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Abstract Computer algebra methods within the scope of the holonomic systems ap-
proach provide a versatile toolbox to integration problems in the context of Feynman
diagrams. This is demonstrated with the aid of several benchmark problems, ranging
from hypergeometric series evaluations to Bessel integrals of sunrise diagrams.

1 Introduction

Recent interest in the mathematical structure of Feynman diagrams has been inspired
by the persistent accuracy of high-energy experiments at LHC. Still in the 1970’s
it was pointed out that Feynman diagrams can be understood as a special class of
functions satisfying some system of differential equations. Later, it was shown in [1]
within analytical regularization, that any regularized Feynman integral satisfies some
holonomic system of linear differential equations. In dimension regularization, this
statement was later presented by a few groups [2, 3, 4].

It was a popular idea to explore the holonomic systems approach, as originally
formulated by Zeilberger [5], for the reduction of Feynman diagrams to the set of so-
called master integrals [6, 7, 8]. Unfortunately, this idea was not followed up, due to
the complexity of the problem. Nevertheless, we claim that the holonomic approach
can be quite useful for solving other problems, related to Feynmandiagrams.One goal
of this paper is to substantiate this claimwith the aid of a well-chosen set of problems,
which we are going to tackle with the HolonomicFunctions package [9, 10].

This work was initiated at the WPC workshop “Anti-Differentiation and the
Calculation of Feynman Amplitudes”, that took place in October 2020 at DESY
Zeuthen. The material presented here reflects the outcome of several discussions
during this meeting. Specifically, we have to give Mikhail Kalmykov credit for
compiling the collection of challenge problems.
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2 The Holonomic Systems Approach

Before we start, we give a very brief introduction to the main mathematical tool that
is used in this paper, that is the holonomic systems approach [5]. For more details and
background on the methods employed here, we refer to the survey articles [11, 12].

In order to write mixed difference-differential equations in a concise way, we
employ the following usual operator notation: let Dx denote the partial derivative
operator with respect to x (x is then called a continuous variable) and Sn the forward
shift operator with respect to n (n is then called a discrete variable); they act on a
function f by

Dx f =
∂ f
∂x

and Sn f = f
��
n→n+1.

They allow us to write linear homogeneous difference-differential equations in terms
of operators, e.g.,

∂

∂x
f (k, n + 1, x, y) + n

∂

∂y
f (k, n, x, y) + x f (k + 1, n, x, y) − f (k, n, x, y) = 0

turns into (
DxSn + nDy + xSk − 1

)
f (k, n, x, y) = 0;

in other words, such equations are represented by polynomials in the operator sym-
bols Dx , Sn, etc., with coefficients in some field K which is typically some rational
function field in the variables x, n, etc., and possibly in some additional parameters.
Note that in general the polynomial ringK〈Dx, Sn, . . . 〉 is not commutative (this fact
is indicated by the angle brackets): the coefficients from the field K do not com-
mute with the polynomial variables Dx , Sn, etc. For instance, multiplication with
a(x, n) ∈ K is subject to the rules

Dx · a(x, n) = a(x, n) · Dx +
∂

∂x
a(x, n) and Sn · a(x, n) = a(x, n + 1) · Sn.

Such non-commutative rings of operators are called Ore algebras, and we typically
denote them by O; concise definitions and specifications of the properties of such
algebras can be found, for instance, in [9].

We define the annihilator (with respect to some Ore algebra O) of a function f
by:

annO( f ) := {P ∈ O | P( f ) = 0}.

It can easily be seen that annO( f ) is a left ideal in O. Every left ideal I ⊆ annO( f ) is
called an annihilating ideal for f .

Definition 1 Let O = K〈. . . 〉 be an Ore algebra. A function f is called ∂-finite
w.r.t. O if O/annO( f ) is a finite-dimensional K-vector space. The dimension of this
vector space is called the (holonomic) rank of f w.r.t. O.

In the holonomic systems approach, the representing data structures of functions
are (generators of) annihilating ideals (plus initial values). When working with (left)
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ideals, we use (left) Gröbner bases [13, 14] which are an important tool for executing
certain operations (e.g., the ideal membership test) in an algorithmic way.

Without proof we state the following theorem about closure properties of ∂-finite
functions; its proof can be found in [9, Chap. 2.3]. We remark that all of them are
algorithmically executable, and the algorithms work with the above mentioned data
structure.

Theorem 1 Let O be an Ore algebra and let f and g be ∂-finite w.r.t. O of rank r
and s, respectively. Then

(i) f + g is ∂-finite of rank 6 r + s.

(ii) f · g is ∂-finite of rank 6 rs.

(iii) f 2 is ∂-finite of rank 6 r(r + 1)/2.

(iv) P f is ∂-finite of rank 6 r for any P ∈ O.

(v) f |x→A(x,y,... ) is ∂-finite of rank 6 rd if x, y, . . . are continuous variables and if
the algebraic function A satisfies a polynomial equation of degree d.

(vi) f |n→A(n,k,... ) is ∂-finite of rank 6 r if A is an integer-linear expression in the
discrete variables n, k, . . . .

Note that in most examples the bounds on the rank are sharp.
If we want to consider integration and summation problems, then the function

in question needs to be holonomic, a concept that is closely related to ∂-finiteness.
The precise definition is a bit technical and therefore skipped here; the interested
reader can find it, e.g., in [5, 15, 9]. All functions that appear in this paper are both
∂-finite and holonomic. The following theorem establishes the closure of holonomic
functions with respect to sums and integrals; for its proof, we once again refer
to [5, 9].

Theorem 2 Let the function f be holonomic w.r.t. Dx (resp. Sn). Then also
∫ b

a
f dx

(resp.
∑b

n=a f ) is holonomic.

If a function is ∂-finite and holonomic then Chyzak’s algorithm [16] can be used to
compute an annihilating ideal for the integral (resp. sum), or a heuristic approach
proposed in [17]. In either case, the treatment of integrals and summations is based
on the method of creative telescoping [18]. For example, for a parametrized integral
of the form

∫ b(t)

a(t)
f (x, t) dx, one has to determine a pair (P,Q), called the telescoper

and the certificate, with the properties that P + DxQ ∈ ann( f ) and that the operator
P is free of x and Dx . Then, integrating the equation (P + DxQ)( f ) = 0 and using
the fundamental theorem of calculus, yields a linear differential equation for the
integral.

In our calculations we will use the software package HolonomicFunctions [10],
implemented in Mathematica by the author, where all the above mentioned algo-
rithms are available.
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3 Particular Values of Hypergeometric Functions

In [19] the authors present nice evaluations of hypergeometric functions at particular
values. Let ε be an arbitrary parameter, then the following holds:

2F1

(
2ε, 3ε
1
2 + 2ε

���� 1
4

)
=
Γ(1 + ε) Γ(1 + 4ε)
Γ(1 + 2ε) Γ(1 + 3ε)

(1)

see also [20] for similar hypergeometric evaluations at 1
4 . In this section we are

demonstrating the usage of computer algebra for proving identities like (1). Other
software packages, specialized to the treatment of hypergeometric series, include
HYP [21] and HYPERDIRE [22].

3.1 Evaluation of a 2F1

We write down the definition of the 2F1 hypergeometric function as an infinite sum

2F1

(
2ε, 3ε
1
2 + 2ε

���� 1
4

)
=

∞∑
k=0

(2ε)k (3ε)k( 1
2 + 2ε)k k!

4−k

and denote the expression inside the sum by fk,ε . By viewing k and ε as discrete
variables, one can immediately construct two difference equations, one in k and one
in ε, and both of first order, which are satisfied by fk,ε:

2(k + 1)(4ε + 2k + 1) fk+1,ε = (2ε + k)(3ε + k) fk,ε,

6ε2(2ε + 1)(3ε + 1)(3ε + 2)(4ε + 2k + 1)(4ε + 2k + 3) fk,ε+1 =

(4ε + 1)(4ε + 3)(2ε + k)(2ε + k + 1)(3ε + k)(3ε + k + 1)(3ε + k + 2) fk,ε .

Applying the creative telescoping algorithm to these recurrence equations yields a
telescoper

P = 3(3ε + 1)(3ε + 2)Sε − 4(4ε + 1)(4ε + 3)

and a certificate Q that is given by the following rational function:

(4ε + 1)(4ε + 3)k
(
74ε3 + 3(19k + 18)ε2 + (12k2 + 27k + 10)ε + k(k + 1)(k + 2)

)
3ε2(2ε + 1)(4ε + 2k + 1)

.

They satisfy the telescopic relation (P+ (Sk −1)Q)( fk,ε) = 0, a fact that can be easily
verified by applying the operator P+(Sk−1)Q to fk,ε and by subsequent simplification
(which is straightforward, but tedious by hand). Summing this relation for k from 0
to∞ yields
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∞∑
k=0

P( fk,ε) + lim
k→∞

Q fk,ε −Q fk,ε
��
k=0︸                       ︷︷                       ︸

=0

,

which reveals that the 2F1 function from Equation (1), let us denote it by F(ε),
satisfies the following recurrence equation:

3(1 + 3ε)(2 + 3ε)F(ε + 1) = 4(1 + 4ε)(3 + 4ε)F(ε).

Plugging in the right-hand side of (1) into the above recurrence, and simplifying it,
reveals that also the closed form, the quotient of Gamma functions, satisfies the same
recurrence. By comparing a single initial value (ε = 0), we establish the identity: for
ε = 0 the infinite sum reduces to a finite one since only the first summand (which
equals 1) survives, thanks to the definition of the Pochhammer symbol. Similarly, all
Gamma functions on the right-hand side evaluate to 1 when ε is sent to 0.

3.2 Evaluations of 3F2 Hypergeometric Functions

In an analogous fashion, one can prove identities like

1
(1 − ε)(1 + 2ε) 3F2

(
1, 1 + ε, 1 + 2ε

3
2 + ε, 2 − ε

���� 1
4

)
=

1
3ε2

(
Γ(1 + 2ε) Γ(1 − ε)

Γ(1 + ε)
− 1

)
. (2)

This one is a consequence of Equation (1), but can also be proven directly with the
holonomic approach. The summand here (after expanding the definition of 3F2) is

fk,ε =
(ε + 1)k (2ε + 1)k

(1 − ε)(2ε + 1) 4k (2 − ε)k
(
ε + 3

2
)
k

Again, creative telescoping yields

P = (ε + 1)2Sε + 2ε(2ε + 1),

Q =
(ε − k − 1)(10ε2 + 5εk + 9ε + k2 + 3k + 2)

3ε

with (P + (Sk − 1)Q)( fk,ε) = 0. In contrast to the previous example, one gets an
inhomogeneous contribution

Q fk,ε
��
k=0 =

(ε − 1)(10ε2 + 9ε + 2)
3ε

·
1

(1 − ε)(1 + 2ε)
= −

2 + 5ε
3ε

,

which gives rise to the inhomogeneous recurrence equation

(ε + 1)2F(ε + 1) + 2ε(2ε + 1)F(ε) = −
5ε + 2

3ε
.
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It is easy to check that also the right-hand side of Equation (2) satisfies this recurrence.
It is well known, that the two-loop massless propagator diagram posesses a

large class of symmetries under exchange of indices (see [23, 24, 25]). Recently, the
following relations between Clausen’s hypergeometric function of arguments z = ±1
was proven (see Eq. (5) in [26]):

3F2

(
1, B, 2A

1 + B, 2 − A

����−1
)
+

B
1 + A − B

· 3F2

(
1, 2A, 1 + A − B
2 − A, 2 + A − B

����−1
)

= B
Γ(2 − A) Γ(B + A − 1) Γ(B − A) Γ(1 + A − B)

Γ(2A) Γ(1 + B − 2A)

−
1 − A

B + A − 1
· 3F2

(
1, B, 2A

1 + B, A + B

���� 1) ,
where A and B are arbitrary numbers. Also such type of identites can be treated, by
applying creative telescoping to the expression

(−1)k(2A)k(B)k
(2 − A)k(B + 1)k

+
(−1)kB (2A)k(A − B + 1)k

(A − B + 1) (2 − A)k(A − B + 2)k

in order to obtain a set of recurrences in A and B for the left-hand side (of holonomic
rank 3), and then by analogously computing an annihilator for the right-hand side,
which turns out to consist of exactly the same recurrences.

3.3 Finding More 2F1 Identities

Not only can we apply the holonomic systems approach to prove identities like (1)
or (2) or to evaluate the hypergeometric functions appearing there (i.e., without know-
ing the right-hand sides), but the holonomic approach also allows one to find, almost
automatically, many more, similar identities. We exemplify this with Equation (1),
i.e., we seek identities of the form

2F1

(
a + 2ε, b + 3ε

c + 2ε

���� x
)
= H(a, b, c, ε, x), (3)

where H stands for some hypergeometric expression with respect to ε: the shift-
quotient H(a, b, c, ε + 1, x)/H(a, b, c, ε, x) should be a rational function, when re-
garded as a function in ε. In practice, it will be the case the H is hypergeometric-
hyperexponential in all parameters a, b, c, ε, x, which means that it can be expressed
in closed form in terms of powers, Gamma functions, and the like.

In the algebraic language, the problem is to identify conditions on the parameters
a, b, c, x such that the telescoper of the summand

sk,ε = sk,ε(a, b, c, x) =
(a + 2ε)k (b + 3ε)k
(c + 2ε)k

xk

k!
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is a first-order operator in Sε . Following the approach proposed in [17], one can
construct an ansatz for the telescopic operator P + (Sk − 1)Q using the following
specification:

P = P(ε, Sε) = p1Sε + p0, Q = Q(k, ε) =
1

c + 2ε + k
·

4∑
i=0

qik i

Note that Q need not depend on Sk or Sε , because the input sk,ε is hypergeometric.
All unknowns here, namely the seven symbols p0, p1, q0, . . . , q4, are assumed to be
rational functions inQ(a, b, c, ε) and should not depend on k. Applying the telescopic
operator to the summand sk,ε , and by subsequently dividing by sk,ε yields

p1 ·
sk,ε+1

sk,ε
+ p0 +Q(k + 1, ε) ·

sk+1,ε

sk,ε
−Q(k, ε) = 0

where

sk,ε+1

sk,ε
=
(a + 2ε + k)2 (b + 3ε + k)3 (c + 2ε)2
(a + 2ε)2 (b + 3ε)3 (c + 2ε + k)2

,

sk+1,ε

sk,ε
=

x(a + 2ε + k)(b + 3ε + k)
(k + 1)(c + 2ε + k)

.

By clearing denominators, i.e., multiplying by (c + 2ε + k)(c + 2ε + k + 1), this
identity of rational functions is turned into a polynomial equation of degree 6 in k.
Coefficient comparison with respect to the variable k ensures that the parameters of
the ansatz will not depend on k, as required, and will lead to a linear system of seven
equations for the seven unknowns p0, p1, q0, . . . , q4.

Since we are seeking a nontrivial solution of this system, we are interested in the
cases where the system matrix is singular. We note that this matrix, although with
7× 7 being small in dimension, has a nontrivial size in terms of byte count (totalling
to about 1 MB), due to the appearance of the parameters a, b, c, ε, x. The determinant
of the matrix is given (in fully factored form) by

x(c − a)(a − c − 1)(a + 2ε − 1)(a + 2ε)6(a + 2ε + 1)6(b + 3ε − 1)(b + 3ε)6

× (b + 3ε + 1)6(b + 3ε + 2)6(c + 2ε)(c + 2ε + 1)(b − c + ε − 1)(b − c + ε)

×

(
(x + 2)(4x − 1)ε2 + (4ax2 + 2ax + 8bx − 2b − 7cx + c + 2x2 + 9x − 2)ε

+ a(a + 1)x2 + x(2a + b + 2)(b − c + 1) + c(c − b − 1)
)
.

The first three factors of the determinant correspond to trivial or well-known evalu-
ations of the hypergeometric function:
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x = 0: 2F1

(
a + 2ε, b + 3ε

c + 2ε

���� 0) = 1,

c = a : 2F1

(
a + 2ε, b + 3ε

a + 2ε

���� x
)
=

1
(1 − x)b+3ε ,

c = a − 1: 2F1

(
a + 2ε, b + 3ε

a + 2ε − 1

���� x
)
=

a(1 − x) + bx + ε(x + 2) + x − 1
(a + 2ε − 1)(1 − x)b+3ε+1 .

All remaining factors that are linear in ε do not give useful conditions: since the
ε appears with a constant coefficient and since the parameters a, b, c, x are not
supposed to depend on ε, these factors can never become 0. The only interesting
factor is the last one, a quadratic polynomial in ε, which is zero if and only if all
its three coefficients vanish. This yields three nonlinear polynomial equations in the
parameters a, b, c, x. A (lexicographic) Gröbner basis of the ideal generated by these
polynomials is given by the following six polynomials:

(x + 2)(4x − 1),
(x + 2)(2a − 2c + 1),

a2 − 2ac + a + c2 − c + x,

12a + 8bx − 2b − 12cx − 9c + 8x + 4,

12ab − 18ac + 12a − 12bc + 6b + 18c2 − 21c + 8x + 4,

12b2 − 36bc + 24b + 27c2 − 36c + 5x + 10.

Thanks to their triangular shape, they allow us to determine the complete set of
solutions (a, b, c, x) to our polynomial equations, parametrized by a:(

a,
3(a − 1)

2
, a − 1,−2

)
,

(
a,

3a + 2
2

, a + 2,−2
)
,(

a,
3a
2
,
2a + 1

2
,
1
4

)
,

(
a,

3a − 1
2

,
2a + 1

2
,
1
4

)
.

Clearly, the first two families of solutions are not interesting, since the corresponding
hypergeometric series are not convergent. In contrast, the two families in the second
row do give us valid identities:

2F1

(
a + 2ε, 3

2 a + 3ε
1
2 (2a + 1) + 2ε

����� 1
4

)
=
Γ

(
a
2 + ε + 1

)
Γ(2a + 4ε + 1)

Γ(a + 2ε + 1) Γ
(

3a
2 + 3ε + 1

) , (4)

2F1

(
a + 2ε, 1

2 (3a − 1) + 3ε
1
2 (2a + 1) + 2ε

����� 1
4

)
=

(
4
3

) 3a
2 +3ε

·
Γ
(
a
2 + ε + 1

)
Γ
(
a + 2ε + 1

2
)

Γ
(
a
2 + ε +

1
2
)
Γ
(
a + 2ε + 1

) . (5)

Note that Equation (4) is a generalization of the original identity (1) we started with,
which is recovered for a = 0.
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Also, we should remark that this approach is not restricted to the special form
where we have 2ε and 3ε in the top parameters of the 2F1, and 2ε in the bottom
parameter, but also to other situationwhere the epsilon coefficients 2, 2, 3 are replaced
by other integers. In this fashion one could potentially find many more similar
identities.

However, we do not claim that the two identities stated above are necessarily new.
There is a vast literature on special evaluations of hypergeometric functions, and
it is likely that they already appear somewhere. For example, large classes of such
identities were presented in [27] and [28], and in particular the latter seems to take a
similar approach as the one discussed here. We nevertheless would like to point out
that, although the holonomic systems approach may not be the most efficient way
for finding new identities, it is definitely a very useful tool for proving them.

4 Holonomic Integration

Some of the multiloop Feynman diagrams contain the one-loop diagram or the
product of one-loop diagrams insertions [29, 30, 31, 32, 33]. In particular, the L-
loop bubble type diagram, can be understood as the integration of L − 1 propagators
with an external massive line. The diagrams of that type have been studied from
mathematical [34, 35] as well as from practical evaluation point of view [36, 37]. In
particular, it was pointed out, that both types of diagrams are expressible in terms of
FC hypergeometric functions [38].

In this section, we will be interested in the integral

I(a) =
∫ ∞

0

tα−1

(t + a)j
f (t) dt =

∫ ∞

0
F(t, a) dt. (6)

where j ∈ Z and α is a parameter, and where the unspecified function f (t) sat-
isfies the following linear non-homogeneous differential equation with polynomial
coefficients:

(t + 1)(t + 9) f ′′(t) + (b2t2 + b1t + b0) f ′(t) + c1(t + 3) f (t) = c2t. (7)

where b0, b1, b2, c1, c2 are parameters (or numerical constants). Note that such type
of equation appears originally in the paper by Broadhurst-Fleischer-Tarasov [39] in
the context of analytical evaluation of two-loop sunset diagrams with equal masses.

Of course, one natural question that one could ask in this context, is whether the
solutions of Equation (7) can be expressed in closed form, e.g., in terms of known
special functions or as hypergeometric series. However, here we want to focus on the
integral (6) and ask the question: does this integral satisfy a similarly nice relation
as the original function f (t), that is to say: a linear differential equation, and if so,
how can we find it?

From the theory of holonomy it follows immediately that this is the case: the
property of f (t) being holonomic transfers to the whole integral, because the kernel
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is just a simple combination of power functions (and hence holonomic), and because
holonomicity is preserved under definite integration.

In order to performactual calculation,we shall first devise a holonomic description
for the function f , by artificially viewing it as a bivariate function f (t, a). In other
words, we want to give generators of a holonomic ideal in the operator algebra
O = K(t, a)〈Dt,Da〉whereK = Q(α, b0, b1, b2, c1, c2, j). The first generator is readily
obtained Equation (7), which one has to homogenize in order to get an annihilating
operator. In terms of operators, this corresponds to left-multiplying the operator
given by the left-hand side of (7) by an annihilating operator of its right-hand side:

(tDt − 1) ·
(
(t + 1)(t + 9)D2

t + (b2t2 + b1t + b0)Dt + c1(t + 3)
)

= (t3 + 10t2 + 9t)D3
t + (b0t + b1t2 + b2t3 + t2 − 9)D2

t

+ (−b0 + b2t2 + c1t2 + 3c1t)Dt − 3c1.

The second generator is just Da since f (t, a) actually does not depend on a. From
the noncommutative version of Buchberger’s product criterion it follows that these
two operators form a Gröbner basis, and by the definition of f , it is clear that they
generate annO( f ), the annihilator of f with respect to O.

Simple transformations convert the annihilating operators for f into operators
that annihilate the whole integrand of (6), let us denote this integrand by F(t, a).
Algorithmically we can do it by exploiting the closure property that the product of
two holonomic functions is again holonomic, but in such simple instances, one could
even do it by hand. In any case, the result is as follows:

(a + t)Da + j,

t(1 + t)(9 + t)D3
t +

(
−9 + b0t + t2 + b1t2 + b2t3 − 3t(9 + 10t + t2)R

)
D2
t

+
(
b2t2 + c1t2 + 3c1t − b0 − 2(−9 + b0t + (1 + b1)t2 + b2t3)R

+ 3t(9 + 10t + t2)R2 − 3t(9 + 10t + t2)R′
)
Dt

− 3c1 − (−9 + b0t + (1 + b1)t2 + b2t3)R′ − (9t + 10t2 + t3)R′′

+ (b0 − t(b2t + c1(3 + t)) + 3t(9 + 10t + t2)R′R

+ (−9 + b0t + (1 + b1)t2 + b2t3)R2 − t(9 + 10t + t2)R3

where R = R(t, a) = (a+t)(α−1)−jt
t(a+t) and where R′ refers to the differentiation with

respect to t. In expanded form, this annihilator covers about a page.
Equipped with this holonomic description of the integrand, we can now employ

the creative telescoping algorithm as implemented in the HolonomicFunctions pack-
age [10], in order to obtain two operators, namely a telescoper P = P(a,Da) and
a certificate Q = Q(t, a,Dt,Da) with the property that P + DtQ is an element in
annO(F). To keep the exposition concise, we first look at the special case α = 1.
Then these two operators are given as follows:
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P = −(a − 9)(a − 1)D3
a + (a

2b2 − ab1 − 2a j + b0 + 10 j)D2
a

+ (2ab2 j + ac1 − b1 j − 3c1 − j2 + j)Da + j(b2 j − b2 + c1),

and

Q =
(t + 1)(t + 9)(a + jt)

( j − 1)t
D2
t +

(
a2(b0 + t(b1 + b2t)) + a( j(t(b0 + t(b1 + b2t + 2)

+ 20) + 18) + t(b0 + t(b1 + b2t))) + jt(t(b0 + t(b1 + b2t − 1) − 10)

+ 3 j(t + 1)(t + 9) − 9)
)/ (
( j − 1)t(a + t)

)
Dt

+
(
a3c1(t + 3) + a2(b0 j + jt(b1 + b2t) + c1( j + 2)t(t + 3))

+ a
(
j2(t(2b0 + t(2b1 + 2b2t − 1)) + 9) + j(t + 3)

(
2c1t2 + t − 3

)
+ c1t2(t + 3)

)
+ jt

(
t(t(−b1 − b2t + c1(t + 3) + 1) − b0) + 2 j(t(b0 + t(b1 + b2t − 2) − 15) − 9)

+ 3 j2(t + 1)(t + 9) − 9
) )/ (
( j − 1)t(a + t)2

)
.

By denoting the result of applying the operator Q to the integrand F by g(t, a), we
express the above property as the equation

P
(
F(t, a)

)
= −

d
dt
g(t, a).

Integrating both side of this equation (almost) yields the desired relation
for the integral:

P
(
I(a)

)
= g(0, a) − lim

t→∞
g(t, a) = g(0, a)

(the latter simplification under appropriate convergence assumptions on the given
integral). Since the right-hand side of this (potentially) inhomogeneous differential
equation is not given explicitly, but in terms of the unspecified function f (t), it may
be desirable to convert it to a holonomic description, i.e., into a homogeneous linear
differential equation.

For this purpose, one shall derive a linear differential equation for g(0, a) which,
thanks to holonomic closure properties, is possible even without knowing its ex-
plicit closed form. The procedure consists of two steps: (1) derive an annihilator
for Q(F), which is possible by the closure under operator application (the com-
mand DFiniteOreAction yields an output of several pages), and (2) by applying
the closure property “algebraic substitution” (the corresponding command is called
DFiniteSubstitute). As a result, one receives the following operator that annihi-
lates g(0, a):

a3D3
a + (3a2 j + 5a2)D2

a + (3a j2 + 7a j + 2a)Da + ( j3 + 2 j2 − j − 2).

Multiplying this operator from the left to the telescoper P yields an order-6 annihi-
lating operator for the integral I(a) (not printed here for space reasons).
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When we want to deal with the case of general α, then the approach is completely
analogous, with the difference that all expressions get more unhandy, and that the
telescoper for general α is an operator of order 6.

In this way, starting from the linear differential equation (7) for the 2-loop sunset,
we have obtained the differential equation for the 3-loop bubble diagram with two
masses, studied recently in [40, 41].

5 Sunrise in Terms of Bessel-K Functions

In this section, we are studying a family of integrals that correspond to sunrise
Feynman diagrams. Within dimensional regularization [42] in the momentum space
it is defined as

J(L)
( #   »

M2
j ; #»αj ; p2) = ∫ L∏

j=1

dnk j(
k2
j + M2

j

)αj
·

1(
(p − k1 − . . . −kL)2 + M2

L+1
)αL+1

,

where αj are positive integers and M2
j and p2 are some (in general, complex) param-

eters and n is an (in general, non-integer) parameter of dimensional regularization.
Using the coordinate representation for the Feynman propagator and performing an
integration over the angle,∫

exp(ipx) dn x̂ = 2π
n
2

(
2

qx

) n
2 −1

J n
2 −1(qx),

where q2 = −p2 and where Jν(z) denotes the Bessel function of the first kind, it is
easy to get a one-fold integral representation for this type diagram [43]:

J(L)(
#   »

M2
j ; #»αj ; p2) =

∫
dnk exp(iqx)

L+1∏
i=1

∫
dnki exp(iki x)(

k2 + M2
i

)α
=

∫
kn−1 dk

∫
dk̂ exp(iqx)

L+1∏
i=1

∫
dnki exp(iki x)(

k2 + M2
i

)α
= 2π

n
2

∫
xn−1

(
2

qx

) n
2 −1

J n
2 −1(qx)

L+1∏
i=1

2π n
2

Γ(αi)

(
2Mi

x

) n
2 −αi

K n
2 −α
(Mi x) dx

=

(
π

n
2
)L+2

2α− n
2 (L+2)−L−1

(
1
q

) n
2 −1∫ ∞

0
tα−

n
2 L J n

2 −1(tq)
L+1∏
j=1

©«K n
2 −αj
(Mj t)

M
n
2 −αj

j

Γ(αj)

ª®¬ dt (8)

where α =
∑L+1

k=1 αk , and n is the dimension of space-time, where q2 = −p2, and
Kν(z) denotes the modified Bessel function of the second kind. This integral has
been studied in [44, 45, 46, 47].
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In the rest of this section, we will focus on the integral representation (8). Note
that the integrand contains a product of L+2 Bessel functions (both J and K counted
together). Since a Bessel function has holonomic rank 2, it follows by Theorem 1(ii)
that the expression in the integral has holonomic rank at most 2L+2. Unfortunately,
it turns out that the bound in this instance is tight, i.e., the holonomic rank of the
integrand is exactly 2L+2. Since all creative telescoping algorithms are very sensitive
concerning the holonomic rank of the input annihilator, this class of integrals is
going to pose challenges for our package.

For computing telescopers of holonomic integrals, we have several algorithms
at hand: we mention just Chyzak’s algorithm [16] and a heuristic ansatz proposed
by the author [17]. The advantage of the former algorithm is that it is theoretically
sound and is guaranteed to terminate and to return the minimal-order telescoper,
while the latter uses several heuristics to shape the ansatz, which may result in a non-
minimal telescoper and in some instances this “algorithm” even fails to terminate.
The disadvantage of Chyzak’s algorithm is that it is very sensitive to the holonomic
rank of the input due to the uncoupling step. The other approach [17] was designed
specifically to address this issue and to circumvent the costly uncoupling step. Since
our examples have relatively large holonomic rank,wewill use the heuristic approach,
and hence the reported telescopers need not necessarily be minimal. On the other
side, the usage of this algorithm enables us to get some results at all: for example,
in the most simple example (first line of Table 1), we obtain a result after about 2
seconds, while the algorithm [16] was aborted after 1000 seconds without yielding
any result.

As a toy example, we start with the case L = 1. Hence, in this case the integral
depends on the six parameters q, n, α1, α2, M1, M2. Nevertheless, the Holonomic-
Functions program is able to compute a telescoper within a few seconds. This
telescoper is a third-order operator in Dq , but is still too long to be printed here.
Instead, we display the specialized version with M1 = M2 = 1:

−8q3(q2+ 4)D3
q + 4q2 (5nq2− 16α1 − 16α2 + 12n − 8α1q2− 8α2q2− 12q2− 24

)
D2
q

−2q
(
16α2

1 + 16α2
2 + 48α1 + 32α1α2 + 48α2 + 7n2q2+ 12n2− 32α1n − 32α2n − 24n

+ q2(−24α1n − 24α2n − 30n + 16α2
1 + 16α2

2 + 48α1 + 48α2 + 48α1α2 + 28)
)
Dq

− 32α2
1 − 32α2

2 + 32α1 − 64α1α2 + 32α2 + 3n3q2 + 4n3 − 16α1n2 − 16α2n2

− 16α1n2q2 − 16α2n2q2 − 14n2q2 + 16α2
1n + 16α2

2n + 16α1n + 32α1α2n + 16α2n

+ 16α2
1nq2 + 16α2

2nq2 + 48α1nq2 + 48α2nq2 + 80α1α2nq2 + 20nq2 − 16n − 8q2

− 32α2
1q2 − 32α2

2q2 − 64α1α
2
2q2 − 32α1q2 − 32α2q2 − 64α2

1α2q2 − 96α1α2q2.

We have also looked at some “less trivial” cases of the integral (8). As the
above output suggests, it will not be reasonable to print the resulting operators, but
instead we tabularize our findings (see Table 1, together with some information on
timings and sizes of the outputs. These data allow us to acquire an intuition on how
the difficulty of the computation depends on the holonomic rank of the input, the
number of parameters, etc.



14 Christoph Koutschan

Case Rank Order Time Size
L = 1, Mj = 1 8 3 2 s 15KB
L = 1 8 3 6 s 149KB
L = 2, Mj = 1, αj = j 16 4 34 s 36KB
L = 2, Mj = 1 16 7 797 s 6.8MB
L = 2, M1 = q, M2 = M3 = 1 16 7 8003 s 4.6MB
L = 2, M1 = M2 = M3 16 7 ERR –
L = 2, α1 = 5, α2 = 11, α3 = 14 16 7 > 36 h –
L = 3, Mj = 1, αj = j 32 11 83006 s 1.4MB
L = 3, M1 = q, M2 = M3 = M4 = 1, αj = j 32 11 763 s 1.0MB

Table 1 Some benchmark computations: the first column gives the specification of an instance of
integral (8) (parameters that are not mentioned are kept symbolic), “Rank” refers to the holonomic
rank of the integrand, “Order” to the order (degree w.r.t. Dq ) of the telescoper, “Time” to the
computation time (in seconds), and “Size” to the byte size of the telescoper (not the certificate),
using Mathematica’s ByteCount. One computation didn’t finish within 36 hours, one computation
crashed (ERR); nevertheless, the order of the telescoper could be extracted from the log files.

Table 1 gives an impression that the computation of integrals related to sunrise
Feynman diagrams is challenging but not completely hopeless for the holonomic
systems approach. We plan to explore further the applicability of this approach to
Feynman integrals in a forthcoming publication.

Concluding, we have shortly discussed a set of problems related to the evaluation
of Feynman diagrams, where the holonomic systems approach, implemented in the
package HolonomicFunctions, could be quite useful. We are looking forward to
many other exciting collaborations between computer algebra and particle physics.
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