i = n(n — 1) = (}) Schur triples on [n]. Trivially, this yields
an upper bound for the number of MSTs, which can be achieved by coloring all
numbers with the same color. This is the reason why it is more natural (and more
interesting!) to ask for a lower bound for M(n, ), that is: for given n € N, what is the
“best” lower bound for the number of MSTs regardless of the choice of coloring? Of
course, 0 is a trivial such lower bound, but we are aiming for something sharp, in the
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sense that for each n there exists a coloring for which this bound is actually attained.
Differently stated, we are looking for the minimal number of monochromatic Schur
triples among all possible colorings of [r]:

M(n) := min  M(n, x). 2)
X }

: [n]—>{R,B

For example, for n = 6, one cannot avoid the occurrence of monochromatic Schur
triples, but there exists a 2-coloring for which only a single such triple occurs,
namely the triple (1, 1,2) for the coloring RRBBBR. Therefore, we have M(6) =
M(6, RRBBBR) = 1.

As mentioned before, this problem was only studied from an asymptotic point of
view: Robertson and Zeilberger [9] was first to give the lower bound %nz + O(n)
as n — oo (and consequently won Graham’s cash prize), where it has to be noted
that they count only Schur triples (x, y, x + y) with the condition x < y imposed.
This lower bound was independently confirmed by Datskovsky [3], Schoen [10],
and Thanatipanonda [13]. Schoen also provided a proof of an “optimal” coloring
of [n] that would give such a minimum number, and such a coloring is what we
assume later in this paper. The asymptotic lower bounds for the generalized Schur
triples case (x, y, x + ay) fora > 2 is mnz + O(n) as n — oo, without the
requirement of x < y. This was conjectured by Thanatipanonda [13] and Butler,
Costello, and Graham [1], and subsequently proven in 2017 by Thanatipanonda and
Wong [14].

In this paper, we take a slightly different approach by using known computer
algebra techniques and creative simplifications to develop exact formulas for the
minimum number of such triples (in both the Schur triples case and the generalized
Schur triples case) and give an analysis of the transitional behavior between the
cases. Thus, in order to keep some consistency for comparison, we will remove the
assumption of x < y when counting MSTs. In this way, we can explain why the
behavior of the minimum number of triples jumps when moving from the case a = 1
to the case a > 2 (note that the above asymptotic formula does not specialize to the
expected prefactor ﬁ when a = 1 is substituted).

The overall plan is to systematically exploit the full force of symbolic computation
and perform a complete analysis of determining the minimum number of monochro-
matic triples (x, y, x + ay) in both the discrete context (a € N) and the continuous
context (a € R*). This requires three courses of a mathematical meal. We serve an
appetizer in Section 2, showing how to derive an exact formula for the minimum in
the classic Schur triple case (corresponding to a = 1 in the general equation). This
sets us up for the main course in Section 3, where we perform a full analysis for
a > 0, illustrating that a global minimum can always be found. Interesting transi-
tional behaviors occur at many locations for a € (0, 1) and one key transition occurs
at a = 1.17. Admittedly, this course may be a bit difficult to swallow, and we hope
that the reader will not suffer from indigestion. For dessert, we follow the procedure
described in Section 2, and illustrate how it can systematically produce (ostensibly,
an infinite number) of exact formulas for the minimum number of generalized Schur
triples. Accordingly, in Section 4, we leave the reader with exact formulas for the
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Fig. 1 All M(33) = 87 monochromatic Schur triples for s = 12 and ¢ = 30 with corresponding
coloring R'?B'8 R3; each triple (x, y, x + y) is represented by a dot at position (x, ). The vertical
lines are given by x = s, x = ¢, and x = n, the horizonal ones by y = s,y = ¢, and y = n. The
three diagonal lines visualize the equations x + y = s, x+y =f,and x +y = n.

minimum number of generalized Schur triples for a = 2,3,4, and a = %, with the
hope that s/he will leave satisfied.

For the reader’s convenience, all computations and diagrams are in the Mathe-
matica notebook [7] that accompanies this paper, freely available at the first author’s
website. This material may also be of independent interest, since we believe that also
other problems can be attacked in a similar fashion, see for example the recent study
on the peacable queens problem [16].

2 Exact lower bound for monochromatic Schur triples

It has been shown previously [9, 10] that for fixed n the number M(n, x) is
minimized when y consists of three blocks of numbers with the same color (“runs”),

i.e., when y is of the form R*B'~SR"™" where s and ¢ are approximately %n and

}—On, respectively. In this section, we derive exact expressions for the optimal choice

of s and ¢, as well as for the corresponding minimum M(n).

Lemmal Let n,s,t € N be such that 1 < s <t < n. Moreover, assume that the
inequalities t > 2s and s > n — t hold. Then the number of monochromatic Schur
triples on [n] under the coloring R®B'™S R"™, denoted by M(n, s, 1), is exactly

s(s=1) N (t=28)(t—-2s-1)

Mi(n, s, t) = > >

+(n-t)n—-t-1). 3)
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Proof In Figure 1 the situation is depicted for n = 33, s = 12, and ¢ = 30. One sees
that the dots representing the MSTs are arranged in four regions of right triangular
shape. The triangles arise as follows:

1. The dots in the lower left corner correspond to red MSTs, whose components are
taken from the first block of red numbers; hence there are s — 1 dots in the first
row of this triangle.

2. The central triangle contains all blue MSTs, whose first two components (x, y)
satisfy the inequalities x > s,y > s, and x+y < . Note that such MSTs only exist
ift > 2s +2 (fort = 2s + 1 and ¢ = 2s the second term in (3) vanishes and the
formula is still correct). The number of dots on each side is therefore t — 25 — 1.

3. The two triangles in the upper left and lower right corners correspond to red MSTs,
whose first two entries belong to different blocks of red numbers. By symmetry
they have the same shape and they have n — ¢ — 1 dots on their sides. Here we
use the condition s > n — ¢, because otherwise these two regions would no longer
be triangles and we would be counting different things beyond the scope of our
assumptions.

Adding up the contributions from these three cases, one obtains the claimed for-
mula. O

The optimal values for s and ¢ are easily derived using the techniques of multi-
variable calculus, once the form RS B'™*R"™ is assumed: by letting n go to infinity
and by scaling the square [0,7]*> c R? to the unit square [0, 1]*, we see that the
portion of pairs (x, y) € [n]? for which (x, y, x + y) is an MST among all pairs in [n]?
equals the area of a certain region in the unit square; for example, see the shaded
regions in Figure 1. In this limit process, the integers s and ¢ turn into real numbers
satisfying 0 < s < ¢ < 1. According to (3) the area of the shaded region in Figure 1
is given by the formula

2 2 2 2 2
t—2 1—1t¢ 5 3t
A(s,t)=%+( ZS) +2. 2) =%+7—2st—2t+1.

Equating the gradient

0A 0A
(E’ E) =(5s-2t,3t-2s-2)

to zero, one immediately gets the location of the minimum (s, ¢) = (ﬁ, %)

Lemma 2 For fixed n € N, the integers so and to that minimize the function M(n, s, t)

are given by
|52 e e |
S0 = 11 an 0= 11 .
Proof Strictly speaking, we prove the minimality of the function M(n, s, t) under
the additional assumption t > 25 As > n—¢ from Lemma 1. The fact that this is also
the global minimum for all 1 < s < ¢ < n follows as a special case from the more
general discussion as described in the proof of Lemma 4.
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The statement is proven by case distinction into 11 cases, according to the remain-
der n modulo 11. Here we show details for the case n = 11k + 5, and the remaining
cases can be similarly verified with a computer; for these cases we refer the reader
to the accompanying electronic material [7].

By setting n = 11k + 5 we can eliminate the floors from the definitions of sg
and fy; we obtain sy = L1—11(4n +2)] =4k +2and ty = L%n] = 10k + 4. Our goal is
to show that among all integers i, j € Z the expression M(n, s + i, fo + j) is minimal
fori = j = 0. Using (3) one gets

1
M1k +5,4k +2+0, 10k +4+j) = 5(2+5i+5i2—3j—4ij+3j2+ 12k +22K%).
The stated goal is equivalent to showing that the polynomial
pli, j) = 5i + 5> —3j — 4ij +3j°

is nonnegative for all (i, j) € Z>. Such a task can, in principle, be routinely executed
by cylindrical algebraic decomposition (CAD) [2]. In this method, the variables
i and j are treated as real variables, which causes some problems in the present
application. The reason is that p(i, j) > 0 does not hold for all i, j € R. The situation
is depicted in Figure 2, where the ellipse represents the zero set of p(i, j) and its
inside consists of values (i, j) for which the polynomial p(i, j) is negative. To our
relief, we see that no integer lattice points lie inside the ellipse, since such points
would be counterexamples to our claim.

Our strategy now is the following: we prove that p(i, j) > 0 for all integer points
that are close to (0,0), e.g., for all (i, j) with =2 < i < 2 and -2 < j < 2. These
points are shown in Figure 2, with the respective value of p(i, j) attached to them. In
particular, we see that the minimum p(i, j) = 0 is attained several times, namely on
the three points that lie exactly on the boundary of the ellipse.

Then we invoke cylindrical algebraic decomposition on the formula

Vi,jeR: (=2<i<2A-2<j<2)Vp(,j) =0, )

which states that if the point (i, j) lies outside the square that we have al-
ready considered, then p(i, j) > 0 holds. Calling the Mathematica command
CylindricalDecomposition with input (4), we immediately get True. O

We are ready to state the main theorem of this section, which is an exact formula
for the minimal number of MSTs for any 2-coloring of [n]. Apart from the asymptotic
results mentioned in Section 1, there is only one paper [10] where a similar result is
stated, but only for the case n = 22k and for Schur triples (x, y, x + y) with x < y. In
contrast, we consider all x, y € [n] and our formula holds for all n € N.

Theorem 1 The minimal number of monochromatic Schur triples that can be at-
tained under any 2-coloring of [n] is

n2—4n+6J

M(”)Z[ 1
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Fig. 2 Zero set of the polynomial p(i, j) from Lemma 2 and its values at integer lattice points
(i,j) € 7%,

Proof Asin Lemma 2, we argue by case distinctionn = 11k + ¢, 0 < € < 10. Using
S0 = Lﬁ(4n +2)] and 19 = [%nj from the lemma, we obtain the following values
for M(n, s, tp):

£ =0: M(11k, 4k, 10k) = 11k* - 4k = L -4n)

£=1: M(11k + 1,4k, 10k) = 11k* - 2k =L -4n+3)
£=2: M(11k + 2,4k, 10k + 1) = 11k? =L@ -4n+4)
=3 M(11k + 3,4k + 1,10k +2) = 11k*> + 2k =L -4n+3)
C=4: M(11k +4,4k + 1,10k +3) = 11k*> + 4k = L(n? - 4n)

€=5: M(11k + 5,4k + 2,10k +4) =11k +6k +1 = & (n* —4n +6)
€=6: M(11k +6,4k + 2,10k +5) =11k*+8k+1 = {(n® —4n-1)
€=T7: M(11k + 7,4k + 2,10k +6) = 11k* + 10k +2 = & (n* —4n + 1)
€=8: M(11k +8,4k +3,10k +7) = 11k* + 12k +3 = & (n* —4n+1)
€=9: M(11k + 9,4k +3,10k +8) = 11k* + 14k +4 = L (n* —4n-1)
€=10: M(11k + 10,4k + 3,10k +9) = 11k? + 16k + 6 = - (n> — 4n + 6)

One easily observes that in each case, the result is of the form l—ll(n2 —4n)+ 6., where
—ﬁ <o < % holds for all £. Hence the claimed formula follows. ]

The first 25 terms of the sequence (/\/((n))nZl are
0,0,0,0,1,1,2,3,4,6,7,9,11, 13, 15, 18, 20, 23, 26, 29, 33, 36,40, 44,48, . . .

We have added this sequence to the Online Encyclopedia of Integer Sequences [12]
under the number A321195.
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Fig. 3 Regions (in red and blue) corresponding to monochromatic generalized Schur triples for

a= %, s = %, t= % (leftyanda =2, s = %, t= % (right); their area being measured by A(s, t, a)

from Lemma 3.

3 Asymptotic lower bound for generalized Schur triples

We now turn to generalized Schur triples, i.e., triples (x, y, z) subjectto z = x +ay
for some parameter a € N, as studied by Thanatipanonda and Wong [14]. Here, we
allow a to be even more general, i.e., a € R*. Consequently, we have to adapt the
definition of generalized Schur triples: we use the condition z = x + |ay]. The case
a < 0 does not add new aspects to the analysis, as it can be transformed to the a > 0
case by exchanging the roles of x and z and by changing the floor function to a
ceiling.

Again, we choose to use the assumption that the minimal number of monochro-
matic generalized Schur triples (MGSTs) occurs at a coloring in the form of three
blocks R* B'~¥ R"~'. We justify using this assumption with the experimental evidence
of Butler, Costello, and Graham [1] (who argued for the generalized Schur triple case
a > 1) and adapting the intuition in the argument of Schoen [10] (who only argued
for the Schur triple case a = 1).

We would like to know for which choice of s and ¢ (depending on n and a) the
minimum occurs. Similar to the previous section, we let n go to infinity and correlate
the number of MGSTs with the area of polygonal regions in the unit square. We
then define a function A(s, f, a) that determines this area, and minimize it. Hence,
throughout this section, s and ¢ are real numbers with0 < s <t < 1.

Figure 3 shows two situations for different choices of a, s, . In contrast to the pre-
vious section, we do a very careful case analysis and do not impose extra conditions
on s and ¢ as in Lemma 1, at the cost of introducing a “few” more case distinctions.
The full case analysis for normal Schur triples then follows by specializing to a = 1
in the resulting formulas.

In the process of analyzing the different cases, we encounter several conditions on
a, s, t. For our referencing convenience, we distinguish these conditions here using
the following abbreviations:
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G
G
Cs
&
Co
Cii
Ci3
Cis

1-as >0,

l—as—t>0,
t—as—s >0,
l—at—-s5>0,

1-a>0,
s—a>0,
t—a>0,
s—at >0,

G
Cy
Cs
Cs
Cio
Ci2
Cus
Ci6

l-as—s5s>0,

t—as >0,
1—at >0,
l—at—-t>0,

)
l-a-s5s>0,
l-a-1t>0,

t—a—-s>0,

t—at—s>0.

In Figures 5 and 6, the lines that represent some of these conditions are depicted.
They split the triangle 0 < s < t < 1 into several regions, depending on the value

of a.

Lemma 3 Let a,s,t € Rwitha > 0and 0 < s <t < 1. Then the area A(s,t,a) of

the region

{(x, y) eR?: (x,y,x +ay) € ([0, s]U (1, 1])3 V (x, ¥, x +ay) € (s, t]3}

is given by a piecewise defined function, where 70 case distinctions have to be made.
For the sake of brevity, only the first 17 cases are listed below, since they will be the
most important ones in the subsequent analysis; in fact they are sufficient to describe
A(s, t,a) for a > 1. We label the region corresponding to the i-th case as (R;). They
are expressed in terms of the conditions (5) (where overlines denote negations):

conditions on a, s, t

A(s, t,a)

(R)) C
(R) C3ACsAGe
(R3) C3ACyACe
(Ry) CACyAGs
(Rs) Gy ACyACs
(Rs) CiIACyACsACs
(R7) G ACSAC4ACs
(Rg) CrAC3ACyACs
(R)) C2AC3AC4ACe
(Ri9) C3ACsACoACy

s2=2ts+2s+12=2t+1

2a

2as*+2s*+2as—4ats—2ts+t>

2a

—a’s’+2as*+2s*+2as—2ats=2ts

2a

s2+2as—2ats—2ts+2s+212=2t

2a

—a?s2+s242as -2t s+2s+a’t>+12=2ar -2t +1

2a

—a?s?+s2+2as5—2ts+2s+1> =2t

2a
a?s2+2as2+2s%2ats—2ts+2t> =2t +1
2a
2as*+2s*2ts+a’t>+1>—2ar-2t+2
2a

2as2+2s2=2ts+12-2t+1

2a

2as2+2s*+2as—4ats=2ts+a’t>+t>=2at +1

2a
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(Rll) C3 A C_4 A C6 A a —a2s2+2as2+2S2+2aS2—aQats—21s+a2t2—2at+1
(Rlz) C_4 A Cy (1+2a—az)sz+2s(1—22aat+a—t)+(at+t—1)2
(R13) C_4 A C7 A C_S —a2sz+2as2+s2-52aas—4ats—2ts+2s

(Rl4) Ci A Cg A C_9 (a2+2a+2)t2—21(3as+;;—s+1)+(s+1)(2as+s+1)
(RIS) C4 A C7 A C_S A FQ 2as2+S2+2as—26;1ts—2ts+25+t2

(Rig) CaACyACoACy xz+2as—2ats—21s+2zs;—a2t2+212—2at—21+1
(R17) G A C_3 ACy A C6 A Fg a2s2+2as2+2s2—2ats—22;s+a2t2+2t2—2at—2t+2

Proof As can be seen in Figure 3, the region whose area we would like to determine
is the union of several polygons. Let I} = [0, s], I = (s,¢], and I3 = (¢, 1] denote the
intervals that correspond to the different blocks of the coloring (/; and /3 being red
and I being blue). Then x, y € I) Ax+ay € Iy is allowed while x,y € I1 Ax+ay € I
is not. From this point on, we will refer to the case (x,y, x + ay) € I; X I; X Iy by
ijk. It is easy to see that we have to consider only seven cases: 111, 222, 113, 131,
133, 313, 333. The cases 311 and 331 are clearly impossible since x > ¢ contradicts
x + ay < s. All other combinations of 1,2, 3 violate the monochromatic coloring
condition.

In both parts of Figure 3, case 111 corresponds to the triangle that touches the
origin. The coordinates of its other two vertices are (s, 0) and (0, <), hence its area

is % -5 - . However, this is valid only for @ > 1. If @ < 1, then the point (0, 7) is
above the line y = s and so the top of the triangle is cut off. As a result, one obtains
a quadrilateral with vertices (0, 0), (s,0), (s — as, s), (0, 5), whose area is given by
%~s~(2s—as).

The case 222 is similar, with the difference being that the corresponding polygon
disappears if =% < s; in the right part of Figure 3 the polygon 222 is present while in
the left part it is not. The polygons 313,333, and 131 are characterized by comparably
simple case distinctions, while 133 and 113 require a much more involved analysis.
In Figure 4, we present such an analysis for 133, and refer to the accompanying
electronic material [7] for 113.

What we have achieved so far is a representation of A(s, 7, a) as a sum of seven
piecewise functions. However, what is required is a representation of A(s,t,a) as a
single piecewise function, since that will be needed for determining the location of
the minimum.

The conditions that are used to characterize the different pieces in Figure 4 (and
in the remaining cases that have not been discussed explicitly), are listed in (5). In
order to combine the seven piecewise functions, we need a common refinement of
the regions on which they are defined. We start with the finest possible refinement,
which is obtained by considering all 2'® = 65536 logical combinations of C; and
C; for 1 <i < 16. Using Mathematica’s simplification procedures, we remove those
cases that contain contradictory combinations of conditions, such as C; A C, for
example. After this purging, we are left with a subdivision of the set
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{(st,a):0<s<t<1Aa>0}cCR’, (6)

which is an infinite triangular prism, into 114 polyhedral regions. Finally, we merge
regions on which A(s, t, a) is defined by the same expression into a single region,
yielding a representation of A(s, 7, a) as a piecewise function defined by 70 different
expressions. Each of them is of the form % p(s, t, a) where p is a polynomial in s, ¢, a
of degree at most 2 in each of the variables. For more details, and to see the definition
of A(s, t, a) in its full glory, see the accompanying electronic material [7]. O

We have seen that the different domains of definition for A(s, 7, a) are polyhedra
in R3 (some of which are unbounded). In Figures 5 and 6 two 2-dimensional slices
of the set (6) for particular choices of a are shown. Note that in Figure 5 condition
Cs is not shown since it was eliminated in the process of merging regions on which
A is defined by the same expression. Moreover, Co = a < 1 is not visible since its
plane a = 1 is parallel to the depicted cross section a = 1.4.

Lemma 4 For a > 0, the minimum of the function A(s, t, a) (defined in Lemma 3) on
the triangle 0 < s <t <1,

m(a) := min A(s,t,a)
0<s<r<l

is given by a piecewise rational function, depending on a, according to the following
case distinctions (where we also give the location (s, to) of the minimum):

S0 fo m(a)
0<ac<a ;;‘:2)_“4 —fzi:icif —u4+22(c;33—_2aa_2:)6a—4
a1 <a<m % % %

@ <a<ao % Za?;f;;(i(;—z a6+2aa4(;142_a83a+_43a)2—1
mTase SFEUENL SESAET MRSERS
wsasoes GG e T
¥ = d < _4a33—a42;a—211a+1 4a734—a42a722—‘1+al+1 2(84‘537_4412227_541121)
wsasa 3 e ey
a7 <ac<l % (a:(17)£l4f4§1) *7a4+26aa23(;r221)—2a—1
1<ac<ag , (3a+l)22 ia+l)3(a2+22a+2) P a?—a+d
a*+2a’+3a>+2a+3  a%+2a’+3a>+2a+3  2a(a*+2a3+3a2+2a+3)

Here, the quantities «y, . .

., ag stand for the following algebraic numbers, where
Root(p, I) denotes the unique real root of the polynomial p in the interval I:
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(1) t<1/a<1/\1—at<s 2) t<l/a<l A(l-s)a>t

1
1/a
(I-s)/a
— t
0 s

1—at s

3) 0<l-a<sAl-at<s

(3.1) t/la<1 (3.2) t/la>1
1-a
1 | |
t = [
o t—at l—at s t—at l—at s
4 O0<l-a<sA(d-s)a>t

4.1) t/la<1 4.2) t/la>1

(1-s)/a
(1-s)/a
t—at t—at g
5) l—-a>s

(5.2) t/la<l A (t-s)/a>t

1
t/a
: (t-s)/a
0 A

(5.1) t/la<l At—-at<s

S

t—at g
(5.3) t/a>1/\t—at§s (5.4) tla>1 At<(@-s)a<l
t—a
1— 1+
(t—s)/a
t— t
t—at g 0 s

Fig. 4 Case distinctions for polygon 133, showing all possibilities of admissible regions in the top
left corner (depending on conditions for a, s, ¢). The empty cases (not shown) correspond to the

conditions 1/a <tort—a >s.
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t

S S S H S S S N S ST S I ST SRS .
P S

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5 Domains of definition of A(s, ¢, a) for a = 1.4, according to Lemma 3. Note that not all 17
cases listed in the lemma are present for this particular choice of a.

do 0.2 04 06 08 1.0

\/

Fig. 6 Domains of definition of the area function A(s, ¢, a) for a = 0.44.
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a1 = 0.295597... = Root(a® + a® + 3a - 1,[0, 1]),
@ = 0.395065... = Root(a® — 9a* +a + 1,[0, 1]),
a3 = 0.405669... = Root(2a* - a® - 6a* + 1,10, 1]),
s = 0.553409... = Root(12a* — 154> - 24a* + 5a + 6,[0, 1]),
a@s = 0.622179... = Root(4a’ — 8a* — 3a + 4,0, 1]),
@6 = 0.647363... = Root(8a” + a — 4,]0,1]) = & (V129 - 1),
a7 = 0.931478... = Root(7a’ - 5a - 1,0, 1]),
(

ag = 1.174559... = Root(a’ + a* - 3,[1,2]).

Proof We locate the minimum in a similar fashion as in Section 2, by identifying
points (s, 1) where the gradient of the area function A vanishes. What complicates
our task is the additional parameter a. Since A is defined in pieces, it may not be
differentiable at the boundaries between different regions, and therefore, we should

be aware that such locations could contain the minimum. For each region (R;),
1 <i <70, on which A(s, 1, a) is defined, we perform the following steps:

* compute the gradient (%, %),

 find all points (s, r) where the gradient is zero, and

« for each such point determine for which values of a it actually lies in (R;).

On the region (R;) from Lemma 3, the gradient of A is é(s —t+1,t—s5—1), which
vanishes on all points (s, s + 1); however, since the region (R;) is characterized by
Ci=s> é (and the general condition s < ¢ < 1), one sees that none of these points
lie in it. Continuing in this manner, we find that in each of the regions (R,) — (R70)
there is exactly one point (s,¢) for which the gradient of A vanishes, but in most
cases this point lies outside the region for all a. For example, on (R;) the gradient is
%(Zas —2at +2s —t+a,t—2as — s), which equals zero for

a aa+1)
4a2 +2a-1"4a% +2a -1

(s,1) = (7

In order to find the values of a that give us that (s, ) € (R;), the conditions defining
(Ry) (plus the global assumptions) need to be satisfied, namely:

as+t<1 At>as Nat>1 AN O<s<t<l.

After substituting s and ¢ with the right hand side of (7) and clearing denomina-
tors, one gets a system of polynomial inequalities, involving only the variable a.
Cylindrical algebraic decomposition simplifies it to

a > Root(2a® - 3a* - 2a + 1,[1,2]) = 1.889228559...
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A
0.5 N

I 4 TR — 1

r 0.5 1.0 1.5 2.0 25 3.0

Fig. 7 Plot of A(s, t, a) on the 17 different intervals of a identified from the 17 local minima in
the proof of Lemma 4 for 0 < a < 3; the shading under the graph indicates the main 10 intervals
that are needed to describe the global minimum function m(a).

Hence, for each a satisfying this condition we have a local minimum at the point
given in (7).

We proceed in similar fashion and identify 17 local minima, each occurring only
for a in a certain interval. Some of these intervals partly overlap, which means that
we have to study a subdivision of the positive real line that is a refinement of all 17
intervals. When two functions intersect in the interior of an interval, it is split into
two subintervals. CAD is once again employed to find the smallest among the local
minima; this is done individually for each of the refined intervals. As a result, we
obtain the piecewise description of the function m(a) given above; see Figure 7 and
the accompanying electronic material [7] for details.

It is clear from construction that A(s, ¢, @) must be a continuous function, since
the admissible polygons (shaded regions in Figure 3) cannot jump or disappear if the
parameters a, s, t are changed infinitesimally, i.e., if the lines in Figure 3 are shifted
or slanted by a little bit. In contrast, it is not obvious why it should be differentiable.
Therefore, there is a possibility that the minimum can occur where the derivative
does not exist. Hence, it is necessary to study the values of A(s,f,a) along the
boundaries of the different domains of definition. To accomplish this task, we view
A as a bivariate function in s and ¢, with a parameter a. For each inequality in the
list of conditions (5), the corresponding equation defines a line in R?. For each such
line, we proceed to determine the range of a for which the line intersects the triangle
0 < s <t < 1. On the resulting line segment, the pieces of A(s, t, a) are given by
univariate polynomials, still involving the parameter a. Equating their derivatives
to zero, we find all of the local minima on this line segment, which could give rise
to local minima of A(s, 1, a). After looking at all 16 lines, each of which splits into
at most 70 segments, we find 225 candidates for minima. CAD confirms that none
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of them are actually smaller than the one given by m(a). This fact also becomes
apparent by plotting these candidates against the function m(a), as shown in Figure 8
(top part).

Finally, we should also check all points where any two lines defined by (5)
intersect. We find 54 points that lie inside the triangle 0 < s < r < 1, at least
for certain choices of a. The value of A(s,t, a) at a particular point is given by a
piecewise function depending on a. Assembling all pieces for all points, we obtain
348 cases. For each of them, CAD confirms (rigorously!) that the value of A(s, t, a)
does not go below m(a). A “non-rigorous proof” of this fact is shown in Figure 8
(bottom part).

Summarizing, we have shown that, for each particular choice of a > 0, the
minimum of the function A(s, f, a) on the triangle 0 < s < ¢t < 1 is given by m(a),
and we have determined the location (sy, #y) where this minimum is attained. This
immediately establishes an asymptotic lower bound for MGSTs on[#n], as n goes to
infinity. O

We wrap up this section with some remarks on the consquences of Lemma 4 and
on what appears to be erratic (jumpy) behavior for some values of a in Figure 8.
We assure the reader that it is not due to the amount of alcohol that was consumed
throughout this meal, but rather an indication of the appearance and disappearance
of certain admissible regions for the MGSTs as a changes.

First, we would like to note that Lemma 4 explains why the asymptotic formula
for MGSTs for integral @ > 2 givenin [1, 13, 14] does not specialize to the previously
known case a = 1: this phenomenon is due to the piecewise definition of m(a), with
a transition at 1 < ag < 2. Geometrically speaking, ag marks the point where the
polygon 133 (see Figure 3) disappears, when a increases from 1 to 2, and s = so(a)
and 1 = fo(a) are updated constantly.

A second interesting finding that follows from Lemma 4 is that there is a jump
of (so(a), 10(a)) at a = a4 = 0.5534...; the function m(a) however is continuous. In
Figure 7 one sees that at a = a4 the functions of two local minima intersect, and
therefore this point marks the jump from one branch to another one. In Figure 9 the
situation is shown for two different values of a close to a4: while the shaded area
in both parts of the figure is almost the same, the values of s and ¢ change quite
dramatically. We invite the reader to play with such transitions in the accompanying
electronic material [7].

In the next section, we bring up the fact that the coloring pattern of three blocks
that we generously assumed for a > 0 does not actually give the global minimum
on 0 < a < 1 over any 2-coloring of [r] and we take care to emphasize this in the
statement of the theorems. This will therefore explain the erratic behavior at a = 1
in both graphs of Figure 8.
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Fig. 8 Global minimum of A(s, #, a) (red curve) compared to potential minima along lines (green
curves, top part) and potential minima on intersection points (blue curves, bottom part).

4 Exact bounds for generalized Schur triples

In this section we apply the results from the last section, i.e., from the continuous
setting, to the discrete enumeration problem of monochromatic generalized Schur
triples (MGSTs). Hence, s and ¢ are now integers with 1 < s < ¢ < n that describe
the coloring R* B'~*R"" of [n]. Throughout this section we use the convention that
a sum whose lower bound is greater than its upper bound is zero, i.e.,

if(x): SO+ 1) 5]
pou , ifi > j.

Analogous to Section 2 we use the notation M%) to count MGSTs. More precisely,
we define M@ (n, s,t) and M@ (n), as follows:
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MO, s,0):= [{T = (x,y,x + lay]) € [n]* :
Te(slu{t+1,...n})°vTe{s+1...1}°}
MD(n):= min MYD(n,s,1).

1<s<t<n

In contrast to the previous section, we will now mostly look at special cases for a,
since we cannot hope to get an exact formula for the minimal number of MGSTs for
general a € R*.

Lemma5 leta € Rwitha > 1 and let n,s,t € Nwith1 < s <t < n. Fur
thermore, assume that the inequalities as +t > n, t > as, and s + as < t
hold. Then the number M@D(n,s,t) of monochromatic generalized Schur triples

of [n] under the coloring R* B~ R"~" is given by

Ls/a] s—lay] [(t=s)/a] t-lay] l(n=t)/a] n-lay] ln/a] n—lay]
YD IR S YD D U SR Y §
y=1 x=1 y=s+1 x=s5+1 y=1 x=t+1 y=t+1 x=1

Moreover, the explicit list of these MGSTs (x,y, x + |ay]) can be directly read off
from the above formula.

Proof Under the given assumptions, we have to consider monochromatic triples of
types 111,222,313, and 133, see, e.g., Figure 3. Obviously, the four sums correspond
exactly to these four cases. Note that if at > n, then the case 133 is not present,
which is reflected by the fact that the corresponding sum is zero in this case. O

The assumed inequalities in Lemma 5 tell us that we are either in (R;) (when
at > n) orin (Ry7) (when at < n); these regions were introduced in Lemma 3. Recall
ag = 1.174559... from Lemma 4, and also that the global minimum of the area
function A(s, ¢, a) is located in (R7) (when a > ag) orin (R;7) (when 1 < a < ag).

Theorem 2 The minimal number of monochromatic generalized Schur triples of the

form (x,y,x + 2y) that can be attained under any 2-coloring of [n] of the form

RSB SR" 1 js

n* —10n + 33
44

M<2)(n) — {

Proof For a = 2 we clearly have ag < a, and by Lemma 4 it follows that the optimal
choice for s and 7 is expected around the point

a+1 a+2a+2 : 3n 10n
a2+2a+3 a2+2a+3) \117 11 )"

The three conditions 25 + ¢ > n, t > 2s, 3s < t are satisfied (at least for large n), and
therefore we can use Lemma 5 to compute the exact number of MGSTs:
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Ls/2]s=2y L(—s=1)/2] =2y l(n=1)/2] n=2y
M(Z)(n,s,t):ZZI + Z 21 + Z Zl:
y=1 x=1 y=s+1  x=s+1 y=1  x=t+1

N e e

From now on, we proceed in an analogous fashion as in the proofs of Lemma 2 and
Theorem 1. Empirically, we find that for each n € N, the minimum of M(z)(n, s, 1) is
attained at

S0 =

11 11 0, otherwise.

3n+1J {an {—1, if n = 22k + 10,

) o = +

When we plug in so + i and #y + j into the above formula for M(z)(n, s, 1), we need
to make a case distinction n = 22k + ¢ for 0 < ¢ < 21 in order to get rid of the
floors. Moreover, we need to distinguish even and odd i (resp. j). Evaluating and
simplifying

MP(22k + €, 50 + 2i1 +in,to + 2j1 + jo), 0<€ <21, in, j» € {0, 1},

we obtain 88 polynomials in iy, jj, k. Applying CAD individually to each of these
polynomials and by checking a few values explicitly (not unlike what we did in
the proof of Lemma 5), one proves that the minimum is indeed attained at (s, ).
Finally, one evaluates M (22k + ¢, so, t9) for all £ = 0,...,21 and finds that it is

always of the form 4l4 (n2 - 10n) + &g, where the values 6y, . . ., d»1 are

09421625621490355813 2 13 8 5 5 3

A T T 3 1134 1104 > £ 110 44 100 440~ 11 44 11 44 11 4

Since the largest value is % and since the smallest value is greater than —% (i.e., all
values 0, lie inside an interval of length 1), the claimed formula follows.

One last detail: we still have to examine for which » the conditions 2s + ¢ > n,
t > 2s, 3s < t are satisfied, as it could happen that for small n the point (sg, ) lies
not inside the correct region (R;7), due to the rounding errors. With the (somewhat
generous) assumptions 3'1“1'1 -1<s< 3']';'1 and 1]0—1" -2<t< 110—1" we find that the
above conditions are satisfied for all n > 25. For the remaining values n < 25, the
claimed formula can be verified by an explicit computation. O

Theorem 3 The minimal number of monochromatic generalized Schur triples of the
form (x,y,x + 3y) that can be attained under any 2-coloring of [n] of the form
Rthfs Rnft is

1, ifn =54k + 36,
~1, ifn =54k +30 or n = 54k + 42,

0, otherwise.

2 _
MO () = {MJ

108
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Proof For a = 3, it follows by Lemma 4 that the optimal choice for s and ¢ is
expected around the point

a+1 A +2a+2 4dn 17n
n- , ==, —].
a?+2a+3 a’?+2a+3 18 18

This means that the proof will require 18 - a = 54 case distinctions n = 54k + ¢ for
0 < ¢ < 53. Empirically, we find that for each n € N, the minimum of M®(n, 5, 1)
is attained at

rmJ 1, ifn=>54k + 18,
S0 = -
0 0, otherwise,

17 1, ifn=9k +iforie {3,4,7, 8},
f0 = {—”J 1o, ifn =54k + 18,
0, otherwise.

Applying CAD to the 486 polynomials
M54k + €, 50 + 3iy +in, fo + 3j1 + jo), 0 <€ <53, is jo€{0,1,2},

proves that our choice of (s, f9) locates the minimum. Evaluating M®)(n, so, to) for
n = 54k + ¢, one obtains ﬁ (n2 - 18n) + d¢, where 036 = 1, 39 = dap = —%, and all
remaining &, range from —2—17 to %. Hence, the claimed formula follows. O

Theorem 4 The minimal number of monochromatic generalized Schur triples of the
form (x,y,x + 4y) that can be attained under any 2-coloring of [n] of the form
RSB'SR"™ s

MO(m) = { 216

n? —28n+245J L ifn =108k +iforiel
0, otherwise,
where I = {0, 1,27,28,43,47,48, 53,58, 63,67, 68,69, 73,78, 83, 88, 89, 93}.

Proof For a = 4, it follows by Lemma 4 that the optimal choice for s and 7 is
expected around the point

a+1 a*+2a+2 S5n 26n
n- , ==, =]
a?+2a+3 a®+2a+3 27" 27
This means that the proof will require 27 - a = 108 case distinctions of the form

n =108k +¢ for 0 < £ < 107. Empirically, we find that for each n € N, the minimum
of M(4)(n, s, t) is attained at



Exact Lower Bounds for Monochromatic Schur Triples and Generalizations 21

y y

133 133
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0.4 04t
0.2 02
> X X
02 04 06 08 10 02 04 06 08 10

Fig. 9 The red and blue polygons correspond to monochromatic generalized Schur triples for
a=3,s=1.t=1 (leftyand a = 0.56, s = 0.377, ¢ = 0.841 (right).

-1, ifn =108k + 28,
+11, ifn=108k +ifori € {0, 87,103},

0, otherwise.

—1, ifn =108k +ifori € {28,33,38,43},
sen_3q| |b ifn=108k+i
to = {TJ + fori € {1,77,78,82,83,88,93,98, 104},
2, ifn =108k +i fori € {0,87, 103},

0, otherwise.

o = S5n—4
0= 1727

Applying CAD to the 1728 polynomials
MPB108k + €, 50 + 4iy +in,to +4j1 + jo), 0 < €< 107, iz, jo € {0,1,2,3},

proves that our choice of (s, f9) locates the minimum. Evaluating M®(n, so, to) for
n =108k +¢,0 < ¢ < 107, one obtains 108 polynomials of the form 5} (n> —28n) +
O¢. At this point, the analysis deviates a bit from the previous two theorems, because
we observe that the range of the computed 6,’s is much larger than 1. Therefore, we
would like to choose an appropriate interval to contain the largest number of 6, such
that we minimize the number of exceptional cases (i.e., the necessary corrections
resulting from applying the floor function to numbers that are out of range).

To accomplish this, we find that shifting all of the values down by % gives the
minimum number (19, to be precise) of d, that are not within range (i.e., not in
[0, 1)). We now realize that these are the values that give us our desired count, so we
add 1 to make sure it is recognized by the floor function. Hence, the optimal delta is
%96 +1= %g. Finally, for each of the nineteen d,’s that are out of bounds (in this
case, less than 0), we remove 1 and this gives us our claimed formula. O
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Theorem 5 The minimal number of monochromatic generalized Schur triples of the
form (x,y,x + I_%yj) that can be attained under any 2-coloring of [n] of the form
RSB'™SR"™ is given by

1, ifn =38k + 18 or n = 38k + 20,
+4-1, ifn=38k+19,
0, otherwise.

1522 + 72

Proof For a = % it follows by Lemma 4 that the optimal choice for s and ¢ is
expected around the point

-2a*+a+1 -2 +a*+4a+1)\ (4n 12n
43 +5a2+6a+1 —4a3+5a2+6a+1) \19° 19 |

For this choice of parameters we end up in region (Rg9) (see Figure 6). Under the
conditions that characterize this region, more precisely

n<t<2n/\t <n/\2<t
25153 PRy At
the number of MGSTs is given by
s s-1y/2] r 1=1y/2] s n-ly/2]
M(l/z)(n,s,t)zz Z 1+ Z Z 1+ Z Z 1+
y=1 x=1 y=s+1 x=s+1 y=1  x=t+l

s 2n-2t—1 n—|y/2]

FY Yy Y

y=2t-2s+1 x=t+1-|y/2] y=t+l  x=t+1

The five double sums correspond to the cases 111, 222, 313, 133, 333, respectively,
and the summation ranges are chosen such that they actually agree with the first two
coordinates of the monochromatic triples in question, see Figure 9.

In order to eliminate all floor functions, a case distinction n = 38k + £ is made. It
is conjectured that the minimum is attained at (s, ) = (so, fp) with

S0 =

4n+7J . {1, ifn =19 + 17,

19 0, otherwise,
. _{12n+6 1, ifn=19 +4,
0= 19 0, otherwise.

This conjecture is proven by case distinction and CAD, as in Theorem 2. As a final
result, one obtains the claimed formula, see [7] for the details. |

It has to be noted that all results presented so far in this section (Theorems 2-5)
are based on the assumption of the optimal coloring being of the form RS B'~*R"™".
While we have strong evidence that this assumption is valid for @ > 1 (and in fact
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we know it to be true [10] for @ = 1), it seems to be inappropriate for 0 < a < 1.
More concretely, we can construct explicit examples where we get fewer MGSTs for
a = % than predicted in Theorem 5: the first instance is n = 4, where Theorem 5
yields four MGSTs for the coloring RBBR, namely (1, 1, 1), (4, 1,4), (2,2,3), (2,3, 3),
but where the better coloring RBRB exists, that allows only three MGSTs, namely
(1,1,1),(3,1,3),and (2, 4, 4). Note, however, that this is not a counter-example to the
theorem because the coloring RBRB is not of the form RSB ~SR"",

We close this section by stating a conjecture about what we believe is the true
minimum for a = %
Conjecture I For n > 12, the minimal number of monochromatic generalized Schur
triples of the form (x, y, x + L% y]) that can be attained under any 2-coloring of [n]
is given by

s

n?+5
6

and it occurs at the coloring R* B'~* R*~' B"~* for

6 2 6

n+3J

n+lJ {5n+3
) u=

Curiously, the conjectured formula is not valid for n = 11, where it would give a
minimum number of 21 MGSTs with a four-block coloring. The true minimum is 20
and it is attained at the coloring RBRBBRRBRBB.

5 Conclusions and outlook

In this paper we have presented, for the first time, exact formulas for the mini-
mum number of monochromatic (generalized) Schur triples. We give such formulas
explicitly only for the few cases a = 1,2, 3,4, but we want to point out that we could
do many more special cases, say a = 5,6,7,... ora = % %, ..., based on the general
analysis carried out in Section 3. In fact, the proofs would be done in completely
analogous fashion, requiring only little human interaction, but an increasing amount
of computation time. In this sense, our paper contains a hidden treasure, which is an
infinite set of theorems that just have to be unveiled.

For future research, we propose to look more closely at the cases of generalized
Schur triples (x, y, x + [ay|) with 0 < a < 1. Our analysis is based on the assumption
that the optimal coloring that produces the least number of monochromatic triples
consists of three blocks. Computational experiments suggest that this assumption
is not valid for 0 < a < 1. For example, we believe that four blocks are necessary
to capture the minimum in the case a = % as conjectured in the previous section.
For some less nice rational numbers @ < 1 we were even not able to detect a block
pattern in the optimal coloring, but that may be an artifact due to the limited size of n
for which we can do exhaustive searches (note that there are 2" possible colorings).
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Our results are heavily based on symbolic computation techniques, such as cylin-
drical algebraic decomposition and symbolic summation. Often our proofs require
case distinctions into several dozens or even several hundred cases, and it would be
too tedious to check all of them by hand. The reader should be convinced by now
that symbolic computation can be very useful and that it could be adapted to solve
problems in other areas of mathematics. We provide all details of our calculations in
the supplementary electronic material [7], which we hope is instructive for readers
who would like to become more acquainted with the techniques that we used here.
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