
Approximation of convex polygons by polygons
Christoph Koutschan

RICAM
Austrian Academy of Sciences

Linz, Austria
0000-0003-1135-3082

Anton Ponomarchuk
RICAM

Austrian Academy of Sciences
Linz, Austria

Anton.Ponomarchuk@oeaw.ac.at

Josef Schicho
RISC

Johannes Kepler University
Linz, Austria

Josef.Schicho@risc.jku.at

Abstract—Motivated by the study of shallow rectifier neural
networks, we propose an algorithm that approximates a polygon
in the plane by an outer polygon with fewer vertices. The
algorithm minimizes the area locally in an iterative manner, and
hence is guaranteed to find a local minimum and not necessarily
the global optimum. Nevertheless, experiments indicate that in
practice it yields a reasonably good approximation.

Index Terms—ReLU network, convex polygon, shape approx-
imation

I. INTRODUCTION

The motivation of our study originates in the context of
machine learning, by the desire to acquire structural insights
into the functionality of neural networks by geometric reason-
ing. Deep neural networks have achieved superior results in a
number of tasks, such as pattern recognition, data generation,
compression. Despite such results, there is a lack of theory
concerning analysis and understanding from a structural math-
ematical point of view. Neural networks as they are used today
are hard to analyse leading to well-known black-box problems,
as for example explainability and instabilities related to ε-
perturbations in an adversarial setting.

Deep models specify the parameterized input-output func-
tion F of a network as multi-layered structure of computations.
It results from iteratively applying the composition of an
affine pre-activation function fk(zk−1) := Wkzk−1 + bk and
a subsequent component-wise application of the non-linear
activation function g : R → R, where z0 = x ∈ Rn (the
input data) and zk = g ◦ fk(zk−1) ∈ Rnk is the output of the
k-th layer and Wk ∈ Rnk×nk−1 denotes the weight matrix and
bk ∈ Rnk the bias vector in the k-th layer.

The choice of the activation function is an important design
question that influences the overall performance. The break-
through of deep learning was also related to this question by
utilizing the so-called rectified linear unit (ReLU), g(a) :=
max{0, a}, which avoids and rectifies the vanishing gradient
problem of previously preferred activation functions such as
sigmoid or tanh.

From the above definitions it becomes apparent that such
a ReLU network describes a function that is piecewise linear
on linear regions of the input space, since each row of the
Matrix W1, together with the corresponding entry in the vector

The research reported in this paper has been partly funded by BMK,
BMDW, and the Province of Upper Austria in the frame of the COMET
Programme managed by FFG in the COMET Module S3AI.

b1, defines a hyperplane in the input space, and similarly for
the subsequent layers, which finally induces a tesselation of
the input space. The maximal number of linear regions of
functions computed by a shallow (i.e. L = 1) ReLU network
with n inputs and n1 hidden units (that is, the number of
hyperplanes) is

∑n
j=0

(
n1

j

)
, but also for deeper networks this

number can be estimated and bounded [8], [9]. It is then
natural to separate these regions into those where the function
value is 0 and those where it is positive, corresponding to
a one-class classification problem, or in a more fine-grained
way, according to the activations of the hidden units [10].

Here, we focus on shallow ReLU networks, i.e., neural
networks with a single hidden layer (L = 1) and whose input
space is R2. It is not difficult to see that the union of linear
regions on which the function computed by the network is
zero, i.e., the 0-preimage of that function, is a convex polygon,
which is obtained by a finite intersection of half-spaces. That
means, if the network has n1 hidden units in the first layer,
then its 0-preimage is described by a polygon K with at most
n1 vertices. We study the question, how one can construct
a simpler network, i.e., one with fewer units, that behaves
as similar as possible compared to the original one. More
precisely, we ask for a network with smallest possible 0-
preimage that still contain the original 0-preimage K. Geomet-
rically speaking, we propose an algorithm for polygon shape
simplification. The algorithm provides an outer approximation
of a given polygon K with another polygon that has fewer
vertices.

The problem of convex shape approximation with respect
to pre-defined distance functions between convex polygons is
studied in [7], [11]. The authors in [11] explored the problem
of minimizing the volume of the symmetric difference of two
convex polygons K and K ′ under all possible scalings and
translations of K ′. Moreover, in [7] an algorithm is provided
that approximates a convex polygon K by another one with
smaller number of vertices by using the Hausdorff metric
as the distance function. In contrast to the construction of
outer convex polygon approximations, in [4], [7] approaches
for convex internal approximation are described. In [7] an
approach is presented that builds a convex inner polytope K ′

that approximates the given polytope K with a limited ratio
of volumes |K \ K ′|/|K ′|. More detailed information about
convex polytopes can be found in [3] and about polygon
approximation in [1].

II. METHOD

Given a convex bounded polygon K ⊂ R2, we denote by
V (K) ⊂ R2 the set of its vertices. A vertex v of K is a
point v ∈ K such that there exists a line ` with the properties
that `∩K = {v} and all other points of K lie completely on
one side of `. A line ` is called a supporting line of K if and
only if `∩K 6= ∅ but the half-space on one side of ` does not
intersect with K. Further, we denote by E(K) the set of lines
` that contain the edges of K. More precisely, E(K) contains
all supporting lines ` of K with the property |` ∩K| ≥ 2, or
equivalently |` ∩ V (K)| = 2.

For any convex set K ⊂ R2 the area of K will be denoted
by A(K). We denote by int(K) all interior points of K,
i.e., all p ∈ K such that p ∩ ` = ∅ for all ` ∈ E(K).
Similarly, by bd(K) we denote the boundary of K, i.e.,
bd(K) := K \ int(K). For two distinct points v, w ∈ R2, we
denote by line(v, w) the unique line going through v and w,
i.e.,

line(v, w) := {λv + (1− λ)w | λ ∈ R}.

For a vertex v ∈ V (K) of a convex polygon K, the family of
all lines that contain the vertex v but do not intersect int(K)
is denoted by L(v):

L(v) := {` ⊂ R2 | v ∈ `, ` ∩ int(K) = ∅}.

For our algorithm, we further assume that the vertices
V (K) = {v1, . . . , vN} are given in cyclic order. That is,
assuming we pick an arbitrary point p ∈ int(K) and rotate
line(p, v1) in clockwise direction around p, then it will meet
the points v2, . . . , vN in the given order. For sake of simplicity,
we impose that the indices behave according to this cyclic
order without making this explicit, i.e., we tacitly use the
convention that vN+1 = v1, v0 = vN , etc. The same
convention is applied to the set of lines E(K).

The main purpose of this paper is to introduce an algorithm
that approximates a bounded convex polygon K formed by
N edges by a convex polygon K∗ with a smaller number
of edges n < N . The algorithm that is proposed here takes
as input the cyclically ordered set of vertices V (K) and a
predefined number of edges n for the desired approximating
polygon. It starts by picking n lines from E(K) to form a set
of lines: E(K0) ⊂ E(K). The set E(K0) defines a convex
polygon K0, whose vertices are obtained by intersecting
neighboring lines from E(K0). K0 is the first approximation
of the polygon K. Then the algorithm checks whether by
rotating some line `j ∈ E(K0) around one of the vertices
vr, vr+1 ∈ V (K) with {vr, vr+1} ⊂ `j by a certain angle
ϕ ∈ (0, π) (see Fig. 1), we could transform K0 into a new
convex polygon K1 with the following properties:

A(K1) < A(K0), (1)
K ⊂ K1. (2)

Equations (1) and (2) signify that the generated polygon K1

has smaller area than K0, while it still contains the input
polygon K as a subset. More generally, we test this property

for all vertices vs, . . . , vt ⊂ V (K) in the polygon chain
between the two neighboring lines `j−1 and `j+1, that is,
`j−1 ∩ V (K) = {vs, vs−1} and `j+1 ∩ V (K) = {vt, vt+1}.
Fig. 1 shows an example, where this polygon chain is given
by the vertices vr−2, . . . , vr+3, the shaded area corresponding
to the polygon K. Our algorithm identifies, among all lines
` ∈ L(vs)∪ . . .∪L(vt), one that minimizes A(K1), where K1

denotes the polygon that is obtained from replacing `j in K0

by `. If it succeeds to find K1 with the properties (1) and (2),
then the algorithm continues with K1. If A(K0) cannot be
reduced by moving the line `j , then the algorithm proceeds
by picking another line from E(K0) and repeats the process
for this new line.

The algorithm continues to check the lines from E(K1)
whether one of them could be rotated in order to reduce the
area of K1. The check and update processes continues until for
some set of lines E(K∗) there does not exist a line ` ∈ E(K∗)
whose rotation would give rise to a polygon with smaller area.
This means that the current set of lines E(K∗) is (locally)
optimal and we cannot get a convex polygon with smaller
area than K∗ by rotating any one of its edges.

Summarizing, our algorithm (see Algorithm 1) builds a
convex n-gon K∗ with the following properties:

• n = |E(K∗)| < |E(K)|,
• K∗ ⊃ K,
• A(K∗) < A(K), and the area of K∗ is locally minimal

with respect to changing any one of its edges.

In Section II-A we provide information about the structure
of the algorithm’s input and output. In Section II-B we
give a detailed and step-by-step explanation of the algorithm.
Section II-C contains the main theoretical results that are
necessary for proving the algorithm’s correctness.

Fig. 1. This image captures a typical situation in the update step of
Algorithm 1. A line `j is picked and it is checked whether there exists a
line `′ ∈ L(vr) such that after replacing `j by `′ the resulting polygon Km

satisfies: A(Km) < A(Km−1) and Km ⊃ K. The maximal angle by which
the algorithm can rotate `j is denoted by φ. The grey shaded area indicates
the interior of the input polygon K.

A. Structure of input and output

Algorithm 1 takes as input a pair (V (K), n), where V (K) is
the ordered set of vertices of the input polygon K, and n ∈ N
denotes the number of edges of the desired approximating
outer polygon. We assume, that K is convex, that its interior
is non-empty, intK 6= ∅, and that A(K) <∞ so that K is a
bounded set.

First, Algorithm 1 initializes a convex polygon K0 by
selecting n lines from E(K), denote them by `1, . . . , `n,
such that these lines define a bounded polygon. Note that the
only situation where this is not possible is when we aim at
approximating a parallelogram by a triangle. This situation
could be treated as a special case, but is ignored in the
following for sake of simplicity. The set K0 then necessarily
has the property K ⊆ K0.

As output the algorithm returns an ordered family of lines
E(K∗) with |E(K∗)| = n. Each line in E(K∗) contains
an edge of output polygon K∗ that approximates the input
polygon K. Furthermore, the output polygon K∗ is convex
and bounded.

B. The algorithm

Here we present the algorithm, that builds for the convex
polygon defined in Section II-A, an outer convex polygon with
a pre-defined number of edges n. A pseudo-code listing of the
algorithm is given on page 4. Our algorithm is iterative: we
start with some outer polygon and try to make the error smaller
step by step.

We say that an outer polygon K∗ with n edges is locally
optimal if there is no convex polygon K ′ ⊃ K whose area is
smaller than the area of K∗ and such that K∗ and K ′ have
n − 1 edges in common. In other words, a locally optimal
polygon cannot be improved by changing a single supporting
line. Clearly, an optimal polygon is locally optimal, but the
converse is not true in general. Our algorithm computes only
a locally optimal polygon. A globally optimal solution would
be better, but quite complicated to compute, even for moderate
sizes of n (say, n = 20); at least, we could not think of an
algorithm that computes a global optimum efficiently. Note
that exhaustively trying all possibilities (when we impose the
restriction that the supporting lines of the solution should also
be supporting lines of the original polygon K) already leads to
a combinatorial explosion, as there are

(
N
n

)
such possibilities,

where N denotes the number of edges of K.
The idea of the algorithm is the following: we pick one of

the n support lines by random and rotate it around a point
which it shares with K, minimizing the area. This is a one-
dimensional problem which can be explicitly solved. Then we
mark the picked edge as “already optimized” and proceed
to the next edge. Additional care must be taken because
the problems are not independent: a change of the line also
changes the parameters of the two neighboring support lines.
So, if one line is changed, we may mark this line as already
optimized but we need to unmark the two neighboring lines.

The algorithm stops if all lines are marked. It is at this point
not so clear if this ever happens, because in each step we mark

one line but maybe we unmark two. This question is treated
in the next section.

Let us now consider the one-dimensional problem more
closely. Let us call the support line which we are allowed
to change the pivot line. Apparently, the optimal support line
depends only on the two neighboring support lines and on
the polygon chain that connects these two support lines. Any
vertex in this chain is a point around which we may rotate the
pivot line; we therefore call these points anchor points. For
any anchor point, there is an interval of possible choices of
the pivot line. It is bounded by the two lines supporting the
two edges attached to the anchor point.

The restriction to the interval determined by an anchor point
is a one-dimensional optimization problem where the objective
function is analytic, in particular differentiable. Indeed, we
have to optimize the area of a triangle where two of the
three lines and one point is given. We will later show that
this function has only one stationary point (i.e., a point where
the derivative of the objective function is zero), and in this
point, the given point is the midpoint a triangle edge. Since
the objective function is differentiable, we conclude that the
optimum is either achieved at a boundary or at a stationary
point. So, we have only three candidates for each anchor point.
Also, the left boundary point of one anchor point is the right
boundary point for the next anchor point.

In the examples we tested, the number of iterations is
finite. It would be nice to prove that this is always the
case, for instance as a consequence of the statement that
all candidates that are ever tested come from a finite set.
Indeed, the number of support lines that support an edge of
K is finite, which takes care of the candidates of the one-
dimensional problem on the boundary of intervals. For each
one-dimensional problem, there is only a single candidate in
the middle; however, the one-dimensional problems depend on
the neighbor support lines. For the cases where the neighbor
support lines are support lines of edges of K, or support lines
from the initialization, the number is still finite. But we also
have other support lines arising in the computation, namely
those that are itself optima in the interior of the interval.
Let us call these support lines swinging lines. We may have
potentially infinitely many candidates if – and only if – there
are two neighboring swinging support lines.

It is possible to construct examples with two neighboring
swinging support lines. Indeed, there are at most two swinging
support lines unless n = 3. But if there are two, then they
have to be neighbors. This can be seen as follows: a swinging
support line is only possible if the two neighboring support
lines form an opening angle, i.e., the sum of the two outer
angles of the pivot lines with the two neighboring lines is
bigger than π. But in a closed polygon, the sum of the outer
angles is always equal to 2π.

In order to achieve a finite set of possible candidates
(thereby ensuring the termination of the algorithm), we slightly
change the algorithm described above. If a situation with two
neighboring swinging lines is possible – which is checked
by computing the two sums of outer angles –, then we

avoid solving a one-dimensional optimization problem with
a swinging neighboring support line. Instead, we are solving
a two-dimensional optimization problem, optimizing the two
possible swinging lines simultaneously.

As we will prove in the next section, the two-dimensional
optimization problem also has just one unique stationary
point. Assume that the two pivot lines are `j and `j+1. The
neighboring lines `j−1 and `j+2 are fixed, and fixed is also
the anchor point v for `j and the anchor point w for `j+1.
According to Theorem 1 (see below), the area is minimized
if v divides the edge given by `j into two segments of equal
length, and similarly w for `j . Theorem 2 in the next section
states an explicit construction for two such lines. The other
possibility that needs to be checked is that the minimum is
attained at the boundary of definition.

C. Correctness of Algorithm 1

This section proves the correctness of Algorithm 1. We first
prove, that the optimal line through a vertex vr that minimizes
the area of the approximating convex polygon, is an element of
the set L(vr) that lies either at the boundary, or in the interior
at a very specific location. Since this very same construction is
used in Algorithm 1 this will imply that after the m-th update
step of the algorithm, the inner area of the approximating
convex polygon Km decreases, A(Km−1) > A(Km), and that
our choice is (locally) optimal.

Theorem 1. Let `j−1, `j , `j+1 ∈ E(Km−1) be three consec-
utive lines of a polygon Km−1 ⊃ K, such that some vertex
vr ∈ V (K) lies on `j , while its neighbor vr+1 does not.
Denote by aj+1 ∈ `j+1 ∩ `j and aj−1 ∈ `j ∩ `j−1 the
intersection points of the line `j with the other two lines.
Further let `′j := line(vr, vr+1) be the line through vr and
vr+1, and denote by a′j−1 ∈ `j−1 ∩ `′j and a′j+1 ∈ `j+1 ∩ `′j
the intersection points of this new line with the other two lines,
as depicted in Fig. 1.

The line `′′j ∈ L(vr) that minimizes the area of the
polygon Km, which is obtained by replacing `j in Km−1 by
`′′j , is one of the following three: `′′j = `j or `′′j = `′j or `′′j is
the unique line satisfying ‖vr − a′′j−1‖ = ‖vr − a′′j+1‖, where
a′′j−1 ∈ `j−1 ∩ `′ and a′′j+1 ∈ `j+1 ∩ `′.

Proof. Without loss of generality, we can assume that the point
vr is the origin (if not, we can translate our figure accordingly).
Let (x, y) and (x′, y′) be the coordinates of the points aj−1
and a′j−1, respectively. The unknown coordinates of a′′j−1 are
given by

(x′′, y′′) =
(
tx+ (1− t)x′, ty + (1− t)y′

)
(3)

for some real number t ∈ [0, 1]. Then the coordinates of the
points aj+1, a′j+1, and a′′j+1 are given by c · (x, y), c′ · (x′, y′),
and c′′ · (x′′, y′′), respectively, for some negative real numbers
c, c′, c′′. The colinearity of these three points is expressed by
the equation

(cx− c′′x′′)(c′y′ − c′′y′′) = (c′x′ − c′′x′′)(cy − c′′y′′). (4)

Algorithm 1: Convex polygon approximation
Input: V (K) – set of vertices of a convex polygon K,

n – number of edges to approximate the set K.
Output: family of lines that defines a locally optimal

n-vertex polygon.
Initiation: Select n lines from E(K) in cyclic order

(denote them by `1, . . . , `n) such that they
constitute a convex polygon.

1 Ein := {1, . . . , n}
2 while |Ein| 6= 0 do
3 j := sample(Ein)
4 `min := `j
5 Amin := area of the polygon formed by `1, . . . , `n
6 for each edge e in the polygonal chain connecting

the lines `j−1 and `j+1 do
7 ` := the support line of e
8 A := area of polygon with ` replacing `j
9 if A < Amin then

10 (`min, Amin) := (`, A)

11 for each vertex vr in the polygonal chain
connecting the lines `j−1 and `j+1 do

12 if `j−1 and `j+1 are non-parallel support
lines of edges in K then

13 ` := line in L(vr) such that vr is
equidistant to ` ∩ `j−1 and ` ∩ `j+1

14 A := area of polygon with ` replacing `j
15 if A < Amin then
16 (`min, Amin) := (`, A)

17 Ein := Ein \ {j}
18 if `min 6= `j then
19 `j := `min

20 Ein := Ein ∪ {j − 1, j + 1}
21 if ∠(`j−1, `j+1) > π and ∠(`j , `j+2) > π then
22 for each ordered pair of vertices vr, vs in the

polygonal chain connecting the lines `j−1 and
`j+2 do

23 p := ρvr (`j) ∩ ρvs(`j+1)
24 ` := line connecting vr and p
25 `′ := line connecting vs and p
26 A := area of the polygon K ′ with `, `′

replacing `j , `j+1

27 if K ⊆ K ′ and A < Amin then
28 `j := `
29 `j+1 := `′

30 Ein := Ein ∪ {j − 1, j + 2}
31 ` := line through vr−1 and vr
32 `′ := line in L(vs) such that vs is

equidistant to `′ ∩ ` and `′ ∩ `j+2

33 Repeat test in 26–30 (and analogously for
`′ := line through vs, vs+1 and ` ∈ L(vr))

34 Ein := Ein \ {j, j + 1}

Return: {`1, . . . , `n}

Our goal is to find the line `′′j ∈ L(vr) that minimizes the
area of the polygon that is obtained from Km−1 by replacing
`j by `′′j . The only parts of the polygon that are affected by
this change are the two triangles formed by {vr, aj−1, a′′j−1}
and {vr, a′j+1, a

′′
j+1}. As we rotate the line `′′j , one of these

triangles gets smaller while the area of the other increases,
and hence, we have to find the location for `′′j where the sum
of their two areas is minimal. Using (3) the latter is calculated
as follows:

1

2
det

(
x′′ x
y′′ y

)
+

1

2
det

(
c′x′ c′′x′′

c′y′ c′′y′′

)
=

1

2

(
x′y − x y′

)(
t (c′c′′ − 1) + 1

)
. (5)

We first look at the special case c = c′, which corresponds to
the lines `j−1 and `j+1 being parallel. In this case (4) implies
that c′′ does not depend on t and we have c′′ = c. Hence the
area is a linear function in t and therefore attains its minimum
at one of the boundaries of the interval [0, 1].

Next, we deal with the general case assuming c 6= c′. Using
(3), Equation (4) allows us to express t in terms of c′′ (note
that the line `′′j is uniquely determined by c′′):

t =
c (c′ − c′′)
c′′ (c′ − c)

.

Substituting this into (5) (and omitting the irrelevant factor of
1
2), we obtain the following objective function s(c′′), which
we will have to minimize:

s(c′′) = (x′y − x y′) · c′

c− c′
· (1− c

′c′′) c− (1− c c′′) c′′

c′′
.

By omitting the constant factor in front, and by taking the
derivative, we obtain the expression

c · (c
′′)2 − 1

(c′′)2
,

which vanishes for c′′ = −1 (recall that we assume c′′ to
be negative). But we have to take into account that not all
c′′ ∈ (−∞, 0) yield a line `′′j that lies in L(vr). More precisely,
c′′ must lie in the closed interval defined by c and c′. Hence,
the claim is proven by observing that the minimum is attained
at c′′ = c or c′′ = c′ or c′′ = −1 (the latter can only happen
if c ≤ −1 ≤ c′ or c′ ≤ −1 ≤ c).

We define the reflection of a point p across another point v
as follows:

ρv(p) := 2v − p.

The reflection of a line ` ⊂ R2 across a point v is then obtained
by reflecting all points of ` across v:

ρv(`) := {ρv(p) | p ∈ `}.

The following theorem tells us how we have to move two
neighboring swinging lines such that the area is minimized.
More precisely, we give a construction of the optimal inter-
section point of the two lines.

Fig. 2. Illustration for the proof of Theorem 2; the dotted lines are the
reflections of `1 and `4.

Theorem 2. Let `1, `2, `3, `4 be distinct lines in the plane such
that `1 and `4 are not parallel. Let v2 ∈ `2 and v3 ∈ `3. For
i, j distinct in {1, 2, 3, 4}, let pij denote the intersection point
of `i and `j (undefined if the lines are parallel), see Fig. 2.
Assume that

‖v2 − p12‖ = ‖v2 − p23‖, (6)
‖v3 − p23‖ = ‖v2 − p34‖ (7)

hold. Then p23 is the intersection of ρv2(`1) and ρv3(`4).

Proof. Condition (6) can be reformulated as

ρv2(p23) ∈ `1, (8)

i.e., if we reflect the point p23 across v2 we must land on `1.
Applying the involution ρv2 on both sides of (8), we obtain
p23 ∈ ρv2(`1). Doing the same reasoning on condition (7), we
obtain p23 ∈ ρv3(`4). The claim follows.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The natural question to ask now is: how well does our
algorithm perform in practice? We have already noted that the
Algorithm 1 finds a local minimum and is not guaranteed to
deliver the global minimum. Indeed, one can easily construct
examples where the algorithm gets stuck in a local minimum.
An example where a hexagon is to be approximated by a
triangle is displayed in Fig. 3: clearly none of the three lines
can be moved to a neighboring edge without increasing the
area of the dashed triangle. In order to move to the global
minimum, all three lines would have to be moved at the
same time. This example illustrates another phenomenon: the
error that our algorithm produces cannot be bounded by the
error of the optimal solution. In the example, if we make
the short edges of the hexagon shorter and shorter, the error
of the optimal solution goes to zero, while the error of the
unfavorable local minimum basically stays the same.

Luckily the example from Fig. 3 is a very degenerate one,
so that we can hope that our algorithm performs better on
more generic examples. We carried out some experiments
where we aim at approximating a polygon K with 10 vertices

Fig. 3. Example of a locally optimal solution that is far away from the global
optimum.

by a simpler one. For this purpose, we randomly generated
convex 10-gons and compared the solution of our algorithm
with the “optimal” solution. The latter was found by a brute-
force approach, trying all ordered subsets of E(K) that formed
a convex bounded polygon. The results for n = 3, 5, 7 are
displayed in Figs. 4 and 5, where we define the approximation
error to be the area of the approximating polygon divided by
the area of the original polygon K.

Some interesting phenomena occur here. The most striking
observation is that in the case n = 3, the approximation error
of our algorithm is often smaller than the one of the brute-
force algorithm. This can be explained by the occurrence of
swinging lines, which the brute-force algorithm does not take
into account. For n = 5 we see that our algorithm overshoots
the area of K up to 13%, while the error of the optimal
solution is between 10% and 12% in our sample set. We note
that for more than half of the samples (51 out of 100), the
output of our algorithm is as good as the solution of the brute-
force algorithm. For n = 7 the approximation error becomes
smaller in general, as expected, and our algorithm gets closer
to the optimal solution.

In contrast to the above experiments, a polygon approxima-
tion via neural networks does not provide the same control-
lability and predictability. An output convex polygon depends
on the architecture of the neural network and the values
of the network’s weights. The weights are calculated during
their optimization by using a predefined loss function and
optimization algorithm. The loss function and the optimization
algorithm have a bunch of predefined parameters, for example:
the learning rate during the weights optimization, the weight
decay constant, the momentum factor, etc. All these factors
imply how the optimization process is done and what network
we will get at the end. Moreover, the size and quality of the
training data set has a direct impact on the output polygon.

As a result, by using the same neural network architecture,
optimization method and loss function, and by changing their
parameters we can get convex polygons with different shapes,
inner area and number of boundary edges. We carried out
some experiments where we aimed to approximate a polygon
K with ten vertices by a neural network. For this purpose
we randomly generated a convex 10-gon and trained several
neural networks with a single hidden layer that consisted of
five units. We used the ReLU function as non-linear function

in the hidden layer and the sigmoid function for the output
value. As a loss function, we used binary cross entropy and
as an optimizer we used ADAM [6].

We trained networks for data sets with size n = 10,
n = 100, n = 1000. The results are displayed in Figs. 6
and 7. Note that the output polygons usually do not completely
contain the input polygon K. Moreover, different sizes of the
data set can provide output polygons with a different number
of boundary edges, which can even be open (unbounded). The
most ambiguous output convex set is obtained by neural net-
works that were trained only on ten inner and outer points. The
bigger the data set is, the better is the achieved approximation,
see Fig 6.

The dependence of the approximation convex polygon shape
from the type of loss function, optimization algorithm, data set,
etc. is depicted in Fig 7. We used the following optimization
algorithms: ADAM, RMSProp [5] and SGD [2], to train a
neural network on the same data set with 1000 inner and
outer points. We achieved approximation convex polygons
with different shapes but with the same number of edges –
6.

After all these experiments, the natural question arises: how
can one tune all these parameters to be able to build an
approximation polygon that fully contains the input polygon K
and whose area is as small as possible? Moreover, is there an
approach to build a neural network incorporating geometric
properties of the input convex set K? The future research of
these questions can lead to a better understanding how neural
networks work and how to train them in a more controllable
way.

REFERENCES

[1] Helmut Alt, and Leonidas J. Guibas. ”Discrete geometric shapes: Match-
ing, interpolation, and approximation.” Handbook of computational
geometry. North-Holland, 2000, pp. 121–153.

[2] Lon Bottou. ”Stochastic gradient descent tricks.” Neural networks:
Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 421-436.

[3] Arne Brondsted. An introduction to convex polytopes. Vol. 90. Springer
Science & Business Media, 2012.

[4] Yehoram Gordon, Mathieu Meyer, and Shlomo Reisner. ”Constructing
a polytope to approximate a convex body.” Geometriae Dedicata 57.2
1995 pp. 217–222.

[5] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. ”Neural net-
works for machine learning lecture 6a overview of mini-batch gradient
descent.” 2012.

[6] Diederik P. Kingma, and Jimmy Ba. ”Adam: A Method for Stochastic
Optimization”. 3rd International Conference on Learning Representa-
tions, ICLR 2015.

[7] Mario A. Lopez, and Shlomo Reisner. ”Hausdorff approximation of
convex polygons.” Computational Geometry 32.2 (2005) pp. 139–158.

[8] Guido Montufar et al. On the Number of Linear Regions of Deep Neural
Networks. Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS14. Montreal, Canada,
2014, pp. 2924–2932.

[9] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. ”On the number
of response regions of deep feed forward networks with piece-wise linear
activations.” arXiv preprint arXiv:1312.6098 (2013).

[10] Natalia Shepeleva, et al. ”ReLU Code Space: A Basis for Rating
Network Quality Besides Accuracy.” arXiv preprint arXiv:2005.09903
2020.

[11] Juyoung Yon, et al. ”Approximating convex shapes with respect to sym-
metric difference under homotheties.” 32nd International Symposium
on Computational Geometry (SoCG 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

1.50 1.55 1.60 1.65 1.70 1.75 1.80

1.55

1.60

1.65

1.70

1.75

1.80

1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.03 1.04 1.05 1.06 1.07 1.08

1.04

1.05

1.06

1.07

1.08

Fig. 4. Plot of the approximation error of the brute-force algorithm (horizontal
axis) versus the approximation error of the proposed algorithm (vertical axis)
for n = 3, 5, 7.

20 40 60 80 100

1.60

1.65

1.70

1.75

20 40 60 80 100

1.100

1.105

1.110

1.115

1.120

1.125

1.130

20 40 60 80 100

1.050

1.055

1.060

1.065

Fig. 5. Plot of the approximation errors of the two algorithms case by case
(100 samples) for n = 3, 5, 7. The results are sorted by the error of the
brute-force algorithm (blue dots). The error of our algorithm for the same
sample appears as an orange dot with the same x-coordinate.

Fig. 6. Plot of the approximation sets (black) of the input convex set (gray)
with different size of training data set n = 10, n = 100, n = 1000. For
different data sets the approximation polygons have different sizes, shapes and
number of edges. Also, from the plots it can be seen that the approximation
polygons do not fully contain input polygon K.

Fig. 7. Plot of the approximation polygons (black) of the input convex set
(gray) for the data set with size n = 1000 by using different optimization
algorithms (ADAM, RMSProp, SGD).

