
Noname manuscript No.
(will be inserted by the editor)

Representing Piecewise Linear Functions by
Functions with Small Arity

Christoph Koutschan · Bernhard
Moser · Anton Ponomarchuk · Josef
Schicho

Received: date / Accepted: date

Abstract A piecewise linear function can be described in different forms: as
a nested expression of min- and max-functions, as a difference of two convex
piecewise linear functions, or as a linear combination of maxima of affine-linear
functions. In this paper, we provide two main results: first, we show that for
every piecewise linear function f : Rn → R, there exists a linear combination
of max-functions with at most n + 1 arguments, and give an algorithm for
its computation. Moreover, these arguments are contained in the finite set of
affine-linear functions that coincide with the given function in some open set.
Second, we prove that the piecewise linear function max(0, x1, . . . , xn) cannot
be represented as a linear combination of maxima of less than n + 1 affine-
linear arguments. This was conjectured by Wang and Sun in 2005 in a paper on
representations of piecewise linear functions as linear combination of maxima.
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1 Introduction

The mathematical model of a neural network is a directed graph without
cycles [3], where each vertex with in-degree 0 stands for an input parameter
ranging over R, and vertices with out-degree 0 stand for the output values.
Each vertex with positive in-degree is called a neuron. Each neuron has finitely
many input values corresponding to the incoming edges. The neuron applies
an affine-linear function to the vector of these input values, followed by a
non-linear activation function. We assume that the activation function is the
function x 7→ max(x, 0), also known as the ReLU function (Rectified Linear
Unit, see [8]). The output of one neuron may be the input for another neuron,
which is indicated by a directed edge between the two vertices in the graph.
Figure 1.1 shows a ReLU network that computes a bivariate piecewise linear
function.
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Fig. 1.1 A neural network computing the piecewise linear function (x1, x2) 7→ 4 max(−x1+
3x2+2, 0)−5 max(2x1−3, 0)+6 max(5x2+1, 0)+8. The activation function for each neuron
is the ReLU function x 7→ max(0, x). The network has depth 1.

Algebraically, the depth of a ReLU network corresponds to the depth of
nestings of ReLU functions in the expression determined by the network. The
function max(x1, . . . , xn) can be written as a composition of binary max-
function with nesting depth equal to dlog2(n)e, and every binary max can
be written in terms of a ReLU function by the identity max(x, y) = x +
max(y−x, 0). This shows that any piecewise linear function that can be writ-
ten as a linear combination of maxima of at most n affine-linear functions can
be realized by a ReLU network of depth at most dlog2(n)e. This was already
observed in [12].
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It is well-known [6] that every piecewise linear function is the difference of
two convex piecewise linear functions; see also [10] for a more efficient decom-
position algorithm. It follows that every piecewise linear function is a linear
combination of maxima of affine-linear functions, see [1,2,9,11]. The paper
[12] addresses the problem of minimizing the largest number of arguments of
the maxima appearing in such a linear combination. The authors show that
every piecewise linear function defined on Rn can be written as a linear com-
bination of maxima of at most n+ 1 affine-linear functions. The authors also
express their conviction that this bound is optimal. In their own words, “it
seems impossible” that the function max(0, x1, . . . , xn) has an expression as a
linear combination of maxima of at most n affine-linear functions.

Proposition 3.2 in [5], provides a proof that for any n ≥ 3, the function
max(0, x1, x2, . . . , xn−3,max(xn−2, xn−1) + max(0, xn)) cannot be written as
a linear combination of maxima of at most n affine-linear functions. To the
best of our knowledge, it is the first proof for the conjecture in [12]. Using
the same reasoning, one can show the same statement holds for the function
max(0, x1, . . . , xn).

We provide an alternative proof for the conjecture in [12], which is valid
for every n ∈ N. Also, we prove that any continuous piecewise linear function
f : Rn → R has a representation as an integral linear combination of maxima of
at most n+1 affine-linear functions and from our proof, we derive an algorithm
for computing the claimed representation. So, our proof is constructive in a
way that it also proves the termination of the algorithm.

This paper is structured as follows. In Section 2 we show that for any
piecewise linear function f there exists an integral linear combination of max-
ima of at most n + 1 affine-linear functions. Note that in the case n = 1
this corresponds to the fundamental theorem of tropical algebra. In Section 3
we give an algorithm for finding such linear integral combination of maxima
with examples. In Section 4 we recall some notions about Minkowski-addition,
duality between the set of non-empty convex polytopes in Rn and the set of
convex and positively homogeneous piecewise linear functions of degree 1. In
Section 5 we give a proof for the conjecture in [12], thereby showing that their
bound for the number of max-arguments is indeed optimal. The proof is based
on properties of the Minkowski-addition of convex polytopes.

2 An Upper Bound for the Height

For a given piecewise linear function f : Rn → R, we define the height H(f)
as the smallest integer k such that f is a linear combination of maxima of at
most k + 1 affine-linear functions. In this section we give a new proof for the
bound H(f) ≤ n that was first shown in [12]. A constituent of the function f
is an affine-linear function that coincides with f in some open subset of Rn.
We also show that the arguments for the maxima can be chosen among the
constituents of f .
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Lemma 2.1 Let R be a finite set of affine-linear functions on Rn such that
|R| ≥ n + 2. Then there exists a decomposition into two non-empty disjoint
subsets, R = S ] T , such that for all points x ∈ Rn, we have

max
g∈T

g(x) ≥ min
g∈S

g(x).

Proof Let (Rn)∗ be the real vector space of all linear functions Rn → R. The
derivative of every function in R is a linear function in (Rn)∗. The vector space
(Rn)∗ has dimension n. Therefore the set of derivatives {g′ | g ∈ R} is affinely
dependent, i.e., there exist real numbers αg, g ∈ R, not all equal to zero, such
that ∑

g∈R
αgg

′ = 0,
∑
g∈R

αg = 0.

We set T := {g | αg > 0} and S := {g | αg ≤ 0}. Without loss of generality,
we may assume

∑
g∈T αg = 1 and

∑
g∈S αg = −1 – if not, we multiply all αg

by a suitable positive constant. We also set βg := −αg for g ∈ S. Then the
function h :=

∑
g∈T αgg−

∑
g∈S βgg has derivative zero and therefore h equals

to a constant c. Let us assume c ≥ 0. Then we get

max
g∈T

g(x) ≥
∑
g∈T

αgg(x) =
∑
g∈S

βgg(x) + c ≥
∑
g∈S

βgg(x) ≥ min
g∈S

g(x),

for all x ∈ Rn.

If c < 0, then we redefine T := {g | αg < 0} and S := {g | αg ≥ 0} and get
a similar chain of inequalities. ut

Lemma 2.2 Let A be a finite non-empty set. Then∑
T⊆A

(−1)|T | = 0.

Proof ∑
T⊆A

(−1)|T | =

|A|∑
i=0

(
|A|
i

)
(−1)i = (1− 1)|A| = 0.

ut

Lemma 2.3 With S, T as above, for all x ∈ Rn, the following equality holds:∑
M⊆S

(−1)|M | max
g∈M∪T

g(x) = 0.

Proof For all x ∈ Rn except those in a finite union of hyperplanes, the values
g(x), g ∈ R are pairwise distinct. We only need to prove the equality for x
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under this assumption; then it follows for the remaining places by continuity.
So, let us fix x such that the values g(x), g ∈ R are pairwise distinct. Then

∑
M⊆S

(−1)|M | max
g∈M∪T

g(x) =
∑
u∈R


∑
M⊆S

u∈M∪T
∀g∈M∪T :g(x)≤u(x)

(−1)|M |

u(x).

We claim the inside sum is 0, for each u ∈ R. We distinguish three cases.
Case 1: u ∈ T and ∃g ∈ T : g(x) > u(x). Then there is no M such that

the conditions under the sum sign are fulfilled. Then the inner sum is the sum
over the empty set which is 0 by definition.

Case 2: u ∈ S. We define Su as the set of all g ∈ S such that g(x) ≤
u(x). Note that Su is non-empty since it contains u. Then by Lemma 2.2 the
following equalities hold:∑

M⊆S
u∈M∪T

∀g∈M∪T :g(x)≤u(x)

(−1)|M | =
∑

M⊆Su

(−1)|M | = 0.

Case 3: u ∈ T and ∀g ∈ T : g(x) ≤ u(x). We define Su as the set of all
g ∈ S such that g(x) ≤ u(x). The set Su is non-empty because of Lemma 2.1.
As in the previous case, we get∑

M⊆S
u∈M∪T

∀g∈M∪T :g(x)≤u(x)

(−1)|M | =
∑

M⊆Su

(−1)|M | = 0.

ut

Theorem 2.4 Every piecewise linear function f : Rn → R can be written
as an integral linear combination of maxima of at most n + 1 affine-linear
functions. Moreover, the affine-linear functions can be chosen among the con-
stituents of f .

Proof By [9,11], the function f can be written as a maximum of minima of
constituents. Using the first identity in [12, Lemma 1], namely

max(a,min(b, c)) = max(a, b) + max(a, c)−max(a, b, c),

we can rewrite this expression as a linear combination of maxima of con-
stituents:

f(x) =

p∑
i=1

σi max(gi1(x), . . . , giki
(x)),

where ki ∈ N, σi ∈ {−1, 1}, for all i ∈ {1, . . . , p}. If for all i ∈ {1, . . . , p} the
number of constituents ki is at most n+ 1, we are done.
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Otherwise, for every maximum max(gi1(x), . . . , giki(x)) with ki more than
n+2 constituents, by Lemma 2.3, there exists a linear combination of maxima
with at most ki − 1 constituents:

max(gi1(x), . . . , giki
(x)) =

s∑
j=1

σ̂j max(gj1(x), . . . , gjkj
),

where kj ≤ ki − 1, σ̂j ∈ {−1, 1}, for all j ∈ {1, . . . , s}. After a finite number
of replacements of maxima with more than n+ 1 constituents, we achieve an
integral linear combination of maxima of at most n+ 1 constituents. ut

Remark 2.5 Theorem 4.1 in [5] provides a proof that any convex piecewise lin-
ear function f can be written as an integral linear combination of maxima of
at most n+ 1 constituents. The proof in this section shows a slightly stronger
statement: any (convex and non-convex) piecewise linear function f can be
written as an integral linear combination of maxima of at most n + 1 con-
stituents whose derivatives are affinely independent. We will see in Section 5
that the maximum of affine-linear functions that are affinely independent can-
not be expressed as a linear combination of maxima of fewer affine-linear
functions.

Example 2.6 Let g1(x1, x2) = c1x1 + c2x2 for some constants c1, c2 (not both
zero) and let gi = g1 + i for i = 2, 3, 4. Then clearly max(g1, g2, g3, g4) =
g4. However, this simplest-possible answer cannot be found by our algorithm
(see Section 3). If we choose α = (−1, 0, 0, 1), then we get S = {g1, g2, g3},
T = {g4} and hence max(g1, g2, g3, g4) = max(g1, g2, g4) + max(g1, g3, g4) +
max(g2, g3, g4) −max(g1, g4) −max(g2, g4) −max(g3, g4) + g4. In contrast, if
we choose α = (−3, 1, 1, 1), then S = {g1}, T = {g2, g3, g4} and we obtain
max(g1, g2, g3, g4) = max(g2, g3, g4) as the final result. However, this weakness
can easily be cured by ignoring the condition |R| ≥ n + 2 in Lemma 2.1:
now the existence of a vector α is not guaranteed any more, but if it exists,
we perform the corresponding decomposition, otherwise, we leave that term
unchanged.

3 Reducing the Height

In this section, we give an algorithm for writing the maximum of any number
of affine-linear functions from Rn → R as a linear combination of maxima of
at most n+ 1 of these functions.

Algorithm 2 implements the method reduceMax that takes the size of the
input space n and a maximum function f(x) := max(h1(x), . . . , hk(x)) with
more than n+1 constituents, i.e. R := {h1, . . . , hk} and |R| > n+1. It returns
a linear combination of maxima:

g :=

l∑
i=1

ci ·max(hi1, . . . , h
i
ki

),
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Fig. 2.1 Application of our Algorithm 2 “reduceMax” to the input function
max(g1, g2, g3, g4, g5) where g1(x1, x2) = 3x1 − 4x2 + 1, g2(x1, x2) = −3x1 − x2 − 2,
g3(x1, x2) = 2x1 + x2 − 1, g4(x1, x2) = 3x1 + 2x2 + 2, g5(x1, x2) = −2x1 + 4x2 + 3.
We use the abbreviation mij... for max(gi, gj , . . . ) and for those maxima that get expanded,
we also display the vector α that determines the sets S and T . We show three different
executions of the algorithm, which however all yield the same final result (combining equal
terms is not shown explicitly here).

where {hi1, . . . , hiki
} ⊂ R and ki ≤ n+ 1 for all i ∈ {1, . . . , l}. The combination

is constructed in the following way.

Firstly, one extracts the linear constituents h1, . . . , hk from the input max-
imum f and forms the set R. Then the set R is split into two disjoint subsets
S, T ⊂ R such that R = S ] T . The split operation is the implementation
of Lemma 2.1 and is described in Algorithm 1 (more details in this section
below). After splitting the set R into the pair of subsets S, T , the linear com-
bination of maxima g is generated. The linear combination of maxima g has
the following form:

g(x) = (−1)|S|+1
∑
M⊂S

(−1)|M | max
h∈M∪T

h(x),
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where the sum runs over all proper subsets of S, including the empty set.
By Lemma 2.3, g(x) is equal to the input function f(x), and every maxi-
mum in g(x) contains at most |R| − 1 constituents, where the set R contains
all constituents of the input function f(x). If any summand of g(x) contains
an affinely dependent subset of constituents, one replaces it with the corre-
sponding linear combination of maxima by recursively applying the reduceMax
method. One repeats this simplification procedure until all the summands con-
tain at most n+ 1 constituents.

The termination of Algorithm 2 follows from the fact that after every call
on the input maximum with k constituents, reduceMax returns a finite combi-
nation of maxima where each maximum contains at most k − 1 constituents.

Algorithm 2 uses the method split for dividing a set of constituents R
into two disjoint sets S, T . The method split is described in Algorithm 1 and
it is an implementation of Lemma 2.1. The algorithm splits the input set of
constituents R based on the sign of the vector α ∈ R|R| that is a solution of
the system of equalities:

|R|∑
i=1

αih
′
i = 0,

|R|∑
i=1

αi = 0,

where h′i :=

(
∂hi
∂x1

, . . . ,
∂hi
∂xn

)T

and hi ∈ R for all i ∈ {1, . . . , |R|}. Due to the

fact, that all constituents are linear, it implies that the system of equations is
linear:

Wα = 0,

where α ∈ R|R| and W ∈ R(n+1)×|R| such that:

W :=


h′11 h

′
21 . . . h

′
|R|1

...
...

h′1n h
′
2n . . . h

′
|R|n

1 1 . . . 1

 .
Solving the given system of linear equations is equivalent to finding the

null space ker(W ). If the null space is trivial, one does not need to divide the
input set R because Lemma 2.1 is not applicable. Otherwise, the vector α can
be picked as any vector from ker(W ). By iterating through the entries of the
vector α, depending on the sign of the entry αi, the corresponding constituent
hi is assigned either to T or S. Note that the condition k ≥ n+2 in Lemma 2.1
ensures the existence of a non-trivial null space ker(W ).

Example 3.1 Let us take the following function:

g(x1, x2) := max(x1, x1 + x2, x2 + max(x1 + x2 − 7, x1 + 6x2 + 4)

+ 3 min(4x2, x1 − 9, x1 − x2)).
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After applying the function expansion by the rules explained in [12] on g, one
receives a linear combination of maxima with 49 summands, where 40 of them
contain 5 or more constituents. After applying Algorithm 2 on the expanded
version of g, the given sum transforms into a new one with only 7 summands:

ĝ(x1, x2) := max(x1, x1 + 19x2 + 4)

−max(x1 + x2, 4x1 + 4x2 + 4, 4x1 + 7x2 − 23)

−max(x1 + 19x2 + 4, 4x1 + 4x2 + 4)

+ max(x1, x1 + x2, 4x1 + 7x2 − 23)

−max(x1, x1 + 19x2 + 4, 4x1 + 7x2 − 23)

+ max(x1 + x2, 4x1 + 4x2 + 4)

+ max(x1 + 19x2 + 4, 4x1 + 4x2 + 4, 4x1 + 7x2 − 23).

The function ĝ contains maxima with at most 3 constituents, in accordance
with Theorem 2.4. However, an example can be found where the number of
maxima increases after applying Algorithm 2, compared to the output after
applying the rules from [12]. For instance, it holds for the function:

f(x1, x2) := max(6x1 + 5x2 − 3, 8x2 − 2,−3x1 − 5x2 − 4,

max(12x1 − 4x2 + 1,−7x1 + 8x2 + 12) + 3x1 − 10,

min(−3x1 + 4x2 − 5, 8x1 + 2)).

After repeating two transformations, we receive two linear combinations
with the number of maxima 3 and 5, respectively, with the final form:

f̂(x1, x2) :=−max(−4x1 + 8x2 + 2, 15x1 − 4x2 − 9)

+ max(8x2 − 2,−4x1 + 8x2 + 2, 6x1 + 5x2 − 3)

+ max(−4x1 + 8x2 + 2,−3x1 − 5x2 − 4, 15x1 − 4x2 − 9)

+ max(−4x1 + 8x2 + 2, 6x1 + 5x2 − 3, 15x1 − 4x2 − 9)

−max(−4x1 + 8x2 + 2, 6x1 + 5x2 − 3).

Although Algorithm 2 can either reduce the number of summands in the
final linear combination of maxima or increase it, the final combination seems
to be invariant, not depending on the outcome of Algorithm 1. More precisely,
we conjecture that the output of Algorithm 2 is independent of how the set of
constituents is split by Algorithm 1, as illustrated in Figure 2.1.

4 Duality and Convex Polyhedra

Let n be a positive integer. Instead of all piecewise linear functions on Rn,
we consider in this section the subset of convex and positively homogeneous
piecewise linear functions of degree 1, i.e., all functions f : Rn → R that are
convex and satisfy f(λx) = λf(x) for all x ∈ Rn and λ ≥ 0. We denote



10 Christoph Koutschan et al.

this subset by Fn. There is a useful bijective correspondence τ : Fn → Pn,
where we define Pn as the set of all non-empty convex polytopes in Rn. For
each f ∈ Fn, we define τ(f) as the subset of all vectors h ∈ Rn such that
〈h, x〉 ≤ f(x) for all x ∈ Rn. Conversely, if P ∈ Pn, then τ−1(P ) is the
support function x 7→ sup{〈h, x〉 | h ∈ P}. By compactness, the supremum is
a maximum.

For two polytopes P,Q ∈ Pn, the Minkowski sum P +Q is defined as the
convex polytope {a+ b | a ∈ P, b ∈ Q}. Let d ∈ Rn \ {0} be a vector (d stands
for “direction”). For any polytope P ∈ Pn, we define the face

Sd(P ) = {x ∈ P | 〈x, d〉 = max
y∈P
〈y, d〉}.

Proposition 4.1 Let P,Q ∈ Pn be polytopes. Let d ∈ Rn \ {0} be a direction
vector. Then

a) The map τ is an isomorphism of semigroups:

τ−1(P ) + τ−1(Q) = τ−1(P +Q).

b) Taking faces is an endomorphism of semigroups:

Sd(P +Q) = Sd(P ) + Sd(Q).

Proof See [4, Lemma 2.1.4]. ut

By Proposition 2.7 [7], the function τ−1(P+Q) is a piecewise linear function
with linear regions corresponding to the vertices of the polytope P + Q, as
illustrated in Figure 4.1.

Proposition 4.2 Minkowski addition is cancellable: if A+ C = B + C, then
A = B.

Proof This is well-known, and we can prove it easily by translation to func-
tions. Assume A+ C = B + C. Then

τ−1(A) + τ−1(C) = τ−1(A+ C) = τ−1(B + C) = τ−1(B) + τ−1(C),

hence τ−1(A) = τ−1(B) and therefore A = B. ut

The face Sd(P ) is contained in the hyperplane Hd,c = {x | 〈x, d〉 = c},
where c := maxy∈P 〈y, d〉. For the induction proof in the next section, we need
to identify Hd,c with Rn−1. To this end, we translate the hyperplane to Hd,0

by a translation vector cv that satisfies 〈d, v〉 = −1, and then we apply an
isomorphism φ : Hd,0 → Rn−1. The face φ(Sd(P )+ cv) is denoted by Fd(P ). It
depends not only on d, but also on the choice of v and φ; but we may choose
vd and φd for every d once and for all, subject to the condition v−d = −vd and
φd = φ−d.
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Algorithm 1: split (Lemma 2.1)

Input: {h1, . . . , hk} – set of linear constituents, where hi : Rn → R, ∀i ∈ {1, . . . , k}
Output: (S, T ) – disjoint decomposition of R

1 W :=

((
h′1
1

)
, . . . ,

(
h′k
1

))
2 K := ker(W )
3 if K is zero then

Return: ∅, {h1, . . . , hk}
4 α := pick a non-zero vector from K
5 v := constant terms of h1, . . . , hk
6 S := ∅
7 T := ∅
8 c := vTα
9 for i ∈ {1, . . . , k} do

10 if αi > 0 then
11 T := T ∪ {hi}
12 else
13 S := S ∪ {hi}

14 if c > 0 then
Return: S, T

Return: T, S

Algorithm 2: reduceMax (Lemma 2.3)

Input: g := max(h1, . . . , hk) – max function, where g : Rn → R.
Output: Linear combination of max functions.

1 R := {h1, . . . , hk}
2 (S, T ) := split(R)
3 A := max(T )
4 if S = ∅ then

Return: A

5 if |T | > 1 then
6 A := reduceMax(A)

7 for all proper subsets M of S do
8 P := M ∪ T
9 A := A+ (−1)|M|reduceMax(max(P ))

Return: (−1)|S|+1A

5 A Lower Bound for the Height

Recall that an n-simplex is a polytope which is the convex hull of n+ 1 points
that are affinely independent. The faces of simplices are again simplices.

A polytope P ∈ Pn is called a zero volume polytope if and only if it has no
interior points; this is the case if and only if it is contained in a hyperplane.
If P has zero volume and d ∈ Rn \ {0} is a direction vector, then one of the
following two cases holds:

– either Sd(P ) = S−d(P ) = P ,
– or both faces Fd(P ) and F−d(P ) have zero volume as polytopes in Pn−1.
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Fig. 4.1 Two positively homogeneous piecewise linear functions, f(x, y) = max(x−y, 3x+
y,−x + 2y) (first row) and g(x, y) = max(0,−x − y) (second row), as well as their sum
h = f+g (third row). Each row shows the function R2 → R as a three-dimensional plot (first
column) and as a contour plot (second column). The third column shows the corresponding
polygon τ(f) etc. in Pn. One clearly sees how h(x, y) = max(−2y,−2x+ y, 3x+ y,−x+ 2y)
produces the Minkowski sum τ(h) = τ(f) + τ(g) of polygons.

+ + = P

Fig. 5.1 The polytope P is a zero-summand since it can be written as a Minkowski sum
of three line segments.

We say that a polytope P ∈ Pn is a zero-summand if and only if there
are convex polytopes P1, . . . , Pr, Q1, . . . , Qs ∈ Pn of zero volume such that
P + P1 + · · ·+ Pr = Q1 + · · ·+Qs, as illustrated in Figure 5.1.

Lemma 5.1 Let P ∈ Pn be a zero-summand. Let d ∈ Rn \ {0} be a direction
vector such that F−d(P ) ∈ Pn−1 has zero volume. Then Fd(P ) is also a zero-
summand.
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Proof Since P ∈ Pn is a zero summand, there exist convex polytopes Pi,
Qj ∈ Pn, where i ∈ {1, . . . , r} and j ∈ {1, . . . , s} of zero volume such that
P + P1 + · · ·+ Pr = Q1 + · · ·+Qs.

We may assume, without loss of generality, that the zero volume polytopes
Pi or Qj that have a face Fd(Pi) = F−d(Pi) of nonzero volume – or similarly
with Qj – are P1, . . . , Pk and Q1, . . . , Ql, for some k ≤ r and l ≤ s. Set
A := P + P1 + · · ·+ Pr; therefore also A = Q1 + · · ·+Qs. We apply Fd to A
and neglect all polytopes of zero volume. This yields

Fd(A) = Fd(P ) + Fd(P1) + · · ·+ Fd(Pk)

plus polytopes of zero volume, and

Fd(A) = Fd(Q1) + · · ·+ Fd(Ql)

plus polytopes of zero volume. Now we apply F−d to A and neglect all poly-
topes of zero volume, taking into account the equations Fd(Pi) = F−d(Pi) for
i = 1, . . . , k and Fd(Qj) = F−d(Qj) for j = 1, . . . , l, and the assumption that
F−d(P ) ∈ Pn−1 has zero volume. This yields

F−d(A) = Fd(P1) + · · ·+ Fd(Pk)

plus polytopes of zero volume, and

F−d(A) = Fd(Q1) + · · ·+ Fd(Ql)

plus polytopes of zero volume. Summing up, we get that Fd(A) + F−d(A) is
equal to both sides of the equation

Fd(P ) + Fd(P1) + · · ·+ Fd(Pk) + Fd(Q1) + · · ·+ Fd(Ql)

= Fd(P1) + · · ·+ Fd(Pk) + Fd(Q1) + · · ·+ Fd(Ql)

modulo polytopes of zero volume. By Proposition 4.2, it follows that Fd(P ) is
a zero summand. ut

Corollary 5.2 An n-simplex in Pn is not a zero summand.

Proof Induction on n: if n = 1, then the zero volume polytopes are single
points, and therefore, the zero summands are also single points. But a 1-
simplex is a line segment of positive length and not a single point.

If ∆ ∈ Pn is an n-simplex for some n > 1, then there is a direction vector d
such that F−d(∆) is a point and Fd(∆) is an (n− 1)-simplex in Pn−1. By the
induction hypothesis, Fd(∆) is not a zero summand. Also, F−d(∆) has zero
volume. By Lemma 5.1, applied in contraposition, it follows that ∆ is not a
zero summand. ut

For the rest of the paper, a linear function g : Rn → R is a function of the
form g(x) := aTx, where a ∈ Rn.
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Lemma 5.3 Let g0, . . . , gn be linear functions, whose derivatives are affinely
independent. Then the positively homogeneous function max(g0, . . . , gn) is not
a linear combination of maxima of at most n linear functions.

Proof Assume, indirectly, that max(g0, . . . , gn) = α1f1 + · · · + αkfk, where
f1, . . . , fk are maxima of at most n linear functions. Without loss of generality,
we may assume that the αi are either 1 or −1. Let us assume that α1 = · · · =
αl = 1 and αl+1 = · · · = αk = −1. Hence max(g0, . . . , gn) + fl+1 + · · ·+ fk =
f1 + · · ·+ fl. By Proposition 4.1, we obtain

τ(max(g0, . . . , gn)) + Pl+1 + · · ·+ Pk = P1 + · · ·+ Pl.

For i = 1, . . . , k, the function fi is in Fn, and Pi := τ(fi) is a zero volume
polytope because it is the convex hull of at most n points. This shows that
τ(max(g0, . . . , gn)) is a zero summand. But this contradicts Corollary 5.2,
because τ(max(g0, . . . , gn)) is an n-simplex. ut

Theorem 5.4 Let f : Rn → R be a piecewise linear function such that for
every (x1, . . . , xn) ∈ Rn holds:

(x1, . . . , xn) 7→ max(0, x1, . . . , xn).

The function f is not a linear combination of maxima of less than n + 1
affine-linear functions.

Proof By Lemma 5.3, the function f is not a linear combination of maxima
of less than n+ 1 linear functions: Assume, indirectly, that there are integers
s, k1, . . . , ks with ki ≤ n for i = 1, . . . , s, real numbers α1, . . . , αs and linear
functions gi,j : Rn → R, i = 1, . . . , s, j = 1, . . . , ki such that

mi := max
j=1,...,ki

(gi,j) and f =

s∑
i=1

αimi.

We will then construct a representation of f as a linear combination of maxima
of less than n+ 1 linear functions, giving a contradiction.

For i = 1, . . . , s, we proceed as follows. We define ci := mi(0). We may
assume without loss of generality that there exists ri ≤ ki such that gi,j(0) = ci
if j ≤ ri and gi,j(0) if j > ri. For j = 1, . . . , ri, we set hi,j := gi,j − ci. Then
hi,j(0) = 0, which implies that the functions hi,j are all linear. Now we set

ni := max
j=1,...,ri

(hi,j) and e :=

s∑
i=1

αini.

Then e is a linear combination of maxima of less than n+ 1 linear functions.
We will prove that e = f , which will finish the indirect proof.

Let U be a small neighborhood of 0 such that for each i, we have

max
j=1,...,ki

gi,j = max
j=1,...,ri

gi,j = max
j=1,...,ri

(hi,j + ci) =

(
max

j=1,...,ri
hi,j

)
+ ci
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inside U . Then we have mi = ni − ci inside U and therefore

f =
∑

i=1,...,s

αi(ni + ci) = e+

s∑
i=1

ci.

However,
∑s

i=1 ci = f(0) = 0, and therefore f = e inside U . Both functions f
and e are positively homogeneous; so, if they coincide in U , then they coincide
everywhere. ut

6 Conclusion

It has been shown that any piecewise linear function f : Rn → R can be
represented as a linear combination of maxima with at most n+ 1 arguments,
where the linear arguments of each maximum are picked from the set of affine-
linear parts of the function f . We develop an algorithm for calculating this
representation. It is an open question whether the derived representation is
invariant under certain choices that can be made inside Algorithm 2. After
running a series of experiments, as illustrated in Example 3.1, we conjecture
that this is the case. Proving this conjecture could be a possible direction for
future research.

By proving that the function max(0, x1, . . . , xn) is not a linear combination
of maxima of less than n+1 affine-linear functions, we confirm the optimal rep-
resentation conjecture formulated by Shuning Wang and Xusheng Sun in [12].
Using these two contributions, we can state that every piecewise linear func-
tion f can be expressed as a ReLU neural network with at most dlog2(n+ 1)e
layers and O(p2n

2+3n+1) neurons in every hidden layer, where p is the number
of constituents in the function f , see Theorem 4.4 [5]. As a direct implication
of Theorem 2.4, we get the refinement of the upper bound of the number of
neurons for every hidden layer that equals O(pn+1).
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7. Montúfar, G., Ren, Y., Zhang, L.: Sharp bounds for the number of regions of maxout

networks and vertices of minkowski sums. SIAM J. Appl. Algebra Geom. 6(4), 618–649
(2022)

8. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines.
In: ICML, p. 807814. Omnipress (2010)



16 Christoph Koutschan et al.

9. Ovchinnikov, S.: Max-min representation of piecewise linear functions. Beitr. Algebra
Geom. 43(1), 297–302 (2002)
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