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This manual describes the functionality of the Mathematica package Holo-
nomicFunctions. It is a very powerful tool for the work with special functions,
it can assist in solving summation and integration problems, it can automati-
cally prove special function identities, and much more. The package has been
developed in the frame of the PhD thesis [9]. The whole theory and the al-
gorithms are described there, and it contains also many references for further
reading as well as some more advanced examples; the examples in this manual
are mostly of a very simple nature in order to illustrate clearly the use of the soft-
ware. HolonomicFunctions is freely available from the RISC combinatorics
software webpage

www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/

Short references
Annihilator

[
expr, ops

]
computes annihilating operators for the expression expr

with respect to the Ore operators ops (p. 5).

AnnihilatorDimension
[
ann

]
gives the dimension of the annihilating left ideal

ann (p. 8).

AnnihilatorSingularities
[
ann, start

]
computes the set of singular points for

a system ann of multivariate recurrences (p. 9).

ApplyOreOperator
[
opoly, expr

]
applies the operator given by the Ore poly-

nomial opoly to expr (p. 11).

ChangeMonomialOrder
[
opoly, ord

]
changes the monomial order of the Ore

polynomial opoly to ord (p. 12).

ChangeOreAlgebra
[
opoly, alg

]
translates the Ore polynomial opoly into the

new Ore algebra alg (p. 13).

∗partially supported by the Austrian Science Fund (FWF): P20162-N18, and by the US
National Science Foundation: NSF-DMS 0070567.
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CreativeTelescoping
[
expr, delta, ops

]
performs Chyzak’s algorithm to find

creative telescoping relations for expr (p. 14).

Delta
[
n
]

represents the forward difference (delta) operator w.r.t. n (p. 17).

Der
[
x
]

represents the operator “partial derivative w.r.t. x” (p. 18).

DFiniteDE2RE
[
ann, {x1, . . . , xd}, {n1, . . . , nd}

]
computes recurrences in the

variables n1, . . . , nd for the coefficients of a power series that is solution
to the given differential equations in ann (p. 19).

DFiniteOreAction
[
ann, opoly

]
executes the closure property “application of

an operator” for the ∂-finite function described by ann (p. 20).

DFinitePlus
[
ann1, ann2

]
executes the closure property “sum” for the ∂-finite

functions described by ann1 and ann2 (p. 22).

DFiniteQSubstitute
[
ann, {q,m, k}

]
computes an annihilating ideal of q-

difference equations for the result of the substitution q → e2iπ/mq1/k (p. 24).

DFiniteRE2DE
[
ann, {n1, . . . , nd}, {x1, . . . , xd}

]
gives differential equations in

x1, . . . , xd of a generating function whose coefficients are described by the
given recurrences in ann (p. 26).

DFiniteSubstitute
[
ann, subs

]
executes the closure properties “algebraic sub-

stitution” for continuous variables and “rational-linear substitution” for dis-
crete variables (p. 27).

DFiniteTimes
[
ann1, ann2

]
executes the closure property “product” for the ∂-

finite functions described by ann1 and ann2 (p. 29).

DFiniteTimesHyper
[
ann, expr

]
executes the closure property “product”

when one factor expr is hypergeometric and hyperexponential in the re-
spective variables (p. 30).

DSolvePolynomial
[
eqn, f [x]

]
determines whether the ordinary linear differ-

ential equation eqn in f [x] (with polynomial coefficients) has polynomial
solutions, and in the affirmative case, computes them (p. 31).

DSolveRational
[
eqn, f [x]

]
determines whether the ordinary linear differential

equation eqn in f [x] (with polynomial coefficients) has rational solutions,
and in the affirmative case, computes them (p. 32).

Euler
[
x
]

represents the Euler operator θx = xDx (p. 33).

FGLM
[
gb, order

]
transforms the noncommutative Gröbner basis gb into a

Gröbner basis with respect to the given order. (p. 34).

FindCreativeTelescoping
[
expr, deltas, ops

]
finds creative telescoping rela-

tions for expr by ansatz (p. 36).

FindRelation
[
ann, opts

]
finds relations with certain properties in the annihi-

lating ideal annby ansatz (p. 39).

FindSupport
[
ann, opts

]
computes only the support of a relation in the anni-

hilating ideal ann that satisfies the given constraints (p. 41).

GBEqual
[
gb1, gb2

]
whether two Gröbner bases are the same (p. 43).
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HermiteTelescoping
[
expr, Der[y], Der[x]

]
performs Hermite telescoping to

find creative telescoping relations for the hyperexponential expr (p. 44).

LeadingCoefficient
[
opoly

]
gives the leading coefficient of the Ore polynomial

opoly (p. 45).

LeadingExponent
[
opoly

]
gives the exponents of the leading term of the Ore

polynomial opoly (p. 46).

LeadingPowerProduct
[
opoly

]
gives the leading power product of the Ore

polynomial opoly (p. 47).

LeadingTerm
[
opoly

]
gives the leading term of opoly (p. 48).

NormalizeCoefficients
[
opoly

]
removes the content of the Ore polynomial

opoly (p. 49).

OreAction
[
op
]

determines how the newly defined Ore operator op acts on
arbitrary expressions (p. 50).

OreAlgebra
[
g1, g2, . . .

]
defines an Ore algebra that is generated by g1, g2, . . .

(p. 51).

OreAlgebraGenerators
[
alg
]

gives the list of generators of the Ore algebra
alg (p. 53).

OreAlgebraOperators
[
alg
]

gives the list of Ore operators that are contained
in the Ore algebra alg (p. 54).

OreAlgebraPolynomialVariables
[
alg
]

gives the list of variables that occur
polynomially in the Ore algebra alg (p. 55).

OreDelta
[
op
]

defines the endomorphism δ for the Ore operator op. (p. 56).

OreGroebnerBasis
[
{P1, . . . , Pk}

]
computes a left Gröbner basis of the ideal

generated by the Ore polynomials P1, . . . , Pk (p. 57).

OreOperatorQ
[
expr

]
tests whether expr is an Ore operator (p. 60).

OreOperators
[
expr

]
gives a list of Ore operators that occur in expr (p. 61).

OrePlus
[
opoly1, opoly2

]
adds the Ore polynomials opoly1 and opoly2 (p. 62).

OrePolynomial
[
data, alg, order

]
is the internal representation of Ore polyno-

mials (p. 63).

OrePolynomialDegree
[
opoly

]
gives the total degree of the Ore polynomial

opoly (p. 65).

OrePolynomialListCoefficients
[
opoly

]
gives a list containing all nonzero co-

efficients of the Ore polynomial opoly. (p. 66).

OrePolynomialSubstitute
[
opoly, rules

]
applies the substitutions rules to the

Ore polynomial opoly (p. 67).

OrePolynomialZeroQ
[
opoly

]
tests whether an Ore polynomial is zero (p. 68).

OrePower
[
opoly, n

]
gives the n-th power of the Ore polynomial opoly (p. 69).

OreReduce
[
opoly, {g1, g2, . . . }

]
reduces the Ore polynomial opoly modulo the

set of Ore polynomials {g1, g2, . . . } (p. 70).
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OreSigma
[
op
]

defines the endomorphism σ for the Ore operator op (p. 72).

OreTimes
[
opoly1, opoly2

]
multiplies the Ore polynomials opoly1 and opoly2,

respecting their noncommutative nature (p. 73).

Printlevel = n activates and controls verbose mode (see p. 74).

QS
[
x, qˆn

]
represents the q-shift operator on x (p. 75).

QSolvePolynomial
[
eqn, f [x], q

]
determines whether the linear q-shift equation

eqn in f [x] (with polynomial coefficients) has polynomial solutions, and in
the affirmative case, computes them (p. 76).

QSolveRational
[
eqn, f [x], q

]
determines whether the linear q-shift equation

eqn in f [x] (with polynomial coefficients) has rational solutions, and in the
affirmative case, computes them (p. 77).

RandomPolynomial
[
var, deg, c

]
gives a dense random polynomial in the vari-

ables var, of degree deg, and with integer coefficients between −c and c
(p. 78).

RSolvePolynomial
[
eqn, f [n]

]
determines whether the linear recurrence equa-

tion eqn in f [n] (with polynomial coefficients) has polynomial solutions, and
in the affirmative case, computes them (p. 79).

RSolveRational
[
eqn, f [n]

]
determines whether the linear recurrence equation

eqn in f [n] (with polynomial coefficients) has rational solutions, and in the
affirmative case, computes them (p. 80).

S
[
n
]

represents the forward shift operator w.r.t. n (p. 81).

SolveCoupledSystem
[
eqns, {f1, . . . , fk}, {v1, . . . , vj}

]
computes all rational so-

lutions of a coupled system of linear difference and differential equations
(p. 82).

SolveOreSys
[
type, var, eqns, {f1[var], . . . , fk[var]}, pars

]
computes all rational

solutions of a first-order coupled linear difference or differential system
(p. 84).

Support
[
opoly

]
gives the support of the OrePolynomial opoly (p. 86).

Takayama
[
ann, vars

]
performs Takayama’s algorithm for definite summation

and integration with natural boundaries (p. 87).

ToOrePolynomial
[
expr, alg

]
converts expr to an Ore polynomial in the Ore

algebra alg (p. 90).

UnderTheStaircase
[
gb
]

computes the list of monomials (power products) that
lie under the stairs of the Gröbner basis gb (p. 92).
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Annihilator

Annihilator
[
expr, ops

]
computes annihilating relations for expr w.r.t. the Ore operator(s) ops.

Annihilator
[
expr

]
automatically tries to determine for which operators relations exist.

O More Information

The input expr can be any Mathematica expression (but not a list of expres-
sions) and ops can be either a list of operators or a single operator; admissible
operators are S, Der, Delta, and QS. The output consists of a list of OrePoly-
nomial expressions which form a Gröbner basis of an annihilating left ideal for
expr. It need not necessarily be the maximal annihilating ideal (i.e., the full
annihilator), but often it is, in particular when expr is recognized to be ∂-finite.
If the input is not recognized to be ∂-finite, some heuristics to find relations
are applied, but it may well be that some are missed. The relations are com-
puted by recursively analyzing the structure of the input down to its “atomic”
building blocks and then executing the ∂-finite closure properties DFinitePlus,
DFiniteTimes, DFiniteSubstitute, and DFiniteOreAction. To see a com-
plete list of mathematical functions that are recognized by Annihilator as
atomic building blocks (whether ∂-finite or not) type ?Annihilator.

Annihilator has the attribute HoldFirst to prevent Mathematica from doing
any simplification on the input. If expr contains the command D or ApplyOre-
Operator then the closure property DFiniteOreAction is performed, which
is more desirable compared to first evaluate and then computing an annihilating
ideal (see below for an example on this issue). Similarly, if expr contains Sum
or Integrate then not Mathematica is asked to simplify the expression, but
CreativeTelescoping is executed automatically on the summand (resp. inte-
grand). For evaluating the delta part, Mathematica’s FullSimplify and Limit
are used; if they fail (or if you don’t trust them), you can use the option Inho-
mogeneous in order to obtain inhomogeneous recurrences (resp. differential
equations), where the critical components of the delta part have been wrapped
with Hold. Often the problem is that the evaluation of the delta part requires
additional assumptions; they can be given with the option Assumptions.

The following options can be given:

Assumptions :→ $Assumptions
In cases where CreativeTelescoping is called internally, these assumptions
are passed and used for simplifying the inhomogeneous parts.

Head → None
By default, the annihilating operators are returned as OrePolynomial ex-
pressions; if some symbol (other than None) is given, e.g., Head→ f , then
the output is given as relations of the specified function.
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Inhomogeneous → False
Applies only if expr is a sum or an integral. In order to present the result as
operators, the relations found by creative telescoping are homogenized by
default. If this option is set to True then two lists are returned: one contain-
ing the homogeneous parts (given as Ore polynomials), and the other con-
taining the corresponding inhomogeneous parts. Critical components (like
Limit expressions) of the inhomogeneous parts are wrapped with Hold.

Method → Automatic
is passed when CreativeTelescoping is called internally, see p. 14.

MonomialOrder → DegreeLexicographic
the monomial order w.r.t. to which the output is given; see OreGroeb-
nerBasis (p. 57) for a list of supported monomial orders.

O Examples

In[1]:= Annihilator[Sin[Sqrt[x̂ 2 + y]], {Der[x],Der[y]}]
Out[1]= {Dx − 2xDy, (4x2 + 4y)D2

y + 2Dy + 1}
In[2]:= Annihilator[LegendreP[n, x]]

Out[2]= {(n+ 1)Sn + (1− x2)Dx + (−nx− x), (x2 − 1)D2
x + 2xDx + (−n2 − n)}

In[3]:= Annihilator[ArcSin[Sqrt[x+ 1]]̂ k, {S[k],Der[x]}]
Annihilator::nondf : The expression ArcSin[Sqrt[1 + x]]̂ k is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Out[3]= {(4x2 + 4x)S2
kD

2
x + (4x+ 2)S2

kDx + (k2 + 3k + 2)}
In[4]:= Annihilator[Sum[Binomial[n, k], {k, 0, n}],S[n]]

Out[4]= {Sn − 2}
In[5]:= Annihilator[Integrate[(LegendreP[2k + 1, x]/x)̂ 2, {x,−1, 1}], S[k],

Assumptions→ Element[k, Integers] && k ≥ 0]

Out[5]= {−Sk + 1}
In[6]:= Annihilator[Fibonacci[n],S[n],Head→ f ]

Out[6]= {−f(n)− f(n+ 1) + f(n+ 2) = 0}

Note the difference between the following two ways to compute a differential
equation for J ′n(x). The closure property DFiniteOreAction never increases
the order whereas DFinitePlus usually does.

In[7]:= Annihilator[D[BesselJ[n, x], x], Der[x]]

Out[7]= {(n2x2 − x4)D2
x + (3n2x− x3)Dx + (−n4 + 2n2x2 + n2 − x4 + x2)}

In[8]:= expr = D[BesselJ[n, x], x]

Out[8]=
1

2
(BesselJ[−1 + n, x]− BesselJ[1 + n, x])

In[9]:= Annihilator[expr, Der[x]]

Out[9]= {x4D4
x + 6x3D3

x + (−2n2x2 + 2x4 + 5x2)D2
x + (−2n2x+ 6x3 − x)Dx +

(n4 − 2n2x2 − 2n2 + x4 + 2x2 + 1)}
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The following, more advanced example is taken from [8], formula 7.322:∫ 2a

0

(x(2a− x))ν−
1
2C

(ν)
n

(
x
a − 1

)
ebx

dx =
π (−1)n

(
a
2b

)ν
Γ(n+ 2ν)In+ν(ab)

n! Γ(ν) eab
.

In this example the inhomogeneous parts are so complicated that Mathematica
needs some little help to get them simplified. Hence we use the option Inho-
mogeneous.

In[10]:= {lhs, inhom} = Annihilator[Integrate[
((x(2a− x))̂ (ν − 1/2) GegenbauerC[n, ν, x/a− 1])/E (̂bx),
{x, 0, 2a}],

{Der[a],Der[b], S[n], S[ν]},Assumptions→ ν ≥ 1,
Inhomogeneous→ True];

The annihilating ideal for the left-hand side is nice, but the inhomogeneous part
is so big that we don’t want to display it here.

In[11]:= lhs

Out[11]= {(−an2 − 2anν − 2an− 2aν − a)Sn − 2bνSν ,
(bn2 + 4bnν + bn+ 4bν2 + 2bν)Db − 2b2νSν +

(abn2 + 4abnν + abn+ 4abν2 + 2abν − n3 − 4n2ν − n2 − 4nν2 − 2nν),
(an2 + 4anν + an+ 4aν2 + 2aν)Da − 2b2νSν + (abn2 + 4abnν + abn+

4abν2 + 2abν − n3 − 6n2ν − n2 − 12nν2 − 4nν − 8ν3 − 4ν2),
(4b2ν2 + 4b2ν)S2

ν + (4n3ν + 20n2ν2 + 24n2ν + 32nν3 + 76nν2 + 44nν + 16ν4 +
56ν3 + 64ν2 + 24ν)Sν + (−a2n4 − 8a2n3ν − 6a2n3 − 24a2n2ν2 −
36a2n2ν − 11a2n2 − 32a2nν3 − 72a2nν2 − 44a2nν − 6a2n− 16a2ν4 −
48a2ν3 − 44a2ν2 − 12a2ν)}

In[12]:= ByteCount[inhom]

Out[12]= 127664

In[13]:= Simplify[
Simplify[ReleaseHold[inhom /. Limit→ myLimit]]
/. myLimit→ Limit, Assumptions→ ν ≥ 1]

Out[13]= {0, 0, 0, 0}
In[14]:= rhs = Annihilator[((−1)̂ nPi (Gamma[2ν + n]/n!/Gamma[ν])

(a/(2b))̂ ν BesselI[ν + n, ab])/E (̂ab), {Der[a],Der[b], S[n], S[ν]}]
Out[14]= {(an2 + 2anν + 2an+ 2aν + a)Sn + 2bνSν ,

(bn2 + 4bnν + bn+ 4bν2 + 2bν)Db − 2b2νSν +
(abn2 + 4abnν + abn+ 4abν2 + 2abν − n3 − 4n2ν − n2 − 4nν2 − 2nν),

(an2 + 4anν + an+ 4aν2 + 2aν)Da − 2b2νSν + (abn2 + 4abnν + abn+
4abν2 + 2abν − n3 − 6n2ν − n2 − 12nν2 − 4nν − 8ν3 − 4ν2),

(4b2ν2 + 4b2ν)S2
ν + (4n3ν + 20n2ν2 + 24n2ν + 32nν3 + 76nν2 + 44nν + 16ν4 +

56ν3 + 64ν2 + 24ν)Sν + (−a2n4 − 8a2n3ν − 6a2n3 − 24a2n2ν2 −
36a2n2ν − 11a2n2 − 32a2nν3 − 72a2nν2 − 44a2nν − 6a2n− 16a2ν4 −
48a2ν3 − 44a2ν2 − 12a2ν)}

In[15]:= GBEqual[lhs, rhs]

Out[15]= True

O See Also

AnnihilatorDimension, AnnihilatorSingularities, CreativeTelescoping,
DFinitePlus, DFiniteTimes, DFiniteSubstitute, DFiniteOreAction
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AnnihilatorDimension

AnnihilatorDimension
[
ann

]
gives the dimension of the annihilating ideal ann.

O More Information

The input ann has to be a list of OrePolynomial expressions that constitute
a Gröbner basis (with respect to the Ore algebra and monomial order that they
are represented in), and the output is a natural number. Note that the Gröbner
basis condition is not tested, and if violated, the result may be wrong. What
internally happens is that only the leading exponent vectors are considered (so,
alternatively, a list of such can be given as input). If the ideal ann is ∂-finite,
then its dimension is 0.

O Examples

In[16]:= Annihilator[ChebyshevT[n, x], {S[n],Der[x]}]
Out[16]= {nSn + (1− x2)Dx − nx, (x2 − 1)D2

x + xDx − n2}
In[17]:= AnnihilatorDimension[%]

Out[17]= 0

In[18]:= Annihilator[StirlingS1[k,m], {S[k], S[m]}]
Annihilator::nondf : The expression StirlingS1[k, m] is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Out[18]= {SkSm + kSm − 1}
In[19]:= AnnihilatorDimension[%]

Out[19]= 1

In[20]:= Annihilator[StirlingS1[k,m]StirlingS2[k, n], {S[k], S[m], S[n]}]
Annihilator::nondf : The expression StirlingS1[k, m] is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Annihilator::nondf : The expression StirlingS2[k, n] is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Out[20]= {SkSmSn + (kn+ k)SmSn + kSm + (−n− 1)Sn − 1}
In[21]:= AnnihilatorDimension[%]

Out[21]= 2

O See Also

Annihilator, UnderTheStaircase

8



AnnihilatorSingularities

AnnihilatorSingularities
[
ann, start

]
computes the set of singular points in the positive region above start for a
system ann of multivariate recurrences.

O More Information

The input ann has to be a system of (multivariate) recurrences, given as a list
of OrePolynomial expressions. They need not to form a Gröbner basis, but
note that it will not be recognized if they happen to be inconsistent (since only
their leading terms are taken into account). The second argument start, a list
of integers, gives the start point of the sequence. Then all singular points in the
positive region above start, i.e., start+Nd where d is the number of variables,
are determined. By singular points, we mean those points where none of the
recurrences can be applied, either because it would involve values from outside
the region or because its leading coefficient vanishes.

The output is a list of pairs, each of which consists of a list of substitutions and
a condition under which these substitutions give rise to singular points. It is
tacitly assumed that the recurrence variables take only integer values—hence
this condition is not extra stated in the output.

The region under consideration can be further restricted by giving assumptions
on the variables.

The following options can be given:

Assumptions :→ $Assumptions
further restrictions on the variables of the recurrences

O Examples

In[22]:= AnnihilatorSingularities[ToOrePolynomial[{(n− 5)S[n]− 1}], {0}]
Out[22]= {{{n→ 0},True}, {{n→ 6},True}}

The following two recurrences annihilate δk,n; all points on the diagonal are
singular because of the leading coefficients, and the point (0, 0) is singular be-
cause usage of either recurrence would require values from outside the region.
Note that the cases returned by AnnihilatorSingularities may overlap (as it
appears here).

In[23]:= ToOrePolynomial[{(n− k − 1)S[k] + k − n, (n− k + 1)S[n] + k − n}]
Out[23]= {(−k + n− 1)Sk + (k − n), (−k + n+ 1)Sn + (k − n)}
In[24]:= AnnihilatorSingularities[%, {0, 0}]

Out[24]= {{{k → n}, n ≥ 0}, {{k → 0, n→ 0},True}}
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In the next example we have constant coefficients, hence the only singularities
correspond to values under the stairs. Due to the additional restriction on the
domain, we get a parallelogram-shaped set of initial values.

In[25]:= ToOrePolynomial[{S[k]̂ 2− 1, S[n]̂ 3− 1},OreAlgebra[S[k], S[n]]]

Out[25]= {S2
k − 1, S3

n − 1}
In[26]:= AnnihilatorSingularities[%, {1, 1},Assumptions→ k ≤ n]

Out[26]= {{{k → 1, n→ 1},True}, {{k → 1, n→ 2},True}, {{k → 1, n→ 3},True},
{{k → 2, n→ 2},True}, {{k → 2, n→ 3},True}, {{k → 2, n→ 4},True}}

O See Also

Annihilator, AnnihilatorDimension, UnderTheStaircase
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ApplyOreOperator

ApplyOreOperator
[
opoly, expr

]
applies the Ore operator opoly to the expression expr.

O More Information

The first argument opoly can be an OrePolynomial expression or a plain poly-
nomial in the existing Ore operators; also a list of the previously mentioned is
admissible. How the occurring Ore operators act on expr is defined by the com-
mand OreAction. The second argument can be any Mathematica expression
to which the necessary actions can be applied. If opoly contains q-shift opera-
tors of the form QS[x, qn], then all occurrences of the dummy variables x are
replaced by qn.

O Examples

In[27]:= opoly = ToOrePolynomial[Der[x]̂ 2 + 1];
In[28]:= ApplyOreOperator[opoly, Sin[x]]

Out[28]= 0

In[29]:= ApplyOreOperator[S[n]− n− 1, n!]

Out[29]= (−n− 1)n! + (n+ 1)!

In[30]:= ApplyOreOperator[qn, qn]

Out[30]= qnqn

In[31]:= ApplyOreOperator[ToOrePolynomial[qn,OreAlgebra[QS[qn, qn]]], qn]

Out[31]= q2n

O See Also

Delta, Der, Euler, OreAction, QS, ToOrePolynomial, S
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ChangeMonomialOrder

ChangeMonomialOrder
[
opoly, ord

]
changes the monomial order of the Ore polynomial opoly to ord.

O More Information

The input opoly must be an OrePolynomial expression or a list of such. The
terms of opoly are reordered according to the new monomial order ord, and the
OrePolynomial expression(s) carrying the new order is returned.

The following monomial orders are supported. See the description of Ore-
GroebnerBasis (p. 57) for more details:

- Lexicographic,

- ReverseLexicographic,

- DegreeLexicographic,

- DegreeReverseLexicographic,

- EliminationOrder[n],

- WeightedLexicographic[w]

- WeightedOrder[w,order ],

- MatrixOrder.

O Examples

In[32]:= opoly = ToOrePolynomial[Sum[S[a]̂ i S[b]̂ j, {i, 0, 2}, {j, 0, 3}],
OreAlgebra[S[a], S[b]], MonomialOrder→ DegreeLexicographic]

Out[32]= S2
a S

3
b + S2

a S
2
b + SaS

3
b + S2

a Sb + SaS
2
b + S3

b + S2
a + SaSb + S2

b + Sa + Sb + 1

In[33]:= ChangeMonomialOrder[opoly,Lexicographic]

Out[33]= S2
a S

3
b + S2

a S
2
b + S2

a Sb + S2
a + SaS

3
b + SaS

2
b + SaSb + Sa + S3

b + S2
b + Sb + 1

In[34]:= ChangeMonomialOrder[opoly,WeightedOrder[{2, 1},Lexicographic]]

Out[34]= S2
a S

3
b + S2

a S
2
b + S2

a Sb + SaS
3
b + S2

a + SaS
2
b + SaSb + S3

b + Sa + S2
b + Sb + 1

O See Also

ChangeOreAlgebra, FGLM, OrePolynomial, ToOrePolynomial
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ChangeOreAlgebra

ChangeOreAlgebra
[
opoly, alg

]
transforms the Ore polynomial opoly into the Ore algebra alg.

O More Information

To each OrePolynomial expression the algebra in which it is represented is
attached. The command ChangeOreAlgebra can be used to change this rep-
resentation if possible. Note that the transformed Ore polynomial is returned,
and not the original opoly is changed. Changes can concern the order in which
the generators of the algebra are given, as well as the set of generators itself.
The command may fail for several reasons, e.g., if the input is not a polynomial
in the new set of generators, or if the input involves some Ore operators that
are not any more contained in alg ; in such cases $Failed is returned.

The following options can be given:

MonomialOrder → None
if this option is used then also the monomial order is changed; None means
that the monomial order of the input is taken.

O Examples

In[35]:= opoly = ToOrePolynomial[
(x̂ 3 + x̂ 2 +x+ 1) ∗∗Der[x]̂ 2 + (6x̂ 2 + 4x+ 2) ∗∗Der[x] + 6x+ 2,
OreAlgebra[Der[x]]]

Out[35]= (x3 + x2 + x+ 1)D2
x + (6x2 + 4x+ 2)Dx + (6x+ 2)

In[36]:= ChangeOreAlgebra[opoly,OreAlgebra[x,Der[x]]]

Out[36]= x3D2
x + x2D2

x + 6x2Dx + xD2
x + 4xDx +D2

x + 6x+ 2Dx + 2

In[37]:= ChangeOreAlgebra[opoly,OreAlgebra[Der[x], x]]

Out[37]= D2
xx

3 +D2
xx

2 +D2
xx+D2

x

In[38]:= ChangeOreAlgebra[opoly,OreAlgebra[S[n]]]
ChangeOreAlgebra::ops : Some of the operators Der[x] occur in the polynomial

but are not part of the algebra.

Out[38]= $Failed

In[39]:= (1/x) ∗∗ opoly

Out[39]= (x2 + x+
1

x
+ 1)D2

x + (6x+
2

x
+ 4)Dx + (

2

x
+ 6)

In[40]:= ChangeOreAlgebra[%,OreAlgebra[x,Der[x]]]
ChangeOreAlgebra::nopoly : The elements of the new OreAlgebra do not occur polynomially.

Out[40]= $Failed

O See Also

ChangeMonomialOrder, OreAlgebra, OrePolynomial,
ToOrePolynomial

13



CreativeTelescoping

CreativeTelescoping
[
expr, delta, ops

]
finds creative telescoping relations for expr with Chyzak’s algorithm, i.e.,
operators of the form P + delta ·Q such that P involves only Ore operators
from ops and their variables.

CreativeTelescoping
[
ann, delta, ops

]
finds creative telescoping relations in the annihilating ideal ann.

O More Information

The first argument is either an annihilating ideal (i.e., a Gröbner basis of such
an ideal) or any mathematical expression. In the latter case, Annihilator is
internally called with expr. The second argument delta indicates whether a
summation or an integration problem has to be solved; it is then S[a] − 1 or
Der[a], respectively (where a is the summation resp. integration variable). For
q-summation use QS[qa, q̂ a]−1. The third argument ops specifies the surviving
Ore operators, i.e., the operators that occur in the principal part P (as well as
in Q).

The output consists of two lists, the first one containing all the principle parts
(such that they constitute a Gröbner basis), and the second one containing the
corresponding delta parts.

Since the principle of creative telescoping is really one of the main aspects of
this package, we want to explain shortly what is behind. When we want to do
a definite sum of the form

∑b
k=a f(k,w) then we search for creative telescoping

operators that annihilate f and that are of the form

T = P (w,∂w) + (Sk − 1)Q(k,w, Sk,∂w)

where ∂w stands for some Ore operators that act on the variables w. The
operator P is called the principal part, and Q is called the delta part. With such
an operator T we can immediately derive a relation for the definite sum:

0 =

b∑
k=a

T (k,w, Sk,∂w) • f(k,w)

=

b∑
k=a

P (w,∂w) • f(k,w) +

b∑
k=a

(
Sk − 1)Q(k,w, Sk,∂w)

)
• f(k,w)

= P (w,∂w) •
b∑

k=a

f(k,w) +
[
Q(k,w, Sk,∂w) • f(k,w)

]k=b+1

k=a︸ ︷︷ ︸
inhomogeneous part

.

Depending on whether the inhomogeneous part evaluates to zero or not, we
have P as an annihilating operator for the sum, or we get an inhomogeneous
relation for the sum. In the latter case, if one is not happy with that, one
can homogenize the relation by multiplying an annihilating operator for the

14



inhomogeneous part to P from the left. Things become more complicated when
the summation bounds involve the variables w, since then additional correction
terms have to be introduced; the command Annihilator automatically deals
with these issues.

Similarly we can derive relations for a definite integral
∫ b
a
f(x,w) dx. In this

case we look for creative telescoping operators that annihilate f and that are of
the form

T = P (w,∂w) +DxQ(x,w, Dx,∂w).

Again it is straightforward to deduce a relation for the integral

0 =

∫ b

a

T (x,w, Dx,∂w) • f(x,w) dx

=

∫ b

a

P (w,∂w) • f(x,w) dx+

∫ b

a

(
DxQ(x,w, Dx,∂w)

)
• f(x,w) dx

= P (w,∂w) •
∫ b

a

f(x,w) dx+
[
Q(x,w, Dx,∂w) • f(x,w)

]b
a

which may be homogeneous or inhomogeneous.

The following options can be given:

Incomplete → False
If this option is set to True then the computation is stopped after the first
creative telescoping relation is found; makes sense only if ops contains more
than one Ore operator.

Method → Automatic
The following methods can be chosen:

"Chyzak": Executes Chyzak’s algorithm [6] where the uncoupling is done
by Gaussian elimination using the OreGroebnerBasis command; usu-
ally the fastest and most reliable option.

AbramovZima, Gauss, Zuercher, IncompleteZuercher: Chyzak’s al-
gorithm, but uses Stefan Gerhold’s implementation [7] of different un-
coupling algorithms; his package OreSys has to be loaded in advance.

"Barkatou": Chyzak’s algorithm, but uses Barkatou’s algorithms [3, 4]
to solve the system directly without uncoupling; since we implemented
only some cases of these algorithms, this option does not work in most
cases.

"Hermite": Creative telescoping algorithm for hyperexponential func-
tions [5] based on Hermite reduction.

Return → Automatic
the value of this option is passed to the command HermiteTelescoping
when Method → "Hermite" is used.

Support → {}
specify the support of the principal part P .
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O Examples

In[41]:= CreativeTelescoping[Binomial[n, k], S[k]− 1, S[n]]

Out[41]=

{
{Sn − 2},

{
− k

k − n− 1

}}
In[42]:= CreativeTelescoping[ChebyshevT[n, 1− x̂ 2y]/Sqrt[1− x̂ 2],

Der[x], {S[n], Der[y]}]

Out[42]=

{{
(2n2 + 2n)Sn + (2ny2 − 4ny + y2 − 2y)Dy + (2n2y − 2n2 + ny − 2n),

(y2 − 2y)D2
y + (y − 2)Dy − n2},

{
y
(
x4y − x2y − 2x2 + 2

)
x

Dy + y
(
nx3 − nx

)
,
x2 − 1

x
Dy

}}

The following allows us to write down the indefinite integral of the Hermite
polynomials, namely

∫
Hn(x) dx = Hn+1(x)/(2(n+ 1)).

In[43]:= CreativeTelescoping[HermiteH[n, x], Der[x], S[n]]

Out[43]=

{
{1} ,

{
− 1

2(n+ 1)
Sn

}}
The next example is famous for demonstrating that a recurrence found be cre-
ative telescoping need not to be the minimal one that exists for the sum (in
this instance, the sum for k from 0 to n evaluates to (−3)n and hence has a
first-order recurrence.

In[44]:= CreativeTelescoping[(−1)̂ kBinomial[n, k] Binomial[3k, n],
Delta[k], S[n]]

Out[44]=

{
{(−4n− 6)S2

n + (−15n− 21)Sn + (−9n− 9)},

{
(2n+ 3)

(
−27k3 + 27k2n+ 27k2 − 9kn2 − 18kn− 6k + n3 + 3n2 + 2n

)
(n+ 2) (k2 − 2kn− 3k + n2 + 3n+ 2)

}}

O See Also

Annihilator, FindCreativeTelescoping, HermiteTelescoping,
SolveCoupledSystem, Takayama
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Delta

Delta
[
n
]

represents the forward difference (delta) operator with respect to n.

O More Information

When this operator occurs in an OrePolynomial object, it is displayed as
∆n. The symbol Delta receives its meaning from the definitions of OreSigma,
OreDelta, and OreAction.

O Examples

In[45]:= OreDelta[Delta[n]]

Out[45]= (#1 /. n→ n+ 1)−#1 &

In[46]:= ApplyOreOperator[Delta[k], k!]

Out[46]= (k + 1)!− k!

You can use the command ChangeOreAlgebra to switch between the delta
and the shift representation of a recurrence:

In[47]:= ToOrePolynomial[Delta[n]̂ 3, OreAlgebra[Delta[n]]]

Out[47]= ∆3
n

In[48]:= ChangeOreAlgebra[%,OreAlgebra[S[n]]]

Out[48]= S3
n − 3S2

n + 3Sn − 1

O See Also

ApplyOreOperator, Der, Euler, OreAction, OreDelta, OreSigma, QS,
S, ToOrePolynomial
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Der

Der
[
x
]

represents the operator “partial derivative w.r.t. x”.

O More Information

When this operator occurs in an OrePolynomial object, it is displayed as Dx.
The symbol Der receives its meaning from the definitions of OreSigma, Ore-
Delta, and OreAction.

O Examples

In[49]:= OreDelta[Der[x]]

Out[49]= ∂x#1 &

In[50]:= ApplyOreOperator[Der[z]̂ 2, f [z]]

Out[50]= f ′′[z]

The symbol Der itself does not do anything. In order to perform noncommu-
tative arithmetic, it first has to be embedded into an OrePolynomial object.

In[51]:= Der[x] ∗∗x
Out[51]= Der[x] ∗∗x
In[52]:= ToOrePolynomial[Der[x]]

Out[52]= Dx

In[53]:= % ∗∗x
Out[53]= xDx + 1

O See Also

ApplyOreOperator, Delta, Euler, OreAction, OreDelta, OreSigma,
QS, S, ToOrePolynomial
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DFiniteDE2RE

DFiniteDE2RE
[
ann, {x1, . . . , xd}, {n1, . . . , nd}

]
computes recurrences in n1, . . . , nd for the coefficients of a power series that
is solution to the given differential equations in x1, . . . , xd in ann.

O More Information

The input ann is an annihilating ideal, given as a list of OrePolynomial expres-
sions that form a Gröbner basis. It is assumed that the operators Dx1

, . . . , Dxd

are part of the Ore algebra in which ann is represented. In the output alge-
bra, these differential operators are replaced by the shift operators Sn1

, . . . , Snd
.

The recurrences for the coefficients of the generating function are obtained by
relatively simple rewrite rules. Finally, a Gröbner basis of the resulting oper-
ators is computed and returned. Alternatively it is conceivable to use Cre-
ativeTelescoping or Takayama on Cauchy’s integral formula that extracts
the coefficients of the generating function (see the examples below).

O Examples

In[54]:= DFiniteDE2RE[Annihilator[Log[1− x],Der[x]], x, n]

Out[54]= {(−n− 1)Sn + n}
In[55]:= DFiniteDE2RE[Annihilator[Ê (x+y), {Der[x],Der[y]}], {x, y}, {m,n}]

Out[55]= {(−n− 1)Sn + 1, (−m− 1)Sm + 1}
In[56]:= DFiniteDE2RE[Annihilator[BesselJ[n, x]], x,m]

Out[56]= {Sn + (m− n+ 1)Sm, (m
2 + 4m− n2 + 4)S2

m + 1}
In[57]:= CreativeTelescoping[BesselJ[n, x]/x̂ (m+ 1),Der[x], {S[n],S[m]}]

Out[57]=

{
{Sn + (m− n+ 1)Sm, (−m2 − 4m+ n2 − 4)S2

m − 1},
{

1, Sn +
−m− n− 2

x

}}
In[58]:= ann = Annihilator[BesselJ[n, x]/x̂ (m+ 1), {Der[x],S[n], S[m]}];
In[59]:= Takayama[ann, {x}]

Out[59]= {Sn + (m− n+ 1)Sm, (m
2 + 4m− n2 + 4)S2

m + 1}

O See Also

CreativeTelescoping, DFiniteRE2DE, Takayama
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DFiniteOreAction

DFiniteOreAction
[
ann, opoly

]
computes an annihilating ideal for the function that is obtained when the
operator opoly is applied to the function described by ann (using the closure
property “application of an operator”).

O More Information

The closure property “application of an operator” reads as follows: Let f be
a function that is ∂-finite with respect to the operators ∂1, . . . , ∂d; then P • f
is ∂-finite as well, where P is an operator in the Ore algebra generated by the
∂1, . . . , ∂d.

In this sense, ann is an annihilating ideal (i.e., a list of OrePolynomial expres-
sion that form a Gröbner basis) in some Ore algebra O and opoly is an operator
in O (which can be given either as an OrePolynomial expression, or as a plain
polynomial in the Ore operators of O.

Note that the dimension of the vector space under the stairs of the resulting
Gröbner basis is always smaller or equal than the one of the input ann. This
fact is particularly useful when a sum of two expressions can be written as
an operator applied to a single expression; then usually DFiniteOreAction
delivers bigger annihilating ideals than DFinitePlus, see the example below.

This command is called by Annihilator if its input contains D or ApplyOre-
Operator.

The following options can be given:

MonomialOrder → None
specifies the monomial order in which the output should be given; None
means that the monomial order of the input is taken.

O Examples

Sine and cosine have the same differential equation:

In[60]:= DFiniteOreAction[ToOrePolynomial[{Der[x]̂ 2 + 1}],Der[x]]

Out[60]= {D2
x + 1}

The next example shows a situation where DfiniteOreAction is preferable to
DFinitePlus: find an annihilating ideal for Pn+1(x) + Pn(x).

In[61]:= DFiniteOreAction[Annihilator[LegendreP[n, x], {S[n],Der[x]}],
S[n] + 1]

Out[61]= {(2n2 + 6n+ 4)Sn + (−2nx2 + 2n− 3x2 + 3)Dx + (−2n2x− 5nx− n− 3x− 1),
(x2 − 1)D2

x + (x+ 1)Dx + (−n2 − 2n− 1)}
In[62]:= UnderTheStaircase[%]
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Out[62]= {1, Dx}
In[63]:= DFinitePlus[Annihilator[LegendreP[n+ 1, x], {S[n],Der[x]}],

Annihilator[LegendreP[n, x], {S[n],Der[x]}]]
Out[63]= {(2n+ 2)SnDx + (1− x2)D2

x + (−2nx− 4x)Dx + (−n2 − 3n− 2),
(2n3+12n2+22n+12)S2

n +(−x4+2x2−1)D2
x +(−4n3x−20n2x−32nx−16x)Sn

+(−2nx3 +2nx−4x3 +4x)Dx+(2n3−n2x2 +9n2−3nx2 +13n−2x2 +6),
(x4 − 2x2 + 1)D3

x + (4x3 − 4x)D2
x + (2n3 + 8n2 + 10n+ 4)Sn

+ (−3n2x2 + 3n2 − 7nx2 + 7n− 2x2 + 2)Dx + (−2n3x− 8n2x− 10nx− 4x)}
In[64]:= UnderTheStaircase[%]

Out[64]= {1, Dx, Sn, D2
x }

Sometimes the dimension can even drop:

In[65]:= ann = Annihilator[HarmonicNumber[n], S[n]]

Out[65]= {(n+ 2)S2
n + (−2n− 3)Sn + (n+ 1)}

In[66]:= DFiniteOreAction[ann,S[n]− 1]

Out[66]= {(n+ 2)Sn + (−n− 1)}

O See Also

Annihilator, DFinitePlus, DFiniteSubstitute, DFiniteTimes
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DFinitePlus

DFinitePlus
[
ann1, ann2, . . .

]
computes an annihilating ideal for the sum of the functions described by
ann1, ann2, etc. using the ∂-finite closure property “sum”.

O More Information

The anni are annihilating ideals, given as lists of OrePolynomial expressions
that form Gröbner bases (this property is assumed and not checked separately).
The generators of all the anni have to be elements in the same Ore algebra and
with the same monomial order. Assume that anni annihilates the function fi,
then the output is an annihilating ideal for f1 + f2 + . . . (or more precisely for
any linear combination c1f1 + c2f2 + . . . ), again given as a Gröbner basis.

The dimension of the vector space under the stairs of the output equals at most
to the sum of the vector space dimensions of the anni. Note also that the output
corresponds to the intersection of the input ideals (which is the left LCM in case
of univariate recurrences or differential equations).

DFinitePlus is called by Annihilator whenever a sum of nontrivial expres-
sions is encountered.

The following options can be given:

MonomialOrder → None
specifies the monomial order in which the output should be given; None
means that the monomial order of the input is taken.

O Examples

In[67]:= ann1 = Annihilator[HermiteH[n, x], {S[n],Der[x]}]
Out[67]= {Sn +Dx − 2x,D2

x − 2xDx + 2n}
In[68]:= UnderTheStaircase[ann1]

Out[68]= {1, Dx}
In[69]:= ann2 = Annihilator[x̂ n, {S[n],Der[x]}]

Out[69]= {xDx − n, Sn − x}
In[70]:= UnderTheStaircase[ann2]

Out[70]= {1}
In[71]:= DFinitePlus[ann1, ann2]

Out[71]= {(nx− x3)D2
x + (n− n2)Sn + (−n2 − 2nx2 + n+ 2x4)Dx + (4n2x− 2nx3 − 2nx),

(n− x2)SnDx + (nx+ x)Sn + (nx+ x)Dx + (−2n2 − 2n),
(x2 − n)S2

n + (4nx− 3x3 + 2x)Sn + (2nx− x3 + 2x)Dx
+ (−2n2 − 2nx2 − 2n+ 2x4 − 2x2)}

In[72]:= UnderTheStaircase[%]

Out[72]= {1, Dx, Sn}
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The expression (n + 1)! − n! = n · n! is obviously annihilated by a first-order
recurrence. But the output of the closure property DFinitePlus is a recurrence
that annihilates any linear combination c1(n+1)!+c2n!, and hence is of order 2.
Note that in this case also DFiniteOreAction could be used to obtain the
first-order recurrence.

In[73]:= DFinitePlus @@ ToOrePolynomial[{{S[n]− n− 2}, {S[n]− n− 1}}]
Out[73]= {S2

n + (−2n− 4)Sn + (n2 + 3n+ 2)}
In[74]:= Annihilator[(n+ 1)!− n!, S[n]]

Out[74]= {S2
n + (−2n− 4)Sn + (n2 + 3n+ 2)}

In[75]:= Annihilator[nn!, S[n]]

Out[75]= {nSn + (−n2 − 2n− 1)}
In[76]:= DFiniteOreAction[Annihilator[n!,S[n]],S[n]− 1]

Out[76]= {nSn + (−n2 − 2n− 1)}

O See Also

Annihilator, DFiniteOreAction, DFiniteSubstitute, DFiniteTimes
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DFiniteQSubstitute

DFiniteQSubstitute
[
ann, {q,m}

]
computes an annihilating ideal of q-difference equations for the result of the
substitution q → e2iπ/mq.

DFiniteQSubstitute
[
ann, {q,m, k}

]
computes an annihilating ideal of q-difference equations for the result of the
substitution q → e2iπ/mq1/k.

DFiniteQSubstitute
[
ann, {{q1,m1, k1}, . . . , {qd,md, kd}}

]
does the same for several such substitutions.

O More Information

ann is an annihilating ideal, given as a list of OrePolynomial expressions
that form a Gröbner basis. Typically, ann consists of q-difference equations
involving the Ore operator QS. The command DFiniteQSubstitute first finds
some elements in ann whose coefficients are of a special form: the variable that
represents qnj occurs only with powers that are multiples of lcm(mj , kj) and qj
itself occurs only with powers divisible by kj (for all 1 ≤ j ≤ d respectively).

Then in these recurrences the substitutions qj → e2iπ/mjq
1/kj
j can be safely

performed (note that performing these substitutions in ann directly would in
general lead out of the underlying Ore algebra).

Let u denote the number of monomials under the stairs of ann, then the output
will have at most u·

∏d
j=1(kj lcm(mj , kj)

N(j)) monomials under the stairs, where
N(j) is the number of operators of the form QS[ , qjˆ ] in the algebra.

The following options can be given:

ModuleBasis → {}
when dealing with annihilating modules, give here a list of natural numbers
indicating the location of the position variables among the generators of the
Ore algebra. Can be used for dealing with inhomogeneous recurrences.

Return → Annihilator
specifies the type of the output:

Annihilator: By default, a Gröbner basis for the annihilating ideal of the
resulting sequence is returned.

Backsubstitution: Returns some elements of ann in whose coefficients
the powers of qnj are multiples of lcm(mj , kj) and the powers of qj are

divisible by kj . Substituting qj → e2iπ/mjq
1/kj
j in this result yields

exactly the output of Return → Annihilator.

Support: Only the support of the annihilating ideal of the resulting se-
quence is returned.
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O Examples

We study a very simple example, the sequence (q; q)n:

In[77]:= ann = Annihilator[QPochhammer[q, q, n], QS[qn, q n̂]]

Out[77]= {Sqn,q + (−1 + q qn)}

The command DFiniteQSubstitute is now employed to study the sequence
(−q;−q)n which corresponds to the substitution q → e2iπ/2q.

In[78]:= ann2 = DFiniteQSubstitute[ann, {q, 2}]
Out[78]= {S2

qn,q + (−1 + q)Sqn,q + (−q + q3qn2)}
In[79]:= ApplyOreOperator[ann2, QPochhammer[−q,−q, n]] /. n→ 4

// FullSimplify

Out[79]= {0}
In[80]:= DFiniteQSubstitute[ann, {q, 2}, Return→ Backsubstitution]

Out[80]= S2
qn,q + (−1− q)Sqn,q + (q − q3qn2)

In[81]:= ann2 === OrePolynomialSubstitute[%, {q → −q}]
Out[81]= True

Next, we twist by a third root of unity. Note that in the result all the powers
of qn are divisible by 3.

In[82]:= ann = Annihilator[QBinomial[2n, n, q], QS[qn, q n̂]]

Out[82]= {(−1 + q qn)Sqn,q + (1 + q qn− q qn2 − q2qn3)}
In[83]:= ann3 = DFiniteQSubstitute[ann, {q, 3}, Return→ Backsubstitution]

Out[83]= (q20qn12−2q18qn9−3q17qn9−4q16qn9 +2q16qn6−2q15qn9 +4q15qn6 +q14qn9 +
2q14qn6 + 4q13qn6 + 2q12qn6− q11qn9 + 3q11qn6− 4q11qn3− 2q10qn3 + 2q9qn6−
2q9qn3+3q8qn6+4q7qn6−2q7qn3+2q6qn6−4q6qn3−q5qn6−2q5qn3−4q4qn3−
2q3qn3 − 3q2qn3 + 4q2 + 2q + 2)S3

qn,q +
· · ·
2q9qn3 + 4q8qn6 − q8qn3 + 2q7qn6 − 2q7qn3 + 2q6qn6 − 2q6qn3 − 4q5 − 2q4 − 2q3

In[84]:= Union[Cases[ann3, qn̂ , Infinity]]

Out[84]= {qn3, qn6, qn9, qn12, qn15, qn18}

Now we demonstrate how this procedure can be applied to an inhomogeneous
recurrence, e.g., fn+1(q) + (qn + 1)fn(q) + 1 = 0:

In[85]:= rec = ToOrePolynomial[{(QS[qn, q̂ n]− 1)b, QS[qn, q̂ n] + qn + 1 + b},
OreAlgebra[QS[qn, q n̂], b]]

Out[85]= {Sqn,qb− b, Sqn,q + b+ (1 + qn)

In[86]:= DFiniteQSubstitute[rec, {q, 2}, ModuleBasis→ {2}]
Out[86]= {Sqn,qb− b, S3

qn,q + S2
qn,q + (q3qn2 − q2)Sqn,q + (1− q2)b+ (q2qn2 − q2)}

The result again is to be interpreted as an inhomogeneous recurrence:

fn+3(−q) + fn+2(−q) + (q2n+3 − q2)fn+1(−q) + (q2n+2 − q2)fn(−q) = q2 − 1.

O See Also

DFiniteSubstitute, QS
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DFiniteRE2DE

DFiniteRE2DE
[
ann, {n1, . . . , nd}, {x1, . . . , xd}

]
computes differential equations in x1, . . . , xd of a generating function whose
coefficients satisfy the recurrences in n1, . . . , nd that are contained in the
annihilating ideal ann.

O More Information

ann is an annihilating ideal, given as a list of OrePolynomial expressions
that form a Gröbner basis. It is assumed that the operators Sn1

, . . . , Snd
are

part of the Ore algebra in which ann is represented. In the output algebra,
these shift operators are replaced by the differential operators Dx1 , . . . , Dxd

.
The differential equations for the generating function are obtained by relatively
simple rewrite rules. In general, they are inhomogeneous, and hence in the next
step they are homogenized. Finally, a Gröbner basis of the resulting operators
is computed and returned. This procedure does not always deliver the maximal
annihilating ideal for the generating function, and therefore it is conceivable to
use CreativeTelescoping or Takayama for this task (see the example below).

O Examples

In[87]:= DFiniteRE2DE[ToOrePolynomial[{S[n]− 1}], n, x]

Out[87]= {(x− 1)Dx + 1}

The following example shows how much DFiniteRE2DE can overshoot. With
CreativeTelescoping, we find the maximal annihilating ideal for the generat-
ing function

In[88]:= DFiniteRE2DE[Annihilator[LegendreP[n, x], {S[n],Der[x]}], {n}, {y}]
Out[88]= {(x2y − y)DxDy + (xy2 − y)D2

y + (x2 − 1)Dx + (3xy − 1)Dy + x,
(1− x2)D2

x + y2D2
y − 2xDx + 2yDy,

(−2xy3 + y4 + y2)D3
y + (−7xy2 + 6y3 + y)D2

y + (x2 − 1)Dx +
(−2xy + 7y2 − 1)Dy + (x+ y)}

In[89]:= CreativeTelescoping[LegendreP[n, x]y n̂, S[n]− 1, {Der[x],Der[y]}]

Out[89]=

{
{(−2xy + y2 + 1)Dy + (y − x), (2xy − y2 − 1)Dx + y},

{
(x− 1)(x+ 1)Dx +

n− nxy
y

, (xy − 1)Dx − ny

}}
In[90]:= Takayama[Annihilator[LegendreP[n, x]ŷ n, {S[n],Der[x],Der[y]}], {n}]

Out[90]= {(x2 − 1)Dx + (xy − 1)Dy + x, (−2xy + y2 + 1)D2
y + (3y − 3x)Dy + 1}

O See Also

CreativeTelescoping, DFiniteDE2RE, Takayama
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DFiniteSubstitute

DFiniteSubstitute
[
ann, subs

]
computes an annihilating ideal for the function that is obtained by perform-
ing the substitutions subs on the function described by ann.

O More Information

The input ann is an annihilating ideal, given as a list of OrePolynomial ex-
pressions that form a Gröbner basis. The second argument subs has to be a list
of Rule expressions. DFiniteSubstitute executes the closure properties “al-
gebraic substitution” for continuous variables and “rational-linear substitution”
for discrete variables.

An algebraic substitution is given in the form x → expr where x is a con-
tinuous variable (i.e., Der[x] is part of the algebra of ann) and where expr
is algebraic in z1, z2, . . . (the continuous variables of the output, specified by
the option Algebra), i.e., there exists a polynomial p(a, z1, z2, . . . ) such that
p(expr , z1, z2, . . . ) = 0. Note that the variable x must not appear on the right-
hand side of the substitution rule: substitutions like x→

√
x or x→ x+ y are

not admissible. Instead, new variables have to be introduced such as x →
√
z

or x→ y + z.

A discrete variable n (i.e., S[n] is part of the algebra of ann) can be replaced via
n → expr where the expression expr is rational-linear in the discrete variables
k1, k2, . . . of the output: expr = c + r1k1 + r2k2 + . . . where ri ∈ Q and c
is an arbitrary constant. Note that for discrete substitutions, the variable to
be replaced is allowed to appear on the right-hand side, i.e., substitutions like
n → 2n or n → (k + n)/2 are valid. In cases where the set of variables is not
changed, the option Algebra needs not to be given.

DFiniteSubstitute is called by Annihilator whenever a substitution has to
be performed.

The following options can be given:

Algebra → None
specifies the Ore algebra in which the output should be given; None means
that the Ore algebra of the input is taken.

MonomialOrder → None
specifies the monomial order in which the output should be given; None
means that the monomial order of the input is taken.

O Examples

In[91]:= ann1 = Annihilator[Log[x], Der[x]]
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Out[91]= {xD2
x +Dx}

In[92]:= ann2 = DFiniteSubstitute[ann1, {x→ y 2̂− z (̂1/3)},
Algebra→ OreAlgebra[Der[y],Der[z]]]

Out[92]= {yDyDz + 6zD2
z + 6Dz,−36z2D2

z + yDy − 36zDz,
y2D2

y (27y6z2 − 27z3)D3
z + (54y6z − 108z2)D2

z + yDy + (6y6 − 54z)Dz}
In[93]:= Simplify[ApplyOreOperator[ann2,Log[y 2̂− z (̂1/3)]]]

Out[93]= {0, 0, 0}

Continuous and discrete substitutions can be performed in one single step:

In[94]:= ann1 = Annihilator[LegendreP[n, x], {S[n],Der[x]}]
Out[94]= {(n+ 1)Sn + (1− x2)Dx + (−nx− x), (x2 − 1)D2

x + 2xDx + (−n2 − n)}
In[95]:= ann2 = DFiniteSubstitute[ann1, {n→ 3n− k, x→ Sqrt[y 2̂− 1]},

Algebra→ OreAlgebra[S[k], S[n],Der[y]]];
In[96]:= FullSimplify[ApplyOreOperator[ann2,LegendreP[3n−k,Sqrt[y2−1]]]]

Out[96]= {0, 0, 0, 0, 0, 0}

A recurrence for (n/2)!:

In[97]:= DFiniteSubstitute[ToOrePolynomial[{S[n]− n− 1}], {n→ n/2}]
Out[97]= {2S2

n + (−n− 2)}

The closure property substitution includes computing diagonals:

In[98]:= DFiniteSubstitute[Annihilator[Binomial[2n, k], {S[k], S[n]}], {k→ n},
Algebra→ OreAlgebra[S[n]]]

Out[98]= {(n+ 1)Sn + (−4n− 2)}

O See Also

Annihilator, DFiniteOreAction, DFinitePlus, DFiniteTimes
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DFiniteTimes

DFiniteTimes
[
ann1, ann2, . . .

]
computes an annihilating ideal for the product of the functions described
by ann1, ann2, etc. using the ∂-finite closure property “product”.

O More Information

The anni are annihilating ideals, given as lists of OrePolynomial expressions
that form Gröbner bases (this property is assumed and not checked separately).
The generators of all the anni have to be elements in the same Ore algebra and
with the same monomial order. Assume that anni annihilates the function fi,
then the output is an annihilating ideal for f1 · f2 · · · , again given as a Gröbner
basis.

The dimension of the vector space under the stairs of the output equals at most
to the product of the vector space dimensions of the anni.

DFiniteTimes is called by Annihilator whenever a product of nontrivial ex-
pressions is encountered.

O Examples

In[99]:= ann1 = Annihilator[HermiteH[n, x], {S[n],Der[x]}]
Out[99]= {Sn +Dx − 2x,D2

x − 2xDx + 2n}
In[100]:= ann2 = Annihilator[x̂ n, {S[n],Der[x]}]

Out[100]= {xDx − n, Sn − x}
In[101]:= DFiniteTimes[ann1, ann2]

Out[101]= {Sn + xDx + (−n− 2x2), x2D2
x + (−2nx− 2x3)Dx + (n2 + 4nx2 + n)}

In[102]:= UnderTheStaircase[%]

Out[102]= {1, Dx}
In[103]:= DFiniteTimes @@ Table[ann2, {10}]

Out[103]= {xDx − 10n, Sn − x10}

O See Also

Annihilator, DFiniteOreAction, DFinitePlus, DFiniteSubstitute,
DFiniteTimesHyper
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DFiniteTimesHyper

DFiniteTimesHyper
[
ann, expr

]
computes an annihilating ideal for the product f ·expr, where f is annihilated
by ann and expr is hypergeometric and hyperexponential in all variables
under consideration.

O More Information

The input ann is a list of OrePolynomial expressions (or a single such ex-
pression) which—for this special command—need not form a Gröbner basis.
The expression expr has to be hypergeometric with respect to all discrete vari-
ables of ann and hyperexponential with respect to all continuous variables of
ann. Assume that ann annihilates some function f , then the output operators
annihilate the product f ·expr.

The result is obtained by simple rewrite rules, namely to multiply to each term
some rational function that is determined by the exponents of the shift and
differential operators and that compensates the rational function that appears
by shifting and differentiating expr. In standard situations where ann is given
as a Gröbner basis, the command DFiniteTimes is preferable.

O Examples

Of course, DFiniteTimesHyper works also when the input is a Gröbner basis.
Then it delivers the same output as DFiniteTimes.

In[104]:= DFiniteTimesHyper[Annihilator[HermiteH[n, x], {S[n],Der[x]}], x̂ n]

Out[104]= {−Sn − xDx + (n+ 2x2), x2D2
x + (−2nx− 2x3)Dx + (n2 + 4nx2 + n)}

In[105]:= DFiniteTimes[Annihilator[HermiteH[n, x], {S[n],Der[x]}],
Annihilator[x̂ n, {S[n],Der[x]}]]

Out[105]= {Sn + xDx + (−n− 2x2), x2D2
x + (−2nx− 2x3)Dx + (n2 + 4nx2 + n)}

But it also works for inputs that do not form a Gröbner basis (note that the
elements of ann do not even belong to the same Ore algebra):

In[106]:= ann = Flatten[Annihilator[HermiteH[n, x],#]& /@ {S[n],Der[x]}]
Out[106]= {S2

n − 2xSn + (2n+ 2), D2
x − 2xDx + 2n}

In[107]:= DFiniteTimesHyper[ann, x̂ n]

Out[107]= {S2
n − 2x2Sn + (2nx2 + 2x2), x2D2

x + (−2nx− 2x3)Dx + (n2 + 4nx2 + n)}
In[108]:= OreGroebnerBasis[%,OreAlgebra[S[n],Der[x]]]

Out[108]= {−Sn − xDx + (n+ 2x2), x2D2
x + (−2nx− 2x3)Dx + (n2 + 4nx2 + n)}

O See Also

Annihilator, DFiniteOreAction, DFinitePlus, DFiniteSubstitute,
DFiniteTimes
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DSolvePolynomial

DSolvePolynomial
[
eqn, f [x]

]
determines whether the ordinary linear differential equation eqn in f [x]
(with polynomial coefficients) has polynomial solutions, and in the affir-
mative case, computes them.

O More Information

The first argument eqn can be given either as an equation (with head Equal),
or as the left-hand side expression (which is then understood to be equal to
zero). If the coefficients of eqn are rational functions, it is multiplied by their
common denominator. The second argument is the function to be solved for.
The algorithm works by determining a degree bound and then making an ansatz
for the solution with undetermined coefficients.

The command DSolvePolynomial is able to deal with parameters; these have
to occur linearly in the inhomogeneous part. Call the parameterized version
using the option ExtraParameters.

The following options can be given:

ExtraParameters → {}
specify some extra parameters for which the equation has to be solved.

O Examples

In[109]:= DSolvePolynomial[f ′[x] == 5, f [x]]

Out[109]= {{f(x)→ C[1] + 5x}}
In[110]:= DSolvePolynomial[

x̂ 2f ′′[x]− f ′[x]− (2x− 1)f [x] == −2x̂ 4 + cx̂ 3 + 3x̂ 2 + 3x,
f [x],ExtraParameters→ {c}]

Out[110]=

{{
f(x)→ x3 − 3x− 3, c→ 7

}}

O See Also

DSolveRational, QSolvePolynomial, QSolveRational,
RSolvePolynomial, RSolveRational
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DSolveRational

DSolveRational
[
eqn, f [x]

]
determines whether the ordinary linear differential equation eqn in f [x] has
rational solutions, and in the affirmative case, computes them.

O More Information

The first argument eqn can be given either as an equation (with head Equal), or
as the left-hand side expression (which is then understood to be equal to zero).
If the coefficients of eqn are rational functions, it is multiplied by their common
denominator. The second argument is the function to be solved for. Following
Abramov’s algorithm [1], first the denominator of the solution is determined.
Then DSolvePolynomial is called to find the numerator polynomial.

The following options can be given:

ExtraParameters → {}
specify some extra parameters for which the equation has to be solved; these
have to occur linearly in the inhomogeneous part.

O Examples

In[111]:= DSolveRational[(x̂ 2 + x)f ′[x] == f [x], f [x]]

Out[111]=

{{
f(x)→ C[1]x

x+ 1

}}
In[112]:= DSolveRational[(â 2 + 2â 3 + â 4)f ′′′[a] + (8a+ 21â 2 + 13â 3)f ′′[a]

+ (12 + 53a+ 44â 2)f ′[a] + (27 + 36a)f [a], f [a]]

Out[112]=

{{
f(a)→ 4a2C[2] + 4aC[1] + 3C[1]− 2C[2]

4a3(a+ 1)2

}}
In[113]:= DSolveRational[u2(1 + u2)2f ′′[u]−

u(1 + u2)(−1 + 2u+ 2au+ u2 + 2u3 + 2au3)f ′[u]−
(1+u+au+3u2−2au2−a2u2−3u4−4au4−2a2u4−u5−au5−

u6 − 2au6 − a2u6)f [u] == u2(1 + u2)2(c[0]− uc[1] + u2c[2]),
f [u], ExtraParameters→ {c[0], c[1], c[2]}]

Out[113]=

{{
f [u]→ aC[1]u3 + aC[1]u+ C[1]u3 + C[1]u2 + C[1]u+ C[1]

u
,

c[0]→
(
a3 + 3a2 + 3a+ 1

)
C[1], c[1]→ 2

(
a2 + 2a+ 1

)
C[1],

c[2]→ (a+ 1)
(
a2 + 2a+ 1

)
C[1]

}}

O See Also

DSolvePolynomial, QSolvePolynomial, QSolveRational,
RSolvePolynomial, RSolveRational
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Euler

Euler
[
x
]

represents the Euler operator θx = xDx.

O More Information

When this operator occurs in an OrePolynomial object, it is displayed as
θx. The symbol Euler receives its meaning from the definitions of OreSigma,
OreDelta, and OreAction. Functions like Annihilator cannot deal with
mcEuler; use Der[x] instead to represent differential equations.

O Examples

In[114]:= ToOrePolynomial[Euler[x]]

Out[114]= θx

In[115]:= % 8̂

Out[115]= θ8x

In[116]:= ChangeOreAlgebra[%,OreAlgebra[Der[x]]]

Out[116]= x8D8
x +28x7D7

x +266x6D6
x +1050x5D5

x +1701x4D4
x +966x3D3

x +127x2D2
x +xDx

In[117]:= ChangeOreAlgebra[%,OreAlgebra[Euler[x]]]

Out[117]= θ8x

O See Also

ApplyOreOperator, Delta, Der, OreAction, OreDelta, OreSigma, QS,
S, ToOrePolynomial
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FGLM

FGLM
[
gb, order

]
transforms the Gröbner basis gb of a zero-dimensional ideal into a Gröbner
basis for this ideal with respect to order, using the FGLM algorithm.

FGLM
[
gb, alg, order

]
translates the input into the new Ore algebra alg and then performs the
FGLM algorithm.

O More Information

The input gb must be a list of OrePolynomial expressions that form a Gröbner
basis with respect to the monomial order that is attached to these Ore polyno-
mials (the Gröbner basis property is not checked by FGLM!).

Note that this implementation works only for zero-dimensional ideals.

The following options can be given:

ModuleBasis → {}
when you deal with Gröbner bases over a module, give here a list of natural
numbers indicating the location of the position variables among the gener-
ators of the Ore algebra.

O Examples

We start with a left ideal that is computed by Annihilator; hence it is a
Gröbner basis with respect to degree order. To extract the pure ODE resp. re-
currence, we use the FGLM algorithm to get a Gröbner basis with lexicographic
order, first with Dx ≺ Sn and then with Sn ≺ Dx.

In[118]:= gb = Annihilator[nSin[x] + xHarmonicNumber[n] + 1, {S[n],Der[x]}]
Out[118]= {(n2 + 2n)S2

n +D2
x + (−2n2 − 3n)Sn + (n2 + n),

xD3
x + nxSnDx −D2

x − nSn − nxDx + n,
nSnD

2
x + (−n− 1)D2

x }
In[119]:= FGLM[gb, Lexicographic]

Out[119]= {D4
x +D2

x , nxSnDx − nSn + xD3
x −D2

x − nxDx + n,
(n2 + 2n)S2

n + (−2n2 − 3n)Sn +D2
x + (n2 + n)}

In[120]:= FGLM[gb, OreAlgebra[Der[x], S[n]], Lexicographic]

Out[120]= {(n+ 3)S3
n + (−3n− 7)S2

n + (3n+ 5)Sn + (−n− 1),
xDxS

2
n − 2xDxSn + xDx − S2

n + 2Sn − 1,
D2
x + (n2 + 2n)S2

n + (−2n2 − 3n)Sn + (n2 + n)}
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In the next example, we compute in a module whose elements have 2 entries.
The two positions are indicated by the position variables p0 and p1. Among the
generators of the Ore algebra, they sit on position 1 and 2.

In[121]:= ToOrePolynomial[{−np0 + 2p1, (2 + 2n)p1 − np1S[n]},
OreAlgebra[p0, p1, S[n]]]

Out[121]= {−np0 + 2p1,−np1Sn + (2n+ 2)p1}
In[122]:= FGLM[%, OreAlgebra[p1, p0,S[n]], Lexicographic,

ModuleBasis→ {1, 2}]
Out[122]= {p0Sn − 2p0, 2p1 − np0}

O See Also

AnnihilatorDimension, OreGroebnerBasis, GBEqual
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FindCreativeTelescoping

FindCreativeTelescoping
[
expr, deltas, ops

]
finds creative telescoping relations for expr by making an ansatz with ex-
plicit (heuristically determined) denominators in the delta parts. With this
command multiple summations and integrations can be done in one step by
giving several deltas.

FindCreativeTelescoping
[
ann, deltas

]
finds creative telescoping relations in the annihilating ideal ann.

O More Information

The first argument is either an annihilating ideal (i.e., a Gröbner basis of such an
ideal) or any mathematical expression. In the latter case, Annihilator is inter-
nally called with expr. The second argument deltas indicates which summations
and integrations have to be performed; this means S[a]−1 (resp. QS[qa, q̂ a]−1)
for (q-) summation w.r.t. the variable a and Der[a] for integration w.r.t. a. If
expr is given, then the third argument ops specifies the surviving Ore opera-
tors, i.e., the operators that occur in the principal part (as well as in the delta
part). For a more detailed explanation of the method of creative telescoping,
see CreativeTelescoping, p. 14. For a more detailed description of how the
ansatz used in this command is constructed, see the paper [10].

The output consists of two lists {L1, L2}, where L1 contains all the principle
parts (such that they constitute a Gröbner basis), and L2 contains the corre-
sponding delta parts. In particular, L1 and L2 have the same length, and the
i-th element of L2 is the list of delta parts (corresponding to the given deltas)
for the i-th principal part in L1.

The following options can be given:

Mode → Automatic
This command can be used in different ways:

Automatic: everything is done automatically, i.e., the minimal ansatz is
determined in a homomorphic image and then the solution is computed
in the original domain.

FindSupport: only modular computations are done and the minimal
ansatz is returned as a list of options that can be given to FindCre-
ativeTelescoping again in order to perform the final computation or
a modular one.

Modular: this mode requires to specify an ansatz (in the way as it is
returned by Mode → FindSupport) and is supposed to be used to-
gether with the options OrePolynomialSubstitute, Modulus, and
FileNames.
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Support → Automatic
Specify the support of the principal part. By default, FindCreativeTele-
scoping loops over the support until a set of principal parts is found that
generates a zero-dimensional ideal.

Degree → Automatic
Specify the degree of the summation and integration variables to be used in
the numerators of the delta parts. By default, FindCreativeTelescoping
loops over the degree up to a heuristically determined degree bound. If the
support is given with the option Support then it loops ad infinitum (if no
creative telescoping operator is found).

Denominator → Automatic
By default the denominators of the delta parts are determined automatically.
Setting Denominator→ d for a polynomial d uses d as denominator in each
delta part. Setting Denominator → {{d11, . . . , d1n}, . . . , {dm1, . . . , dmn}}
uses dij as the denominator of the j-th term in the i-th delta part; hence
n is the number of monomials under the stairs of the input Gröbner basis
and m is the number of deltas.

Modulus → 0
All computations are done modulo this number. In connection with the
option Mode → Modular, setting Modulus → {p1, . . . , pn} computes
the result n times modulo all the prime numbers pi.

OrePolynomialSubstitute → {}
If a list of rules {a → a0, b → b0, . . . } is given, then the result is computed
with these substitutions (the variables a, b, . . . must not be summation or in-
tegration variables). In connection with the option Mode→Modular one
can give a list of such substitutions: {{a → a1, b → b1, . . . }, {a → a2, b →
b2, . . . }, . . . }. Then the computation is done for each of these substitutions.

"Ansatz" → Automatic
To be used in connection with Mode → Modular, and the value of this
option is best produced using Mode → FindSupport.

Variables → {}
To be used in connection with Mode → Modular, and the value of this
option is best produced using Mode → FindSupport.

"DenominatorName" → None
To be used in connection with Mode → Modular, and the value of this
option is best produced using Mode → FindSupport.

FileNames → ""

When using Mode →Modular then this option can give a StringForm to
specify the locations where all the results have to be stored. Each variable
in the substitution list (see option OrePolynomialSubstitute), requires
a wild-card, and an additional wild-card is needed if several prime numbers
are given in option Modulus. See the example below.
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O Examples

In[123]:= FindCreativeTelescoping
[
Binomial[n, k], S[k]− 1,S[n]

]
Out[123]=

{
{−Sn + 2},

{{ k

k − n− 1

}}}

When using uncoupling to compute creative telescoping relations (as it is done
in CreativeTelescoping), then the following example is very hard to solve,
but using FindCreativeTelescoping, it is solved in a few seconds:

In[124]:= ann = Annihilator[
x BesselJ[1, ax] BesselI[1, ax] BesselY[0, x] BesselK[0, x],
{Der[x],Der[a]}];

In[125]:= Timing[First[FindCreativeTelescoping[ann,Der[x]]]]

Out[125]= {10.7167, {aDa + 2}}

Compute a creative telescoping relation for the Andrews-Paule double sum:

In[126]:= FindCreativeTelescoping
[

Binomial[i+ j, i]̂ 2 Binomial[4n− 2i− 2j, 2n− 2i],
{S[i]− 1,S[j]− 1},S[n]

]
Out[126]=

{
{1},

{{−2i2j + i2n− i2 − 2ij2 + 3ijn− 2ij + 3in

(j + 1)(i+ j − 2n)
,

−2i2j − 2ij2 + 3ijn− 2ij + j2n− j2 + 3jn

(i+ 1)(i+ j − 2n)

}}}
The following example illustrates the use of the options FindSupport and
Modular. Assume ann is the annihilating ideal for some function f(n, k) that
is to be summed over k, and the direct computation of the creative telescoping
relation is too expensive (e.g., requires more memory than available). Then
the following commands can be used to generate the data that is necessary
for reconstructing the solution from homomorphic images. In the example, 80
interpolation points and 10 prime numbers are used, so in total 800 files will be
stored in the given directory. The reconstruction itself has to be done by other
means (this functionality is not provided by FindCreativeTelescoping).

In[127]:= ans = FindCreativeTelescoping[ann, S[k]− 1,Mode→ FindSupport];
In[128]:= FindCreativeTelescoping

[
ann, S[k]− 1, Mode→Modular,

Sequence @@ ans, FileNames→ "/temp/fct `1` `2`.m",
OrePolynomialSubstitute→ Table[{n→ n0}, {n0, 20, 99}],
Modulus→ Table[NextPrime[2̂ 31,−i], {i, 10}]

]
O See Also

Annihilator, CreativeTelescoping, FindRelation, Printlevel
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FindRelation

FindRelation
[
ann, opts

]
computes relations with certain properties (that have to be specified by the
options opts) in the annihilating ideal ann.

O More Information

The input ann is a list of OrePolynomial expressions that have to form a
Gröbner basis (this property is not checked by FindRelation). It then makes
an ansatz with undetermined coefficients in order to find elements in ann that
obey the constraints that have been given in opts. In particular, this com-
mand can be used for elimination (e.g., when executing Zeilberger’s slow algo-
rithm [12]) and it is usually faster than elimination via Gröbner basis compu-
tation.

The following options can be given:

Eliminate → {}
forces the coefficients to be free of the given variables; note that this option
refers only to the coefficients, not to the generators of the Ore algebra (these
can be influenced by the option Support).

ModuleBasis → {}
when ann is a Gröbner basis over a module, give here a list of natural num-
bers indicating the location of the position variables among the generators
of the Ore algebra.

Pattern →
include only monomials into the ansatz whose exponent vectors match the
given pattern.

Support → Automatic
in the default setting the total degree of the support is increased until some-
thing is found; alternatively you can give a list of power products (of the
generators of the Ore algebra) that are used in the ansatz.

O Examples

Find contiguous relations of the 2F1 hypergeometric function:

In[129]:= Annihilator[Hypergeometric2F1[a, b, c, x], {S[a], S[b], S[c],Der[x]}]
Out[129]= {(−ab+ ac+ bc− c2)Sc + (c− cx)Dx + (−ac− bc+ c2),

bSb − xDx − b,
aSa − xDx − a,
(x2 − x)D2

x + (ax+ bx− c+ x)Dx + ab}
In[130]:= FindRelation[%,Support→ {1, S[a], S[c]}]

Out[130]= {(acx− ac)Sa + (abx− acx− bcx+ c2x)Sc + (ac+ bcx+ c2(−x))}
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For solving Strang’s integral
∫ 1

−1
(P2k+1(x)/x)2 dx with Zeilberger’s slow algo-

rithm, we would like to eliminate x from the annihilating ideal of the integrand
(of course, this is not the best way to solve this integral, see CreativeTele-
scoping, p. 14). The output is of considerable size; that’s why we display only
its support to illustrate why FindRelation takes some time here.

In[131]:= ann = Annihilator[(LegendreP[2k + 1, x]/x)̂ 2, {Der[x],S[k]}];
In[132]:= Timing[rel = First[FindRelation[ann,Eliminate→ x]]; ]

Out[132]= {80.169,Null}
In[133]:= ByteCount[rel]

Out[133]= 118360

In[134]:= Support[rel]

Out[134]= {D6
xS

6
k , D

4
xS

8
k , D

6
xS

5
k , D

4
xS

7
k , D

6
xS

4
k , D

4
xS

6
k , D

6
xS

3
k , D

4
xS

5
k , D

2
xS

7
k , D

6
xS

2
k , D

4
xS

4
k , D

2
xS

6
k ,

D6
xSk, D

4
xS

3
k , D

2
xS

5
k , S

7
k , D

6
x , D

4
xS

2
k ,x

2S4
k , S

6
k , D

4
xSk, D

2
xS

3
k , S

5
k , D

4
x , D

2
xS

2
k , S

4
k ,

D2
xSk, S

3
k , S

2
k , Sk}

The next example shows how relations for basis functions can be found that are
needed in finite element methods. In this instance, we are looking for a relation
that involves the function itself and its first derivative (both can be arbitrarily
shifted) and whose coefficients are free of x and y.

In[135]:= Factor[FindRelation[
Annihilator[(1− x)̂ iLegendreP[i, 2(y/(1− x))− 1]

JacobiP[j, 2i+ 1, 0, 2x− 1], {S[i],S[j],Der[x]}],
Eliminate→ {x, y},Pattern→ { , , 0|1}]]

Out[135]= {−(2i+ j + 5)(2i+ 2j + 5)SiS
2
j Dx − (j + 3)(2i+ 2j + 5)S3

j Dx
− 2(2i+ 3)(i+ j + 3)SiSjDx + 2(2i+ 1)(i+ j + 3)S2

j Dx
+ 2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)SiSj + (j + 1)(2i+ 2j + 7)SiDx
+ 2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)S2

j + (2i+ j + 3)(2i+ 2j + 7)SjDx}

O See Also

Annihilator, FindCreativeTelescoping, FindSupport,
OreGroebnerBasis
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FindSupport

FindSupport
[
ann, opts

]
computes only the support of a relation in the ideal ann that satisfies the
constraints given by opts.

O More Information

The input ann is a list of OrePolynomial expressions that have to form a
Gröbner basis (this property is not checked by FindSupport). It then makes
an ansatz with undetermined coefficients in order to find elements in ann that
obey the constraints that have been given in opts. In contrast to FindRelation
it computes only the support of such elements. In fact, FindSupport is called
by FindRelation if the support is not specified.

Especially for bigger examples, one might be interested in the support of the
result before it is actually computed, in order to get a feeling for its size. On the
other hand, FindSupport can be used to make statements of the form “there
exists no k-free recurrence of order up to 100”; use Printlevel for switching to
verbose mode in order to see which supports have unsuccessfully been tried.

FindSupport uses homomorphic images for fastly obtaining its results. In
unlucky cases this can lead to fake solutions.

The following options can be given:

Eliminate → {}
forces the coefficients to be free of the given variables; note that this option
refers only to the coefficients, not to the generators of the Ore algebra.

ModuleBasis → {}
when ann is a Gröbner basis over a module, give here a list of natural num-
bers indicating the location of the position variables among the generators
of the Ore algebra.

Pattern →
include only monomials into the ansatz whose exponent vectors match the
given pattern.

Modulus → 2147483629
the prime number with respect to which the modular computations are
done.

O Examples

See FindRelation for more information about the following example. Note
also that computing the full relation there takes 80 seconds, whereas finding the
support only is much faster.
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In[136]:= ann = Annihilator[(LegendreP[2k + 1, x]/x)̂ 2, {Der[x],S[k]}];
In[137]:= Timing[FindSupport[ann, Eliminate→ x]]

Out[137]= {3.10019,
{{Der[x]6S[k]6,Der[x]4S[k]8,Der[x]6S[k]5,Der[x]4S[k]7,Der[x]6S[k]4,

Der[x]4S[k]6,Der[x]6S[k]3,Der[x]4S[k]5,Der[x]2S[k]7,Der[x]6S[k]2,
Der[x]4S[k]4,Der[x]2S[k]6,Der[x]6S[k],Der[x]4S[k]3,Der[x]2S[k]5,
S[k]7,Der[x]6,Der[x]4S[k]2,Der[x]2S[k]4, S[k]6,Der[x]4S[k],Der[x]2S[k]3,
S[k]5,Der[x]4,Der[x]2S[k]2, S[k]4,Der[x]2S[k],S[k]3, S[k]2, S[k]}}}

For more examples, see FindRelation; its use is very similar to FindSupport.

O See Also

Annihilator, FindCreativeTelescoping, FindRelation,
OreGroebnerBasis, Printlevel, Support
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GBEqual

GBEqual
[
gb1, gb2

]
compares two Gröbner bases gb1 and gb2 whether they are the same.

O More Information

The two Gröbner bases gb1 and gb2 have to be given with respect to the same
monomial order, and they have to be completely reduced. Both are lists of
OrePolynomial expressions. GBEqual does not perform any advanced math-
ematics: it just goes through the two lists and checks whether either the sum
or the difference of the corresponding elements gives 0. Hence it gives True if
the corresponding Gröbner basis elements differ only by sign. Nevertheless, it
is very useful, since this test cannot be done by using Equal (==) or SameQ
(===).

O Examples

In[138]:= gb1 = Annihilator[Sum[Binomial[n, k] Binomial[m+n−k, n], {k, 0, n}],
{S[m],S[n]}]

Out[138]= {(m+ 1)Sm + (−n− 1)Sn + (m− n), (n+ 2)S2
n + (−2m− 1)Sn + (−n− 1)}

In[139]:= gb2 = Annihilator[Sum[2̂ kBinomial[m,k] Binomial[n, k], {k, 0, n}],
{S[m],S[n]}]

Out[139]= {(m+ 1)Sm + (−n− 1)Sn + (m− n), (−n− 2)S2
n + (2m+ 1)Sn + (n+ 1)}

In[140]:= gb1 === gb2

Out[140]= False

In[141]:= FullSimplify[gb1 == gb2]

Out[141]= {0, 2(n+ 2)S2
n + (−4m− 2)Sn − 2(n+ 1)} == {0, 0}

In[142]:= GBEqual[gb1, gb2]

Out[142]= True

In[143]:= gb3 = FGLM[gb2,Lexicographic]

Out[143]= {(n+ 2)S2
n + (−2m− 1)Sn + (−n− 1), (m+ 1)Sm + (−n− 1)Sn + (m− n)}

In[144]:= GBEqual[gb1, gb3]

Out[144]= False

O See Also

FGLM, OreGroebnerBasis, OrePolynomial

43



HermiteTelescoping

HermiteTelescoping
[
expr, Der[y], Der[x]

]
computes telescoper and certificate for a hyperexponential function expr
using the algorithm Hermite telescoping.

HermiteTelescoping
[
ann, Der[y], Der[x]

]
computes a creative telescoping relation in the annihilating ideal ann (which
must be the annihilator of a hyperexponential function).

O More Information

For general information about creative telescoping, see CreativeTelescoping.
The algorithm Hermite telescoping has been developed in [5]. The output is of
the form {{t}, {c}} where t is the telescoper and c the certificate (the output
format is the same as in CreativeTelescoping).

The following options can be given:

Return → Automatic
returns by default the above form {{t}, {c}}, "telescoper" returns {t} (and
is faster since the certificate is not computed at all), and "bound" returns
an integer, the precomputed bound for the order of the telescoper.

O Examples

In[145]:= HermiteTelescoping[Exp[xy + x̂ 2y + y 2̂x̂ 2],Der[y],Der[x]]

Out[145]=

{{
2xDx + (x2 + x+ 2)

}
,
{

(−2y − 1)
}}

In[146]:= HermiteTelescoping[Ê (xŷ 10 + y),Der[y],Der[x],Return→ "bound"]

Out[146]= 9

O See Also

CreativeTelescoping, FindCreativeTelescoping
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LeadingCoefficient

LeadingCoefficient
[
opoly

]
gives the leading coefficient of the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression. What is considered
as the leading coefficient depends on the Ore algebra in which opoly is pre-
sented and of course on the monomial order. The leading coefficient of the zero
polynomial is not defined; LeadingCoefficient returns Indeterminate in this
case.

O Examples

In[147]:= opoly = ToOrePolynomial[(1− x̂ 2) ∗∗Der[x]̂ 2 + x ∗∗Der[x] + 4x̂ 3,
OreAlgebra[Der[x]]]

Out[147]= (1− x2)D2
x + xDx + 4x3

In[148]:= LeadingCoefficient[opoly]

Out[148]= 1− x2

In[149]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[x,Der[x]]]

Out[149]= −x2D2
x + 4x3 + xDx +D2

x

In[150]:= LeadingCoefficient[opoly]

Out[150]= −1

In[151]:= opoly = ChangeMonomialOrder[opoly,Lexicographic]

Out[151]= 4x3 − x2D2
x + xDx +D2

x

In[152]:= LeadingCoefficient[opoly]

Out[152]= 4

O See Also

ChangeMonomialOrder, ChangeOreAlgebra, LeadingExponent,
LeadingPowerProduct, LeadingTerm, NormalizeCoefficients,
OrePolynomial, OrePolynomialListCoefficients, ToOrePolynomial,
Support
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LeadingExponent

LeadingExponent
[
opoly

]
gives the exponent vector of the leading term of the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression. What is considered
as the leading term depends on the Ore algebra in which opoly is presented
and of course on the monomial order. To match the definition of the degree
of the zero polynomial, the leading exponent of the zero polynomial is a list of
−∞’s, its length corresponding to the number of variables (generators of the
Ore algebra).

O Examples

In[153]:= opoly = ToOrePolynomial[(1− x̂ 2) ∗∗Der[x]̂ 2 + x ∗∗Der[x] + 4x̂ 3,
OreAlgebra[Der[x]]]

Out[153]= (1− x2)D2
x + xDx + 4x3

In[154]:= LeadingExponent[opoly]

Out[154]= {2}
In[155]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[x,Der[x]]]

Out[155]= −x2D2
x + 4x3 + xDx +D2

x

In[156]:= LeadingExponent[opoly]

Out[156]= {2, 2}
In[157]:= opoly = ToOrePolynomial[a b S[a] S[b], OreAlgebra[a, b, S[a], S[b]]]

Out[157]= abSaSb

In[158]:= LeadingExponent[opoly]

Out[158]= {1, 1, 1, 1}
In[159]:= LeadingExponent[0 ∗ opoly]

Out[159]= {−∞,−∞,−∞,−∞}

O See Also

ChangeMonomialOrder, ChangeOreAlgebra, LeadingCoefficient,
LeadingPowerProduct, LeadingTerm, NormalizeCoefficients,
OrePolynomial, OrePolynomialListCoefficients, ToOrePolynomial,
Support
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LeadingPowerProduct

LeadingPowerProduct
[
opoly

]
gives the leading power product of the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression. What is considered
as the leading term depends on the Ore algebra in which opoly is presented
and of course on the monomial order. The leading power product of the zero
polynomial is not defined; LeadingPowerProduct returns Indeterminate in
this case.

O Examples

In[160]:= opoly = ToOrePolynomial[(1− x̂ 2) ∗∗Der[x]̂ 2 + x ∗∗Der[x] + 4x̂ 3,
OreAlgebra[Der[x]]]

Out[160]= (1− x2)D2
x + xDx + 4x3

In[161]:= LeadingPowerProduct[opoly]

Out[161]= D2
x

In[162]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[x,Der[x]]]

Out[162]= −x2D2
x + 4x3 + xDx +D2

x

In[163]:= LeadingPowerProduct[opoly]

Out[163]= x2D2
x

In[164]:= Annihilator[StruveH[n, x], {S[n],Der[x]}]
Out[164]= {x2D2

x + (−2nx− x)Sn − 2nxDx + (n2 + n+ x2),
xSnDx + (n+ 1)Sn − x,
(2nx+ 3x)S2

n + (−4n2 − 10n− x2 − 6)Sn − x2Dx + (3nx+ 3x)}
In[165]:= LeadingPowerProduct /@ %

Out[165]= {D2
x , SnDx, S

2
n}

O See Also

ChangeMonomialOrder, ChangeOreAlgebra, LeadingCoefficient,
LeadingExponent, LeadingTerm, NormalizeCoefficients,
OrePolynomial, OrePolynomialListCoefficients, ToOrePolynomial,
Support
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LeadingTerm

LeadingTerm
[
opoly

]
gives the leading term of the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression. What is considered
as the leading term depends on the Ore algebra in which opoly is presented and
of course on the monomial order. By “leading term” we understand the lead-
ing power product (or leading monomial) multiplied by the leading coefficient.
The leading term of the zero polynomial is not defined; LeadingTerm returns
Indeterminate in this case.

O Examples

In[166]:= opoly = ToOrePolynomial[(1− x̂ 2) ∗∗Der[x]̂ 2 + x ∗∗Der[x] + 4x̂ 3,
OreAlgebra[Der[x]]]

Out[166]= (1− x2)D2
x + xDx + 4x3

In[167]:= LeadingTerm[opoly]

Out[167]= (1− x2)D2
x

In[168]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[x,Der[x]]]

Out[168]= −x2D2
x + 4x3 + xDx +D2

x

In[169]:= LeadingTerm[opoly]

Out[169]= −x2D2
x

In[170]:= Annihilator[StruveH[n, x], {S[n],Der[x]}]
Out[170]= {x2D2

x + (−2nx− x)Sn − 2nxDx + (n2 + n+ x2),
xSnDx + (n+ 1)Sn − x,
(2nx+ 3x)S2

n + (−4n2 − 10n− x2 − 6)Sn − x2Dx + (3nx+ 3x)}
In[171]:= LeadingTerm /@ %

Out[171]= {x2D2
x , xSnDx, (2nx+ 3x)S2

n}

O See Also

ChangeMonomialOrder, ChangeOreAlgebra, LeadingCoefficient,
LeadingExponent, LeadingPowerProduct, NormalizeCoefficients,
OrePolynomial, OrePolynomialListCoefficients, ToOrePolynomial,
Support
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NormalizeCoefficients

NormalizeCoefficients
[
opoly

]
removes the content of the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression. The output is a
multiple of the input such that all denominators are cleared and the content
is 1. When the option Extended is used, then the output is a list, containing
the content and the normalized Ore polynomial.

The following options can be given:

Denominator → True
setting this option to False deactivates the computation of a common de-
nominator; can be used for better performance when it is known in advance
that the input has polynomial coefficients.

Extended → False
when you also need the content that has been removed from opoly then
set this option to True; the output then is of the form {c, op} where c
is the content (given as a standard Mathematica expression) and p is the
normalized Ore polynomial (given as a OrePolynomial expression).

Modulus → 0
if a prime number is given with this option, then all polynomial operations
(like PolynomialGCD or Together are performed modulo this prime.

O Examples

In[172]:= opoly = Together[ToOrePolynomial[
(n(n− 1)) ∗∗S[n]̂ 2 + ((n− 1)/(n+ 1)) ∗∗S[n] + n̂ 2− 1]]

Out[172]= (n2 − n)S2
n +

n− 1

n+ 1
Sn + (n2 − 1)

In[173]:= NormalizeCoefficients[opoly]

Out[173]= (n2 + n)S2
n + Sn + (n2 + 2n+ 1)

In[174]:= NormalizeCoefficients[opoly,Extended→ True]

Out[174]=

{
n− 1

n+ 1
, (n2 + n)S2

n + Sn + (n2 + 2n+ 1)

}

O See Also

OrePolynomialListCoefficients, ToOrePolynomial
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OreAction

OreAction
[
op
]

defines how the Ore operator op acts on arbitrary expressions.

O More Information

An Ore operator like Sn or Dx, in the first place is defined by the two endomor-
phisms σ and δ. But also the action of this operator has to be fixed; usually
it is either equal to σ (e.g., in the case of a shift operator) or to δ (e.g., in
the case of a differential operator). The definition of OreAction is used by
ApplyOreOperator.

The standard Ore operators (shift, differential, delta, Euler, q-shift) are pre-
defined in HolonomicFunctions (using OreSigma, OreDelta, and OreAc-
tion). If you want to define your own Ore operators, use OreAction to define
how they should act on expressions. Note that op can be a pattern as well as a
fixed expression.

O Examples

In[175]:= OreAction[Der[x]]

Out[175]= ∂x#1 &

In[176]:= OreSigma[MyOp] = MySigma;
In[177]:= OreDelta[MyOp] = MyDelta;
In[178]:= OreAction[MyOp] = MyAction;
In[179]:= ToOrePolynomial[MyOp̂ 2]

Out[179]= MyOp2

In[180]:= ApplyOreOperator[%, a+ 1]

Out[180]= MyAction[MyAction[a+ 1]]

Now we introduce the double-shift, i.e., the shift by 2.

In[181]:= OreSigma[S2[a ]] := # /. a→ a+ 2 &;
In[182]:= OreDelta[S2[ ]] := 0 &;
In[183]:= OreAction[S2[a ]] := OreSigma[S2[a]];
In[184]:= ToOrePolynomial[S2[n] + n̂ 2]

Out[184]= S2n + n2

In[185]:= ApplyOreOperator[%, f [n]]

Out[185]= n2f(n) + f(n+ 2)

O See Also

ApplyOreOperator, OreDelta, OreOperatorQ, OreOperators,
OreSigma
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OreAlgebra

OreAlgebra
[
g1, g2, . . .

]
creates an Ore algebra with the generators g1, g2, . . . .

OreAlgebra
[
opoly

]
gives the Ore algebra in which the Ore polynomial opoly is represented.

OreAlgebra
[
ann

]
gives the Ore algebra in which the annihilating ideal ann is represented.

O More Information

In the above specification, opoly is assumed to be an OrePolynomial expres-
sion and ann to be a list of such. The elements of ann usually will be represented
in the same Ore algebra, so this algebra will be returned. However, if you give
a list of OrePolynomial expressions that do not share the same algebra, you
get back a list of Ore algebras, corresponding to the elements of the input ann.

The command OreAlgebra is also used to create an Ore algebra. For this
purpose, the generators of the desired Ore algebra have to be given as argu-
ments. By the “generators of an Ore algebra” we understand all variables and
Ore operators that occur polynomially. An Ore algebra in general has the form
K(x1, . . . , xk)[y1, . . . , yn][∂1;σ1, δ1] · · · [∂d;σd, δd]; the generators of this Ore al-
gebra are y1, . . . , yn, ∂1, . . . , ∂d. Note that the Ore operators ∂i always have to
be included into the set of generators (no division by those is allowed!).

The endomorphisms σi and δi are not given explicitely when creating an Ore
algebra. They have to be “attached” to the symbols ∂i before, using the com-
mands OreSigma, OreDelta, and OreAction. For standard applications this
is not necessary since the common Ore operators are already predefined.

The order in which the generators g1, g2, . . . are given is used when an Ore poly-
nomial is represented in this algebra: all power products are written according
to this order. For example, when dealing with the Weyl algebra, you can choose
whether x appears always on the left and Dx on the right (the standard way),
or the other way round. The coefficients (in the general form as stated above
they are elements in K(x1, . . . , xk)) are always written on the left.

When working in a module over some Ore algebra, use position variables: to
represent the element (T1, . . . , Tm), Ti ∈ O, write it either as p1T1 + · · ·+ pmTm
with new indeterminates p1, . . . , pm (“position variables”), or as pT1 + p2T2 +
· · · + pmTm with a single position variable p. The position variables have to
be added to the generators of O and their positions among the generators have
to be given with the option ModuleBasis to the relevant commands that can
deal with modules (OreGroebnerBasis, FGLM, FindRelation, etc.).

An Ore algebra is displayed using the standard mathematical notation for such
algebras, but internally it is represented as a Mathematica expression of the
form OreAlgebraObject[gens, cNormal, cPlus, cTimes, ext ]. Herein, gens is
a list containing the generators of the algebra. The next three arguments are
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functions that determine the coefficient arithmetic: cNormal specifies in which
form the coefficients should be kept (e.g., in expanded or factored form); in
particular, cNormal is supposed to yield 0 whenever a coefficient is actually
zero (recall that expressions like 1− x

x+1 −
1

x+1 are not automatically simplified
to 0). The functions cPlus and cTimes are used for adding resp. multiplying
two coefficients. Finally, ext tells whether to work in an algebraic extension.

For easily setting the coefficient representation, certain upvalues have been
defined for Ore algebras, e.g. Together[alg] changes the functions cNormal,
cPlus, and cTimes to Together. Analogously for Expand and Factor.

The following options can be given:

CoefficientNormal → Expand
specifies in which form the coefficients of Ore polynomials in this algebra
are represented.

CoefficientPlus → (#1 + #2 &)
specifies how to add two coefficients of Ore polynomials in this algebra.

CoefficientTimes → (Expand[#1 #2]&)
specifies how to multiply two coefficients in this algebra.

Extension → None
give an algebraic extension ext.

O Examples

In[186]:= alg = OreAlgebra[x,Der[x]]

Out[186]= K[x][Dx; 1, Dx]

In[187]:= FullForm[alg]

Out[187]= OreAlgebraObject[List[x,Der[x]], Expand, Function[Plus[Slot[1], Slot[2]]],
Function[Expand[Times[Slot[1],Slot[2]]]], None]

In[188]:= ToOrePolynomial[x ∗∗Der[x] + 1, alg]

Out[188]= xDx + 1

In[189]:= ChangeOreAlgebra[%,OreAlgebra[Der[x], x]]

Out[189]= Dxx

In[190]:= OreAlgebra[%]

Out[190]= K[x][Dx; 1, Dx]

In[191]:= OreAlgebra[S[k],Delta[n],Der[x],Euler[z],QS[qn, q n̂]]

Out[191]= K(k, n, qn, x, z)[Sk;Sk, 0][∆n;Sn,∆n][Dx; 1, Dx][θz; 1, θz][Sqn,q;Sqn,q, 0]

In[192]:= OreAlgebra[n, S[n],Der[x]]

Out[192]= K(x)[n][Sn;Sn, 0][Dx; 1, Dx]

O See Also

OreAction, OreAlgebraGenerators, OreAlgebraOperators,
OreAlgebraPolynomialVariables, OreDelta, OreOperatorQ,
OreOperators, OrePolynomial, OreSigma, ToOrePolynomial
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OreAlgebraGenerators

OreAlgebraGenerators
[
alg
]

gives the list of generators of the Ore algebra alg.

O More Information

The generators are in the same order as they have been given when creating
alg using OreAlgebra. Taking into account the internal structure how an Ore
algebra is represented, OreAlgebraGenerators is the same as First.

O Examples

In[193]:= alg = OreAlgebra[p,Der[x], n, S[n],Delta[m], x]

Out[193]= K(m)[p, n, x][Dx; 1, Dx][Sn;Sn, 0][∆m;Sm,∆m]

In[194]:= OreAlgebraGenerators[alg]

Out[194]= {p,Der[x], n, S[n],Delta[m], x}
In[195]:= First[alg]

Out[195]= {p,Der[x], n, S[n],Delta[m], x}

O See Also

OreAlgebra, OreAlgebraOperators, OreAlgebraPolynomialVariables
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OreAlgebraOperators

OreAlgebraOperators
[
alg
]

gives the list of Ore operators that are contained in the Ore algebra alg.

O More Information

An Ore operator is an expression for which OreSigma and OreDelta are de-
fined, e.g., S[n] or Der[x] are predefined Ore operators. The list returned by
OreAlgebraOperators is a subset of that one returned by OreAlgebraGen-
erators.

O Examples

In[196]:= alg = OreAlgebra[p,Der[x], n, S[n],Delta[m], x]

Out[196]= K(m)[p, n, x][Dx; 1, Dx][Sn;Sn, 0][∆m;Sm,∆m]

In[197]:= OreAlgebraOperators[alg]

Out[197]= {Der[x],S[n],Delta[m]}

O See Also

OreAlgebra, OreAlgebraGenerators, OreAlgebraPolynomialVariables,
OreOperatorQ, OreOperators
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OreAlgebraPolynomialVariables

OreAlgebraPolynomialVariables
[
alg
]

gives the list of variables that occur polynomially in the Ore algebra alg.

O More Information

Every generator of the Ore algebra alg that is not an Ore operator, i.e., for which
OreSigma and OreDelta are not defined, is called a “polynomial variable”.

O Examples

In[198]:= alg = OreAlgebra[p,Der[x], n, S[n],Delta[m], x]

Out[198]= K(m)[p, n, x][Dx; 1, Dx][Sn;Sn, 0][∆m;Sm,∆m]

In[199]:= OreAlgebraPolynomialVariables[alg]

Out[199]= {p, n, x}

O See Also

OreAlgebra, OreAlgebraGenerators, OreAlgebraOperators
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OreDelta

OreDelta
[
op
]

defines the endomorphism δ for the Ore operator op.

O More Information

Ore operators like Sn or Dx are defined by two endomorphisms σ and δ such
that δ is a σ-derivation, i.e., that satisfies the skew Leibniz law

δ(fg) = σ(f)δ(g) + δ(f)g.

Then the commutation rule for the newly introduced symbol ∂ is

∂a = σ(a)∂ + δ(a).

The standard Ore operators (shift, differential, delta, Euler, q-shift) are pre-
defined in HolonomicFunctions (using OreSigma, OreDelta, and OreAc-
tion). If you want to define your own Ore operators, use OreSigma and Ore-
Delta to define their commutation properties. Note that op can be a pattern
as well as a fixed expression.

O Examples

In[200]:= OreDelta[Der[x]]

Out[200]= ∂x#1 &

In[201]:= OreDelta[S[n]]

Out[201]= 0 &

We show how a generic Ore operator can be defined.

In[202]:= OreSigma[MyOp] = MySigma; OreDelta[MyOp] = MyDelta;
In[203]:= ToOrePolynomial[MyOp̂ 2 ∗∗ a]

Out[203]= MySigma(MySigma(a)) MyOp2

+ (MyDelta(MySigma(a)) + MySigma(MyDelta(a))) MyOp
+ MyDelta(MyDelta(a))

Now we introduce the double-shift, i.e., the shift by 2.

In[204]:= OreSigma[S2[a ]] := # /. a→ a+ 2 &;
In[205]:= OreDelta[S2[ ]] := 0 &;
In[206]:= OreAction[S2[a ]] := OreSigma[S2[a]];
In[207]:= ToOrePolynomial[(n ∗∗S2[n] + 1)̂ 2]

Out[207]= (n2 + 2n)S22
n + 2nS2n + 1

In[208]:= ApplyOreOperator[%, f [n]]

Out[208]=

(
n2 + 2n

)
f(n+ 4) + f(n) + 2nf(n+ 2)

O See Also

OreAction, OreOperatorQ, OreOperators, OreSigma
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OreGroebnerBasis

OreGroebnerBasis
[
{P1, . . . , Pk}

]
computes a left Gröbner basis for the left ideal that is generated by the Ore
polynomials P1, . . . , Pk.

OreGroebnerBasis
[
{P1, . . . , Pk}, alg

]
translates P1, . . . , Pk into the Ore algebra alg and then computes a left
Gröbner basis.

O More Information

The input polynomials P1, . . . , Pk have to be given as OrePolynomial expres-
sions. If they are not in this format, or if they belong to different Ore algebras,
then the second argument has to be given to specify in which algebra the com-
putation should take place.

OreGroebnerBasis executes Buchberger’s algorithm and it makes use of the
chain criterion (Buchberger’s second criterion). The product criterion (Buch-
berger’s first criterion) cannot be used in noncommutative polynomial rings.

Per default, the output is a completely auto-reduced Gröbner basis, all its ele-
ments are normalized to have content 1, and they are ordered by their leading
monomials according to the monomial order.

The following options can be given:

Method → "sugar"
specifies the pair selection strategy in Buchberger’s algorithm. The following
methods can be chosen:

"sugar": the sugar strategy has been proposed by Giovini, Mora, Niesi,
Robbiano, and Traverso in 1991 and is one of the most popular pair
selection strategies. It mimics the Gröbner basis computation in an
homogeneous ideal.

"normal": the normal strategy has been proposed by Bruno Buchberger
himself; it takes the pair with the smallest lcm of the leading monomials.

"elimination": a greedy strategy that is designed for elimination problems;
it prefers pairs where the total degree of the variables to be eliminated
is minimal (in the lcm of the leading monomials).

"pairsize": pairs of small size are treated first; we take as the size of a pair
the product of the ByteCounts of the two polynomials.
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MonomialOrder → None
specifies the monomial order; None means that the same monomial order
is taken in which the input is given. If the input is not given as OrePoly-
nomial expressions, then DegreeLexicographic is taken per default. The
following monomial orders can be chosen:

DegreeLexicographic: total degree lexicographic order (= graded lexi-
cographic ordering). The terms of higher total degree come first; two
terms of the same degree are ordered lexicographically (see below).

DegreeReverseLexicographic: total degree reverse lexicographic order-
ing.

Lexicographic: the terms with the highest power of the first variable come
first: for two terms with the same power of the first variable the power
of the second variable is compared, and so on.

ReverseLexicographic: reverse lexicographic ordering: The term with
the higher power of the last variable comes last; for terms with the same
power of the last variable, the exponent on the next to last variable is
compared, and so on.
Note: Under this ordering the monomials are not well-ordered!

EliminationOrder[n]: a block order s.t. the first n variables are elimi-
nated, i.e., they are lexicographically greater than the rest. In the two
blocks, the variables are ordered by DegreeLexicographic.

WeightedLexicographic[w]: weighted lexicographic ordering: the total
degrees weighted by the weight vector w are compared first, and if they
are equal, the two terms are compared lexicographically.

WeightedLexicographic[w, order]: similar as before, but now the two
terms are compare by order in case that their weighted total degrees
are the same.

MatrixOrder[m]: matrix ordering: the exponent vectors are multiplied by
the matrix m and the results are compared lexicographically.

You can define your own monomial ordering by giving a pure function that
takes as input two exponent vectors and yields True or False.

Extended → False
setting this option to True computes also the cofactors of the Gröbner basis
that allow to write each of its elements as a linear combination of the Pi. In
this case, a list of length 2 is returned, its first element being the Gröbner
basis, and its second element being the matrix of cofactors.

Incomplete → False
setting this option to True causes that the computation is interrupted as
soon as an element free of the elimination variables is found (works only in
connection with EliminationOrder).

ModuleBasis → {}
when computing in a module, give here a list of natural numbers indicating
where the position variables are located among the generators of the Ore
algebra.
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Modulus → 0
give a prime number here for modular computations.

NormalizeCoefficients → True
whether the content of intermediate and final results shall be removed.

Reduce → True
whether autoreduction should be performed at the end of Buchberger’s al-
gorithm.

ReduceTail → True
whether also the tail (i.e., the terms that come behind the first non-reducible
term) should be reduced for each S-polynomial.

O Examples

In[209]:= rels = Flatten[Annihilator[GegenbauerC[n,m, x],#]&
/@ {S[n],S[m],Der[x]}]

Out[209]= {(n+ 2)S2
n + (−2mx− 2nx− 2x)Sn + (2m+ n),

(4m2x2 − 4m2 + 4mx2 − 4m)S2
m

+ (−4m2x2 + 8m2 − 4mnx2 + 4mn− 4mx2 + 6m)Sm
+ (−4m2 − 4mn− 2m− n2 − n),

(x2 − 1)D2
x + (2mx+ x)Dx + (−2mn− n2)}

In[210]:= OreGroebnerBasis[rels, OreAlgebra[S[m], S[n],Der[x]]]

Out[210]= {(−n− 1)Sn + (x2 − 1)Dx + (2mx+ nx),
− 2mSm + xDx + (2m+ n),
(1− x2)D2

x + (−2mx− x)Dx + (2mn+ n2)}

By Gröbner basis computation we can show that relations are not compatible.

In[211]:= opolys = ToOrePolynomial[
{S[k]̂ 2 + (n− k) ∗∗S[k] + n̂ 2− k̂ 2, S[n]̂ 2 + (2n) ∗∗S[n]− k},
OreAlgebra[S[k],S[n]]]

Out[211]= {S2
k + (n− k)Sk + (n2 − k2), S2

n + 2nSn − k}
In[212]:= OreGroebnerBasis[opolys]

Out[212]= {1}

We demonstrate the use of the option Extended:

In[213]:= {gb, cofs} = OreGroebnerBasis[{x̂ 3,Der[x]̂ 2},
OreAlgebra[x,Der[x]],Extended→ True]

Out[213]=

{
{1},

{{
−1

8
xD4

x +
1

6
D3
x ,

1

8
x4D2

x +
4

3
x3Dx + 3x2

}}}
In[214]:= Inner[#1 ∗∗#2 &, cofs, {x̂ 3,Der[x]̂ 2}, Plus]

Out[214]= {1}

O See Also

FGLM, FindRelation, GBEqual, OreAlgebra, OrePolynomial,
OreReduce, Printlevel, UnderTheStaircase
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OreOperatorQ

OreOperatorQ
[
expr

]
tests whether expr is an Ore operator or not.

O More Information

This command gives True if expr is an Ore operator; this is the case when the
two endomorphisms OreSigma[expr] and OreDelta[expr] are defined. Other-
wise False is returned.

Note that by the term “Ore operator” we mean a single symbol that has been
introduced by an Ore extension. In particular we do not mean an operator in
the sense of a recurrence or a differential equation; those are (Ore) polynomials
involving some Ore operators.

O Examples

In[215]:= OreOperatorQ[Der[x]]

Out[215]= True

In[216]:= OreOperatorQ[”∂”]

Out[216]= False

In[217]:= OreSigma[”∂”] = σ; OreDelta[”∂”] = δ;
In[218]:= OreOperatorQ[”∂”]

Out[218]= True

In[219]:= ToOrePolynomial[”∂” ∗∗ a]

Out[219]= σ[a]∂ + δ[a]

In[220]:= OreOperatorQ[%]

Out[220]= False

O See Also

OreDelta, OreOperators, OreSigma
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OreOperators

OreOperators
[
expr

]
gives a list of Ore operators that are contained in expr.

O More Information

Every expression e for which the two endomorphisms OreSigma[e] and Ore-
Delta[e] are defined, is considered as an Ore operator.

Note that by the term “Ore operator” we mean a single symbol that has been
introduced by an Ore extension. In particular we do not mean an operator in
the sense of a recurrence or a differential equation; those are (Ore) polynomials
involving some Ore operators.

O Examples

In[221]:= OreOperators[S[n]̂ 2 + S[k]̂ 2 + xDer[x] S[n]]

Out[221]= {Der[x], S[k], S[n]}
In[222]:= OreOperators[D[f [x], x]]

Out[222]= {}
In[223]:= Annihilator[Fibonacci[n, x]]

Out[223]= {2nSn + (−x2 − 4)Dx + (−nx− x), (x2 + 4)D2
x + 3xDx + (1− n2)}

In[224]:= OreOperators[%]

Out[224]= {Der[x], S[n]}

O See Also

OreDelta, OreOperatorQ, OreSigma
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OrePlus

OrePlus
[
opoly1, opoly2, . . .

]
computes the sum of the Ore polynomials opoly1, opoly2, etc.

OrePlus
[
opoly1, opoly2, . . . , alg

]
translates opoly1, opoly2, etc. into the Ore algebra alg and then computes
their sum.

O More Information

The input polynomials can be either given as OrePolynomial expressions or
as standard Mathematica polynomials. OrePlus then tries to figure out which
Ore algebra is best suited for representing the output. Alternatively, this algebra
can be explicitely given as the last argument.

To make the work with Ore polynomials more convenient, we have defined an
upvalue for addition. This means that the standard notation opoly1+opoly2 can
be used for addition of Ore polynomials; if at least one of the summands is of
type OrePolynomial then OrePlus will be called.

O Examples

The output of OrePlus is always an OrePolynomial expression; sometimes
(as here in output line 2) this cannot be directly be seen.

In[225]:= OrePlus[Der[x] ∗∗x, (1− x) ∗∗Der[x],OreAlgebra[x,Der[x]]]

Out[225]= Dx + 1

In[226]:= %−Der[x]

Out[226]= 1

In[227]:= Head[%]

Out[227]= OrePolynomial

Observe how the representation format of the coefficients (here in factored form)
is preserved by OrePlus.

In[228]:= ToOrePolynomial[(n̂ 2 + n) ∗∗S[n] + n̂ 2− 1]

Out[228]= (n2 + n)Sn + (n2 − 1)

In[229]:= Factor[%]

Out[229]= n(n+ 1)Sn + (n− 1)(n+ 1)

In[230]:= OrePlus[%, (S[n] + 1) ∗∗n]

Out[230]= (n+ 1)2Sn + (n2 + n− 1)

O See Also

OrePolynomial, OrePolynomialSubstitute, OrePower, OreTimes,
ToOrePolynomial
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OrePolynomial

OrePolynomial
[
data, alg, order

]
is the internal representation of an Ore polynomial in the Ore algebra alg
with monomial order order.

O More Information

The above format is the FullForm representation of an Ore polynomial. Thanks
to the command ToOrePolynomial, you never have to type it explicitely.
Unless you type FullForm, you also will never see this representation, since
Ore polynomials are displayed in a very nice format: each term is displayed
as cge11 g

e2
2 . . . gedd where c is the coefficient and the gi are the generators of the

algebra (their order is preserved). Additionally, the terms are ordered according
to the monomial order, i.e., the leading term is always in front.

The first argument data contains a list of terms, each term being a pair consisting
of a coefficient and an exponent vector. The exponents are given in the order
as the generators of the algebra are given. The zero polynomial has the empty
list in this place. The second argument alg is an Ore algebra, i.e., an expression
of type OreAlgebraObject. The third argument contains the monomial order
with respect to which the entries in data are ordered; see the description of
OreGroebnerBasis (p. 57) for a list of supported monomial orders. Note
that data is always kept ordered such that the leading term corresponds to the
first list element.

In the following, let p, p1 and p2 be OrePolynomial expressions. The algebra
and the monomial order of an Ore polynomial can be extracted by OreAlge-
bra[p] and MonomialOrder[p], respectively.

For the type OrePolynomial numerous upvalues have been defined to make
life easier. First this concerns the arithmetical operations Plus, Times, Non-
CommutativeMultiply, and Power. This means that you can type p1 + p2

instead of the more cumbersome OrePlus[p1, p2] and p1** p2 instead of Ore-
Times[p1, p2] (the ** symbol is Mathematica’s notation for NonCommuta-
tiveMultiply). Attention when using the commutative Times: it should only
be used in cases where noncommutativity does not play any rôle, e.g., for 2 ∗ p1

or −p1. Otherwise it can happen that Mathematica reorders the factors and
the output is not what you originally wanted.

Next, the commands Expand, Factor, and Together can be applied to an
OrePolynomial expression. However, they affect only the coefficients. In
particular, Factor[p] does not perform any operator factorization. It just causes
that the coefficients will be given in factored form. Note that this operation also
changes the OreAlgebraObject of p in order to remember that the coefficients
are factored. In all subsequent operations this property then will persist.

Some standard polynomial operations can be performed on OrePolynomial ex-
pressions like on standard polynomials. They include Coefficient, Exponent,
and Variables. The command PolynomialMod is applied to the coefficients
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only. Finally, Normal[p] converts an Ore polynomial to a standard commuta-
tive polynomial.

O Examples

In[231]:= alg = OreAlgebra[S[n],Der[x]]

Out[231]= K(n, x)[Sn;Sn, 0][Dx; 1, Dx]

In[232]:= p1 = ToOrePolynomial[S[n] + n, alg]

Out[232]= Sn + n

In[233]:= p2 = ToOrePolynomial[xDer[x] + S[n]− 1, alg]

Out[233]= Sn + xDx − 1

In[234]:= p1 + p2

Out[234]= 2Sn + xDx + (n− 1)

In[235]:= p1− p2

Out[235]= −xDx + (n+ 1)

In[236]:= p1 ∗∗p2

Out[236]= S2
n + xSnDx + (n− 1)Sn + nxDx − n

In[237]:= p2 ∗∗p1

Out[237]= S2
n + xSnDx + nSn + nxDx − n

In[238]:= First[%]

Out[238]= {{1, {2, 0}}, {x, {1, 1}}, {n, {1, 0}}, {nx, {0, 1}}, {−n, {0, 0}}}
In[239]:= (n+ 1) ∗∗p1̂ 3

Out[239]= (n+ 1)S3
n + (3n2 + 6n+ 3)S2

n + (3n3 + 6n2 + 4n+ 1)Sn + (n4 + n3)

In[240]:= Factor[%]

Out[240]= (n+ 1)S3
n + 3(n+ 1)2S2

n + (n+ 1)
(
3n2 + 3n+ 1

)
Sn + n3(n+ 1)

In[241]:= %− 3 S[n]̂ 2 + n̂ 2

Out[241]= (n+ 1)S3
n + 3n(n+ 2)S2

n + (n+ 1)
(
3n2 + 3n+ 1

)
Sn + n2 (n2 + n+ 1

)
In[242]:= Exponent[%, n]

Out[242]= 4

In[243]:= Variables[p2]

Out[243]= {x,Der[x],S[n]}
In[244]:= MonomialOrder[p1]

Out[244]= DegreeLexicographic

In[245]:= Normal[p2]

Out[245]= xDer[x] + S[n]− 1

O See Also

ApplyOreOperator, ChangeMonomialOrder, ChangeOreAlgebra,
LeadingCoefficient, LeadingExponent, LeadingPowerProduct,
LeadingTerm, NormalizeCoefficients, OreAlgebra, OrePlus,
OrePower, OreTimes, OrePolynomialDegree,
OrePolynomialListCoefficients, OrePolynomialSubstitute,
OrePolynomialZeroQ, Support, ToOrePolynomial
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OrePolynomialDegree

OrePolynomialDegree
[
opoly

]
gives the total degree of the Ore polynomial opoly with respect to all gen-
erators of the algebra.

OrePolynomialDegree
[
opoly, vars

]
gives the total degree of opoly with respect to vars.

O More Information

The input opoly must be an OrePolynomial expression, and vars a list of (or
a single) indeterminates. This list must either be a subset of the generators of
the algebra, or contain only elements that do not belong to the algebra.

O Examples

In[246]:= opoly = ToOrePolynomial[
(n+ x) S[n] Der[x] + n̂ 2x̂ 2 S[n] + nxDer[x]− 1,
OreAlgebra[S[n],Der[x]]]

Out[246]= (n+ x)SnDx + n2x2Sn + nxDx − 1

In[247]:= OrePolynomialDegree[opoly]

Out[247]= 2

In[248]:= OrePolynomialDegree[opoly, S[n]]

Out[248]= 1

In[249]:= OrePolynomialDegree[opoly, {n, x}]
Out[249]= 4

In[250]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[S[n],Der[x], n, x]]

Out[250]= Snn
2x2 − 2Snnx

2 + SnDxn+ SnDxx+ Snx
2 +Dxnx− SnDx − Sn − n− 1

In[251]:= OrePolynomialDegree[opoly]

Out[251]= 5

O See Also

LeadingExponent, LeadingPowerProduct, OrePolynomial, Support,
ToOrePolynomial
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OrePolynomialListCoefficients

OrePolynomialListCoefficients
[
opoly

]
gives a list containing all coefficients of the Ore polynomial opoly, ordered
according to the monomial order.

O More Information

The output contains the coefficients as they appear in the OrePolynomial
expression opoly. In particular, it does not contain zeros, and hence is different
from Mathematica’s CoefficientList.

O Examples

In[252]:= Annihilator[(k+n)!StirlingS1[k,m]StirlingS2[m,n], {S[k],S[m], S[n]}]
Annihilator::nondf : The expression StirlingS1[k, m] is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Annihilator::nondf : The expression StirlingS2[m, n] is not recognized to be ∂-finite.

The result might not generate a zero-dimensional ideal.

Out[252]= {SkSmSn + (k2 + kn+ 2k)SmSn + (−kn− k − n2 − 3n− 2)Sn
+ (−k2 − 2kn− 3k − n2 − 3n− 2)}

In[253]:= opoly = Factor[First[%]]

Out[253]= SkSmSn + k(k + n+ 2)SmSn − (n+ 1)(k + n+ 2)Sn − (k + n+ 1)(k + n+ 2)

In[254]:= OrePolynomialListCoefficients[opoly]

Out[254]= {1, k(k + n+ 2), −(n+ 1)(k + n+ 2), −(k + n+ 1)(k + n+ 2)}
In[255]:= opoly = ChangeOreAlgebra[opoly,

OreAlgebra[k,m, n, S[k], S[m], S[n]]]

Out[255]= k2SmSn + knSmSn − knSn + 2kSmSn − n2Sn + SkSmSn − k2 − 2kn− kSn − n2

− 3nSn − 3k − 3n− 2Sn − 2

In[256]:= OrePolynomialListCoefficients[opoly]

Out[256]= {1, 1,−1, 2,−1, 1,−1,−2,−1,−1,−3,−3,−3,−2,−2}

O See Also

ChangeMonomialOrder, ChangeOreAlgebra, LeadingCoefficient,
NormalizeCoefficients, OrePolynomial, ToOrePolynomial
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OrePolynomialSubstitute

OrePolynomialSubstitute
[
opoly, rules

]
applies the substitutions rules to the Ore polynomial opoly.

O More Information

The input opoly has to be an OrePolynomial expression, and rules a list of
rules of the form a→ b or a :→ b.

Never try to use Mathematica’s ReplaceAll for substitutions on Ore poly-
nomials. This may cause results that are not well-formed OrePolynomial
expressions (as the last example demonstrates).

The following options can be given:

Algebra → None
the Ore algebra in which the output should be represented; None means
that the algebra of opoly is taken.

MonomialOrder → None
the monomial order in which the output should be represented; None means
that the monomial order of opoly is taken.

O Examples

In[257]:= opoly = ToOrePolynomial[S[n]Der[x] + nxS[n] + Der[x] + 1,
OreAlgebra[Der[x],S[n]]]

Out[257]= DxSn +Dx + nxSn + 1

In[258]:= OrePolynomialSubstitute[opoly, {Der[x]→ 1}]
Out[258]= (nx+ 1)Sn + 2

In[259]:= OreAlgebra[%]

Out[259]= K(n, x)[Dx; 1, Dx][Sn;Sn, 0]

In[260]:= OrePolynomialSubstitute[opoly, {Der[x]→ 1},
Algebra→ OreAlgebra[S[n]]]

Out[260]= (nx+ 1)Sn + 2

In[261]:= OrePolynomialSubstitute[opoly, {n→ 0}]
Out[261]= DxSn +Dx + 1

The following gives nonsense!

In[262]:= opoly /. n→ 0

Out[262]= DxS0 +Dx + 0S0 + 1

O See Also

OrePolynomial, ToOrePolynomial
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OrePolynomialZeroQ

OrePolynomialZeroQ
[
opoly

]
tests whether the Ore polynomial opoly is zero.

O More Information

Note that this command does not do any simplification on the coefficients.

O Examples

In[263]:= opoly = ToOrePolynomial[nS[n] + S[n], OreAlgebra[S[n]]]

Out[263]= (n+ 1)Sn

In[264]:= OrePolynomialZeroQ[opoly]

Out[264]= False

In[265]:= OrePolynomialZeroQ[opoly − S[n] ∗∗n]

Out[265]= True

In[266]:= opoly = ToOrePolynomial[Der[x] + 1− Sin[x]̂ 2− Cos[x]̂ 2,
OreAlgebra[Der[x]]]

Out[266]= Dx + (1− Cos[x]2 − Sin[x]2)

In[267]:= OrePolynomialZeroQ[opoly −Der[x]]

Out[267]= False

O See Also

OrePolynomial, ToOrePolynomial
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OrePower

OrePower
[
opoly, n

]
computes the n-th power of the Ore polynomial opoly.

O More Information

The input opoly is an OrePolynomial expression and n has to be an integer.
Negative integers are only admissible in degenerate cases when opoly does not
contain any Ore operators.

To make the work with Ore polynomials more convenient, we have defined an
upvalue for Power. This means that the standard notation opoly n̂ can be used
and OrePower will be called automatically.

O Examples

In[268]:= opoly = ToOrePolynomial[nx S[n] Der[x]]

Out[268]= nxDxSn

In[269]:= OrePower[opoly, 3]

Out[269]= (n3x3 + 3n2x3 + 2nx3)D3
xS

3
n + (3n3x2 + 9n2x2 + 6nx2)D2

xS
3
n

+ (n3x+ 3n2x+ 2nx)DxS
3
n

In[270]:= 1/opoly
OrePower::negpow : Negative power of an OrePolynomial.

Out[270]= $Failed

In[271]:= OrePolynomialSubstitute[opoly, {S[n]→ 1,Der[x]→ 1}]̂ (−1)

Out[271]=
1

nx

O See Also

OrePolynomial, OrePolynomialSubstitute, OrePlus, OreTimes,
ToOrePolynomial
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OreReduce

OreReduce
[
opoly, {g1, g2, . . . }

]
reduces the Ore polynomial opoly modulo the set of Ore polynomials
{g1, g2, . . . }.

O More Information

The gi are OrePolynomial expressions and opoly may be either an OrePoly-
nomial expression, or a standard Mathematica polynomial; in the latter case
it is translated into the Ore algebra in which the gi are given. Note that the set
{g1, g2, . . . } needs not to form a Gröbner basis. However, if it is not, the result
of the reduction may not be uniquely defined.

As always, the operations in OreReduce involve only multiplications from the
left.

By default, no content is removed during the reduction. Thus denominators
may appear and therefore it is recommended to switch to togethered coefficient
representation in advance.

The following options can be given:

Extended → False
setting this option to True computes also the cofactors of the reduction.
The output then is of the form {r, f, {c1, c2, . . . }} such that r is the reductum
of opoly and opoly can be written as f · r + c1g1 + c2g2 + . . . .

ModuleBasis → {}
when computing in a module, give here a list of natural numbers indicating
where the position variables are located among the generators of the Ore
algebra.

Modulus → 0
give a prime number here for modular computations.

NormalizeCoefficients → False
whether the content of intermediate and final results shall be removed.

OrePolynomialSubstitute → {}
If a list of rules {a → a0, b → b0, . . . } is given, then the reduction is com-
puted with these substitutions (note that it takes care of noncommutativity
as the substitutions are performed at a point where the noncommuting na-
ture of these variables is not relevant any more).

ReduceTail → True
whether also the tail (i.e., the terms that come behind the first non-reducible
term) should be reduced.

70



O Examples

In[272]:= gb = Annihilator[LaguerreL[n, x], {Der[x],S[n]}]
Out[272]= {xDx + (−n− 1)Sn + (n− x+ 1), (n+ 2)S2

n + (−2n+ x− 3)Sn + (n+ 1)}
In[273]:= OreReduce[(S[n] Der[x])̂ 3, gb]

Out[273]=

(
−n

2

x2
+

2n

x3
+
n

x
+

2

x3
+

1

x2
+

1

x

)
Sn +

(
n2

x2
− 2n

x3
+

2n

x2
− 2

x3
+

1

x2

)
In[274]:= OreReduce[(S[n] Der[x])̂ 3, Together[gb]]

Out[274]=
n2(−x) + nx2 + 2n+ x2 + x+ 2

x3
Sn +

(n+ 1)(nx+ x− 2)

x3

In[275]:= OreReduce[(S[n] Der[x])̂ 3, gb, NormalizeCoefficients→ True]

Out[275]= (−nx+ x2 + x+ 2)Sn + (nx+ x− 2)

In[276]:= OreReduce[(S[n] Der[x])̂ 3, gb, NormalizeCoefficients→ True,
Extended→ True]

Out[276]=

{
(−nx+ x2 + x+ 2)Sn + (nx+ x− 2),

x3

n+ 1
,

{
x2

n+ 1
D2
xS

3
n +

(n+ 4)x

n+ 1
DxS

4
n +

n2 + 9n+ 20

n+ 1
S5
n +
−nx+ x2 − 6x

n+ 1
DxS

3
n

−
2
(
n2 − nx+ 10n− 4x+ 24

)
n+ 1

S4
n +

n2 − 2nx+ 11n+ x2 − 9x+ 30

n+ 1
S3
n ,

n2 + 9n+ 20

n+ 1
S4
n +
−n2 + 2nx− 11n+ 8x− 28

n+ 1
S3
n +
−nx+ x2 − 5x+ 2

n+ 1
S2
n

+
−nx− 3x+ 2

n+ 1
Sn +

−nx− x+ 2

n+ 1

}}
In[277]:= Inner[#1 ∗∗#2 &, Last[%], gb, Plus]

Out[277]=
x3

n+ 1
D3
xS

3
n + (nx− x2 − x− 2)Sn + (−nx− x+ 2)

O See Also

NormalizeCoefficients, OreGroebnerBasis
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OreSigma

OreSigma
[
op
]

defines the endomorphism σ for the Ore operator op.

O More Information

Ore operators like Sn or Dx are defined by two endomorphisms σ and δ such
that δ is a σ-derivation, i.e., that satisfies the skew Leibniz law

δ(fg) = σ(f)δ(g) + δ(f)g.

Then the commutation rule for the newly introduced symbol ∂ is

∂a = σ(a)∂ + δ(a).

The standard Ore operators (shift, differential, delta, Euler, q-shift) are pre-
defined in HolonomicFunctions (using OreSigma, OreDelta, and OreAc-
tion). If you want to define your own Ore operators, use OreSigma and Ore-
Delta to define their commutation properties. Note that op can be a pattern
as well as a fixed expression.

O Examples

In[278]:= OreSigma[Der[x]]

Out[278]= #1 &

In[279]:= OreSigma[S[n]]

Out[279]= #1 /. n→ n+ 1 &

We show how a generic Ore operator can be defined.

In[280]:= OreSigma[MyOp] = MySigma; OreDelta[MyOp] = MyDelta;
In[281]:= ToOrePolynomial[MyOp̂ 2 ∗∗ a]

Out[281]= MySigma(MySigma(a)) MyOp2

+ (MyDelta(MySigma(a)) + MySigma(MyDelta(a))) MyOp
+ MyDelta(MyDelta(a))

Now we introduce the double-shift, i.e., the shift by 2.

In[282]:= OreSigma[S2[a ]] := # /. a→ a+ 2 &;
In[283]:= OreDelta[S2[ ]] := 0 &;
In[284]:= OreAction[S2[a ]] := OreSigma[S2[a]];
In[285]:= ToOrePolynomial[(n ∗∗S2[n] + 1)̂ 2]

Out[285]= (n2 + 2n)S22
n + 2nS2n + 1

In[286]:= ApplyOreOperator[%, f [n]]

Out[286]=

(
n2 + 2n

)
f(n+ 4) + f(n) + 2nf(n+ 2)

O See Also

OreAction, OreDelta, OreOperatorQ, OreOperators
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OreTimes

OreTimes
[
opoly1, opoly2, . . .

]
computes the product of the Ore polynomials opoly1, opoly2, etc.

OreTimes
[
opoly1, opoly2, . . . , alg

]
translates opoly1, opoly2, etc. into the Ore algebra alg and then computes
their product.

O More Information

The input polynomials can be either given as OrePolynomial expressions or as
standard Mathematica polynomials. OreTimes then tries to figure out which
Ore algebra is best suited for representing the output. Alternatively, this algebra
can be explicitely given as the last argument.

To make the work with Ore polynomials more convenient, we have defined an
upvalue for multiplication. This means that the notation opoly1**opoly2 can
be used for multiplying two Ore polynomials; if at least one of the factors is of
type OrePolynomial then OreTimes will be called. The same works for the
commutative Times. But since Mathematica might reorder the factors, this
should only be used if the factors in fact commute, e.g., in 2*opoly1.

O Examples

In[287]:= OreTimes[Der[x], x]

Out[287]= xDx + 1

The following does not work since none of the factors is of type OrePolynomial.

In[288]:= Der[x] ∗∗x
Out[288]= Der[x] ∗∗x

This is another way how to do it.

In[289]:= ToOrePolynomial[Der[x]]

Out[289]= Dx

In[290]:= % ∗∗x
Out[290]= xDx + 1

Shift a recurrence by 1:

In[291]:= ToOrePolynomial[(2+n)h[2+n]+(−3−2n)h[1+n]+(1+n)h[n], h[n]]

Out[291]= (n+ 2)S2
n + (−2n− 3)Sn + (n+ 1)

In[292]:= S[n] ∗∗%

Out[292]= (n+ 3)S3
n + (−2n− 5)S2

n + (n+ 2)Sn

O See Also

OrePolynomial, OrePolynomialSubstitute, OrePlus, OrePower,
ToOrePolynomial
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Printlevel

Printlevel = n
activates and controls verbose mode, displaying information about the cur-
rent computation up to recursion level n.

O Examples

In[293]:= ann = Flatten[(Annihilator[LegendreP[n, x],#]&) /@ {S[n],Der[x]}]
Out[293]= {(n+ 2)S2

n + (−2nx− 3x)Sn + (n+ 1), (x2 − 1)D2
x + 2xDx + (−n2 − n)}

In[294]:= Printlevel = 2; OreGroebnerBasis[ann,OreAlgebra[S[n],Der[x]]]
OreGroebnerBasis: Number of pairs: 1
OreGroebnerBasis: Taking {4, {2, 2}, 1, 2}
OreGroebnerBasis: Does not reduce to zero -> number 3 in the basis.

The lpp is {1, 1}. The ByteCount is 1316.
OreGroebnerBasis: Number of pairs: 2
OreGroebnerBasis: Taking {5, {2, 1}, 1, 3}
OreGroebnerBasis: Does not reduce to zero -> number 4 in the basis.

The lpp is {1, 0}. The ByteCount is 1300.
OreGroebnerBasis: Number of pairs: 3
OreGroebnerBasis: Taking {5, {1, 2}, 2, 3}
OreGroebnerBasis: Number of pairs: 2
OreGroebnerBasis: Taking {6, {2, 0}, 1, 4}
OreGroebnerBasis: Number of pairs: 1
OreGroebnerBasis: Taking {6, {1, 1}, 3, 4}
OreGroebnerBasis: Reducing no. 1 of 2
OreGroebnerBasis: Reducing no. 2 of 2

Out[294]= {(−n− 1)Sn + (x2 − 1)Dx + (nx+ x), (1− x2)D2
x − 2xDx + (n2 + n)}

In[295]:= Printlevel = Infinity; Annihilator[Sum[Binomial[n, k], {k, 0, n}], S[n]]
Entering Annihilator[Sum]

Annihilator called with Binomial[n, k].
Annihilator: The factors that contain not-to-be-evaluated elements are {}
Annihilator: The remaining factors are {Gamma[1 + k]̂ (-1),

Gamma[1 + n], Gamma[1 - k + n]̂ (-1)}
Annihilator: Factors that are not hypergeometric and hyperexponential: {}
CreativeTelescoping: Trying d = 0, ansatz = eta[0] + (-1 + S[k])**phi[1][k]
LocalOreReduce: Reducing {0, 0}
LocalOreReduce: Reducing {1, 0}

Start to solve scalar equation...
RSolveRational: got a recurrence of order 1

RSolvePolynomial: degree bound = 0
Solved scalar equation.

CreativeTelescoping: Trying d = 1, ansatz = eta[0]**1 + eta[1]**S[n]
+(-1 + S[k])**phi[1][k]**1

LocalOreReduce: Reducing {0, 1}
Start to solve scalar equation...

RSolveRational: got a recurrence of order 1
RSolvePolynomial: degree bound = 1

Solved scalar equation.

Out[295]= {Sn − 2}
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QS

QS
[
x, qˆn

]
represents the q-shift operator on the variable x.

O More Information

The q-shift on x is defined to be qx. Often in practice the variable x is in fact
a power of q, e.g., x = qn, and then the q-shift of x corresponds to a shift in n.
That’s why the Ore operator QS takes two arguments, namely the variable on
which the q-shift acts and the power of q to which this variable corresponds.

Since for polynomial arithmetic it is problematic to deal with indeterminates
like qn, such occurrences will always be replaced by the variable x, e.g., when cre-
ating an OrePolynomial expression. When it is part of an OrePolynomial,
the q-shift operator is displayed as Sx,q. When applying it to some expression,
the variable x is again replaced by qn.

The operator QS[x, qn] acts on x via x 7→ qx as well as on n via n 7→ n+1. This
behaviour is important when you deal with expressions like QBinomial[n, k, q]
where the variable x or the power qn do not appear explicitely.

O Examples

In[296]:= OreSigma[QS[x, q n̂]]

Out[296]= #1 /. x→ qx /. n→ n+ 1 &

In[297]:= ToOrePolynomial[(q n̂− q 3̂)QS[x, q n̂]− q (̂2n)− q (̂n+ 1),
OreAlgebra[QS[x, q n̂]]]

Out[297]= (x− q3)Sx,q + (−qx− x2)

In[298]:= ApplyOreOperator[%, f [x] + g[q n̂]]

Out[298]=

(
−qn+1 − q2n

)
(f [qn] + g[qn]) +

(
qn − q3

) (
f [qn+1] + g[qn+1]

)
In[299]:= Annihilator[QBinomial[n, k, q]]

Out[299]= {(qk− q qn)Sqn,q + (q qk qn− qk), (q qk2 − qk)Sqk,q + (qk− qn)}
In[300]:= ApplyOreOperator[%,QBinomial[n, k, q]]

Out[300]=

{(
qk − qn+1

)
QBinomial[n+ 1, k, q] +

(
qk+n+1 − qk

)
QBinomial[n, k, q],(

q2k+1 − qk
)

QBinomial[n, k + 1, q] +
(
qk − qn

)
QBinomial[n, k, q]

}
In[301]:= FunctionExpand[% /. n→ 3 /. k→ 2]

Out[301]=

{
(q2 + q + 1)(q6 − q2) + (q2 + 1)(q2 + q + 1)(q2 − q4),

q5 − q2 + (q2 + q + 1)(q2 − q3)
}

In[302]:= Expand[%]

Out[302]= {0, 0}

O See Also

ApplyOreOperator, Delta, Der, Euler, OreAction, OreDelta,
OreSigma, S, ToOrePolynomial
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QSolvePolynomial

QSolvePolynomial
[
eqn, f [x], q

]
determines whether the linear q-shift equation eqn in f [x] (with polynomial
coefficients) has polynomial solutions, and in the affirmative case, computes
them.

O More Information

A q-shift equation is an equation that involves f [x], f [qx], f [q2x], etc. It may
be given as an equation (with head Equal) or as the left-hand side expression
(which is then understood to be equal to zero). If the coefficients of eqn are
rational functions, it is multiplied by their common denominator. The algorithm
works by determining a degree bound and then making an ansatz for the solution
with undetermined coefficients.

The command QSolvePolynomial is able to deal with parameters; these have
to occur linearly in the inhomogeneous part. Call the parameterized version
using the option ExtraParameters.

The following options can be given:

ExtraParameters → {}
specify some extra parameters for which the equation has to be solved.

O Examples

In[303]:= QSolvePolynomial[f [qx]− q 1̂0 f [x] == 0, f [x], q]

Out[303]=

{{
f(x)→ C[1]x10

}}
In[304]:= QSolvePolynomial[f [q 2̂x] + f [qx] + f [x] ==

(q 4̂ + q 2̂ + 1)x̂ 2 + (q 3̂ + q 2̂ + q)x+ 3q 7̂, f [x], q]

Out[304]=

{{
f(x)→ q7 + qx+ x2

}}
In[305]:= QSolvePolynomial[f [q̂ 3x] + f [x]− cx̂ 3, f [x], q,ExtraParameters→ c]

Out[305]=

{{
f(x)→ C[1]x3, c→ C[1]

(
q9 + 1

)}}

O See Also

DSolvePolynomial, DSolveRational, QSolveRational,
RSolvePolynomial, RSolveRational
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QSolveRational

QSolveRational
[
eqn, f [x], q

]
determines whether the linear q-shift equation eqn in f [x] (with polynomial
coefficients) has rational solutions, and in the affirmative case, computes
them.

O More Information

A q-shift equation is an equation that involves f [x], f [qx], f [q2x], etc. It may
be given as an equation (with head Equal) or as the left-hand side expression
(which is then understood to be equal to zero). If the coefficients of eqn are
rational functions, it is multiplied by their common denominator. Following
Abramov’s algorithm [2], first the denominator of the solution is determined.
Then QSolvePolynomial is called to find the numerator polynomial.

The command QSolvePolynomial is able to deal with parameters; these have
to occur linearly in the inhomogeneous part. Call the parameterized version
using the option ExtraParameters.

The following options can be given:

ExtraParameters → {}
specify some extra parameters for which the equation has to be solved.

O Examples

In[306]:= QSolveRational[q 2̂ f [qx]− f [x] + (a1x+ a0)/(x+ 1), f [x], q,
ExtraParameters→ {a0, a1}]

Out[306]=

{{
f [x]→ C[1]x2 + C[2]

x2
, a0→ C[1]

(
1− q2

)
, a1→ C[1]

(
1− q2

)}}
In[307]:= QSolveRational[q 3̂(qx+ 1)f [q 2̂x]− 2q 2̂(x+ 1)f [qx] + (x+ q)f [x]

== (q 6̂− 2q 3̂ + 1)x̂ 2 + (q 5̂− 2q 3̂ + 1)x, f [x], q]

Out[307]= {{f [x]→ (C[1]q3 + C[1]q2 − C[1]q − C[1] + q4x2 + q3x3 + q3x2 + q2x3 − q2x2
− qx3 − qx2 − x3 − x2) / ((q − 1)(q + 1)2x(q + x))}}

O See Also

DSolvePolynomial, DSolveRational, QSolvePolynomial,
RSolvePolynomial, RSolveRational
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RandomPolynomial

RandomPolynomial
[
var, deg, c

]
gives a dense random polynomial in the variable(s) var of degree deg with
integer coefficients between −c and c.

O More Information

The first argument var can be a single variable (for univariate random polyno-
mials) or a list of variables (for multivariate random polynomials). The second
argument deg can be a natural number and then specifies the total degree of the
output, or a list of positive integers, specifying the degree with respect to each
variable. The third argument c bounds the size of the integer coefficients. The
output is a standard Mathematica polynomial (and not an OrePolynomial).

O Examples

In[308]:= RandomPolynomial[x, 5, 10̂ 6]

Out[308]= 954193x5 + 132684x4 + 949782x3 − 597569x2 − 171223x− 881334

In[309]:= RandomPolynomial[{x, y, z}, 2, 1000]

Out[309]= −11x2 − 755xy − 877xz − 840x+ 351y2 − 136yz + 386y − 109z2 + 211z + 486

In[310]:= RandomPolynomial[{x, y, z}, {1, 2, 3}, 100]

Out[310]= 43xy2z3−41xy2z2 + 14xy2z−3xy2 + 48xyz3 + 47xyz2−32xyz+ 88xy−84xz3 +
65xz2 − 30xz − 42x+ 7y2z3 + 54y2z2 + 44y2z + 31y2 − 91yz3 − 95yz2 − 57yz +
65y − 35z3 + 59z2 − 6z − 48

In[311]:= RandomPolynomial[{a, z, S[a],Der[z]}, 3, 1]

Out[311]= −a2Der[z]−a2S[a]−a2+S[a]2Der[z]−S[a]Der[z]−aDer[z]2+aDer[z]−azDer[z]+
z2S[a]−zS[a]2−azS[a]+S[a]3−aS[a]2−S[a]2+aS[a]+az+a+Der[z]3−Der[z]2+
zDer[z]−Der[z] + z2 − z

In[312]:= ToOrePolynomial[%,OreAlgebra[S[a],Der[z]]]

Out[312]= S3
a +S2

aDz +D3
z + (−a− z− 1)S2

a −SaDz + (−a− 1)D2
z + (−a2−az+a+ z2)Sa +

(−a2 − az + a+ z − 1)Dz + (−a2 + az + a+ z2 − z)

O See Also

OrePolynomial, ToOrePolynomial
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RSolvePolynomial

RSolvePolynomial
[
eqn, f [n]

]
determines whether the linear recurrence equation eqn in f [n] (with poly-
nomial coefficients) has polynomial solutions, and in the affirmative case,
computes them.

O More Information

The first argument eqn can be given either as an equation (with head Equal),
or as the left-hand side expression (which is then understood to be equal to
zero). If the coefficients of eqn are rational functions, it is multiplied by their
common denominator. The second argument is the function to be solved for.
The algorithm works by determining a degree bound and then making an ansatz
for the solution with undetermined coefficients.

The command RSolvePolynomial is able to deal with parameters; these have
to occur linearly in the inhomogeneous part. Call the parameterized version
using the option ExtraParameters.

The following options can be given:

ExtraParameters → {}
specifies some extra parameters for which the equation has to be solved.

O Examples

In[313]:= RSolvePolynomial[(n̂ 3 + 1)f [n+ 1]− 3(n̂ 3 + n̂ 2 + n)f [n] ==
2− 2n̂ 6, f [n]]

Out[313]=

{{
f [n]→ n3 + 1

}}
In[314]:= eqn = (1 + k)f [k] + (−1 + k − n)f [1 + k] +

(1 + k)(−1 + k − n)x[0]− (1 + k)(1 + n)x[1]

Out[314]= (k − n− 1)f [k + 1] + (k + 1)f [k] + (k + 1)(k − n− 1)x[0]− (k + 1)(n+ 1)x[1]

In[315]:= RSolvePolynomial[eqn, f [k]]

Out[315]= {}
In[316]:= RSolvePolynomial[eqn , f [k], ExtraParameters→ {x[0], x[1]}]

Out[316]= {{f [k]→ C[1]k, x[0]→ −2C[1], x[1]→ C[1]}}

O See Also

DSolvePolynomial, DSolveRational, QSolvePolynomial,
QSolveRational, RSolveRational
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RSolveRational

RSolveRational
[
eqn, f [x]

]
determines whether the linear recurrence equation eqn in f [n] (with poly-
nomial coefficients) has rational solutions, and in the affirmative case, com-
putes them.

O More Information

The first argument eqn can be given either as an equation (with head Equal), or
as the left-hand side expression (which is then understood to be equal to zero).
If the coefficients of eqn are rational functions, it is multiplied by their common
denominator. The second argument is the function to be solved for. Following
Abramov’s algorithm [2], first the denominator of the solution is determined.
Then RSolvePolynomial is called to find the numerator polynomial.

The command RSolveRational is able to deal with parameters; these have to
occur linearly in the inhomogeneous part. Call the parameterized version using
the option ExtraParameters.

The following options can be given:

ExtraParameters → {}
specifies some extra parameters for which the equation has to be solved.

O Examples

In[317]:= RSolveRational[(2n+ 7)f [n+ 2] + (2n̂ 2 + 7n+ 5)f [n+ 1]−
(6n̂ 2 + 7n− 3)f [n] == 3− 2n, f [n]]

Out[317]=

{{
f [n]→ 1

2n+ 3

}}
In[318]:= eqn = (k − 1− n)(n− k)f [1 + k]− (k + 1)(k − n− 1)f [k] +

(k + 1)(k − 1− n)x[0]− (k + 1)(n+ 1)x[1]

Out[318]= −(k − n− 1)(k − n)f [k + 1]− (k + 1)(k − n− 1)f [k] + (k + 1)(k − n− 1)x[0]−
(k + 1)(n+ 1)x[1]

In[319]:= RSolveRational[eqn, f [k]]

Out[319]= {}
In[320]:= RSolveRational[eqn, f [k], ExtraParameters→ {x[0], x[1]}]

Out[320]=

{{
f [k]→ − C[1]k

k − n− 1
, x[0]→ −2C[1], x[1]→ C[1]

}}

O See Also

DSolvePolynomial, DSolveRational, QSolvePolynomial,
QSolveRational, RSolvePolynomial
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S

S
[
n
]
represents the forward shift operator with respect to n.

O More Information

When this operator occurs in an OrePolynomial object, it is displayed as Sn.
The symbol S receives its meaning from the definitions of OreSigma, Ore-
Delta, and OreAction.

O Examples

In[321]:= OreSigma[S[n]]

Out[321]= #1 /. n→ n+ 1 &

In[322]:= OreDelta[S[n]]

Out[322]= 0 &

In[323]:= ApplyOreOperator[S[n]̂ 3, f [n]]

Out[323]= f [n+ 3]

The symbol S itself does not do anything. In order to perform noncommutative
arithmetic, it first has to be embedded into an OrePolynomial object.

In[324]:= S[n] ∗∗ n̂ 2

Out[324]= S[n] ∗∗n2

In[325]:= ToOrePolynomial[S[n]]

Out[325]= Sn

In[326]:= % ∗∗ n̂ 2

Out[326]= (n2 + 2n+ 1)Sn

O See Also

ApplyOreOperator, Delta, Der, Euler, OreAction, OreDelta,
OreSigma, QS, ToOrePolynomial
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SolveCoupledSystem

SolveCoupledSystem
[
eqns, {f1, . . . , fk}, {v1, . . . , vj}

]
computes all rational solutions of a coupled system of linear difference and
differential equations.

O More Information

The first argument eqns is a list of linear equations in the functions f1, . . . , fk,
their shifts and/or their derivatives, the second argument are the names of these
functions, and in the third argument the variables on which the fi depend.

SolveCoupledSystem uses OreGroebnerBasis to uncouple the given system
(which corresponds to Gaussian elimination). The advantage (compared to
SolveOreSys) is that more general types of systems can be dealt with, i.e.,
there are no restrictions concerning the order, and even mixed difference and
differential systems can be addressed. Additionally, this command is also more
reliable than SolveOreSys.

Note that SolveCoupledSystem adresses only linear systems; if the input is not
linear (which is not checked), the result most probably will be wrong.

The following options can be given:

ExtraParameters → {}
specifies some extra parameters for which the equations have to be solved;
these parameters are allowed to occur in eqns only linearly and only in the
inhomogenous parts.

Return → "solution"
specifies what result should be returned; by default this is the solution of
the eqns. Return → "uncoupled" returns the uncoupled system without
solving.

O Examples

In[327]:= SolveCoupledSystem[
{(n+ 1)f [x] + (x+ nx)g[x] + (x̂ 2− 1)g′[x] == 0,
(−x− nx)f [x]− (n+ 1)g[x] + (x̂ 2− 1)f ′[x] == 1− x̂ 2},
{f, g}, x]

Out[327]=

{{
f [x]→ x

n
, g[x]→ − 1

n

}}
In[328]:= SolveCoupledSystem[

{−(n+ 2)a[1 + n] + (n+ 2)b[n]− (2n+ 3)b[1 + n] == 0,
(n+ 2)a[n] + (n+ 1)b[1 + n]− n− 2 == 0}, {a, b}, n]

Out[328]=

{{
a[n]→ C[1]n+ C[1]− n2 + 2, b[n]→ −C[1]n− C[1] + n2 − n− 2

}}
In[329]:= SolveCoupledSystem[

{f1[k + 1, x]− f1[k, x] + D[f2[k, x], x]− 3kx̂ 2− x̂ 3,
3 f1[k, x]− xD[f2[k, x], x]}, {f1, f2}, {k, x}]
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Out[329]=

{{
f1[k, x]→ kx3, f2[k, x]→ kx3 − C[1]

}}

O See Also

DSolveRational, RSolveRational, SolveOreSys
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SolveOreSys

SolveOreSys
[
type, var, eqns, {f1[var], . . . , fk[var]}, pars

]
computes all rational solutions of the first-order coupled linear difference or
differential system eqns.

O More Information

The input consists of five arguments: type is either S or Der, indicating that
a difference resp. differential system has to be solved, var is the variable, eqns
is a list of equations, f1[var], . . . , fk[var] are the functions to be solved for,
and pars is a list of extra parameters, that are allowed to occur linearly in the
inhomogeneous parts.

The system of equations is uncoupled using the corresponding uncoupling pro-
cedure from Stefan Gerhold’s OreSys package [7] (this package has to be loaded
in advance). Then the scalar equations are solved with the functions DSolve-
Rational and RSolveRational, respectively, and by backwards substitution.

For the uncoupling, some dummy functions psi are created; they also show up
in the output.

This command is kind of obsolete since SolveCoupledSystem offers more
powerful solving abilities.

The following options can be given:

Method → OreSys̀ Zuercher
this option is passed to the uncoupling procedure.

O Examples

In[330]:= << OreSys.m

OreSys Package by Stefan Gerhold – c©RISC Linz – V 1.1 (12/02/02)

In[331]:= SolveOreSys[Der, x,
{(1 + n)f [x] + (x+ nx)g[x] + (−1 + x̂ 2)g′[x] == 0,
1− x̂ 2 == (−x− nx)f [x] + (−1− n)g[x] + (−1 + x̂ 2)f ′[x]},
{f [x], g[x]}, {}]

Out[331]=

{{
HolonomicFunctions̀ Privatè psi$24336[1][x]→ x

n
,

HolonomicFunctions̀ Privatè psi$24336[2][x]→ n+ 1

n
,

f [x]→ x

n
, g[x]→ − 1

n

}}
In[332]:= SolveOreSys[S, n,
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{(−2− n)a[1 + n] + (2 + n)b[n] + (−3− 2n)b[1 + n] == 0,
− 2− n+ (2 + n)a[n] + (1 + n)b[1 + n] == 0}, {a[n], b[n]}, {}]

Out[332]=

{{
HolonomicFunctions̀ Privatè psi$24516[1][n]→ C[1]n+ C[1]− n2 + 2,

HolonomicFunctions̀ Privatè psi$24516[2][n]→ C[1]n+ C[1]− 2n2 − n+ 2

n+ 1
,

a[n]→ C[1]n+ C[1]− n2 + 2, b[n]→ (n+ 1) (−C[1] + n− 2)

}}

O See Also

DSolveRational, RSolveRational, SolveCoupledSystem
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Support

Support
[
opoly

]
gives the support of the OrePolynomial opoly.

O More Information

The input has to be given as an OrePolynomial expression. By its support,
we understand the list of power products which have nonzero coefficient. These
power products are returned again as OrePolynomial expressions.

O Examples

In[333]:= opoly = ToOrePolynomial[(S[n] + Der[x] + nx)̂ 2,
OreAlgebra[S[n],Der[x]]]

Out[333]= S2
n + 2SnDx +D2

x + (2nx+ x)Sn + 2nxDx + (n2x2 + n)

In[334]:= Support[opoly]

Out[334]= {S2
n , SnDx, D

2
x , Sn, Dx, 1}

In[335]:= opoly = ChangeOreAlgebra[opoly,OreAlgebra[n, x, S[n],Der[x]]]

Out[335]= n2x2 + 2nxSn + 2nxDx + xSn + S2
n + 2SnDx +D2

x + n

In[336]:= Support[opoly]

Out[336]= {n2x2, nxSn, nxDx, xSn, S
2
n , SnDx, D

2
x , n}

In[337]:= Support[opoly − opoly]

Out[337]= {}

O See Also

FindRelation, LeadingPowerProduct, OrePolynomial,
OrePolynomialListCoefficients
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Takayama

Takayama
[
ann, vars

]
performs Takayama’s algorithm for definite summation and integration with
natural boundaries on a function annihilated by ann, summing and integrat-
ing with respect to vars.

Takayama
[
ann, vars, alg

]
converts all elements of ann into the Ore algebra alg and then performs
Takayama’s algorithm.

O More Information

The input ann is a list of OrePolynomial expressions or a list of standard
Mathematica polynomials (then the third argument, an Ore algebra into which
these are translated, has to be given). vars is the list of variables with respect
to which the summation and integration is done. More generally, vars contains
all variables to be eliminated (Takayama’s algorithm is based on solving an
elimination problem [11]).

The variables for which a shift operator belongs to the Ore algebra are inter-
preted as summation variables. The variables for which a differential operator
belongs to the Ore algebra are interpreted as integration variables.

The algorithm loops over the degree of vars, trying to find an operator free of
vars in the module that is truncated at this degree. Takayama can run into an
infinite loop for two reasons: either the input is not holonomic, or it is holonomic
but this property is lost by extension/contraction. The fact which degrees are
tried can be influenced by the options StartDegree and MaxDegree.

The following options can be given:

Extended → False
setting this option to True computes also the delta parts (which can be
very costly).

Incomplete → False
setting this option to True causes that the computation is interrupted as
soon as an element free of the elimination variables vars is found.

Method → "sugar"
this option is passed to OreGroebnerBasis and specifies the pair selection
strategy.

Modulus → 0
give a prime number here for modular computations.

Reduce → False
if this is set to True then the delta parts are reduced to normal form with
respect to the input annihilator (works only in connection with Extended).
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Saturate → False
when this option is set to True then it is tried to saturate the annihilating
ideal in the polynomial algebra (“Weyl closure”) by an additional Gröbner
basis computation; this can increase the number of solutions, and/or de-
crease the order of the result.

StartDegree → 0
the degree with respect to vars from which on it is tried to find operators
free of vars in the truncated module.

MaxDegree → Infinity
the maximal degree with respect to vars for which it is tried to find operators
free of vars in the truncated module; set it to a finite number to prevent an
infinite loop.

O Examples

We start with Moll’s quartic integral∫ ∞
0

1

(x4 + 2ax2 + 1)m+1
dx.

In[338]:= ann = Annihilator[1/(x4 + 2ax2 + 1)̂ (m+ 1), {S[m],Der[x],Der[a]}]
Out[338]= {(2ax2 + x4 + 1)Da + (2mx2 + 2x2),

(2ax2 + x4 + 1)Dx + (4amx+ 4ax+ 4mx3 + 4x3),
(2ax2 + x4 + 1)Sm − 1}

In[339]:= Takayama[ann, {x}]
Out[339]= {(−4m− 4)Sm + 2aDa + (4m+ 3)}
In[340]:= Takayama[ann, {x},Extended→ True]

Out[340]=

{
{(−4m− 4)Sm + 2aDa + (4m+ 3)}, {{(2ax3 + x5 + x)Sm}}

}
In[341]:= Takayama[ann, {x},Extended→ True,Reduce→ True]

Out[341]= {{(−4m− 4)Sm + 2aDa + (4m+ 3)}, {{x}}}
In[342]:= Takayama[ann, {x}, Saturate→ True]

Out[342]= {(−4m− 4)Sm + 2aDa + (4m+ 3), (4a2 − 4)D2
a + (8am+ 12a)Da + (4m+ 3)}

With Takayama’s algorithm, multiple sums and integrals can be done in one
stroke, e.g., ∫ ∞

−∞

( ∞∑
m=0

∞∑
n=0

e−x
2

rmsnHm(x)Hn(x)

m!n!

)
dx =

√
πe2rs.

In[343]:= ann = Annihilator[
HermiteH[m,x] HermiteH[n, x] rˆmŝ n (Exp[−x̂ 2]/m!/n!),
{S[m],S[n],Der[x],Der[r],Der[s]}];

In[344]:= Takayama[ann, {m,n, x}]
Out[344]= {−Ds + 2r, −Dr + 2s}
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For q-summation, either the summation variables can be given or their corre-
sponding q-powers. In the first example, the fourth-order recurrence is found
at degree 6 (can be seen when switching to verbose mode using Printlevel).
Trying a higher degree results in a shorter recurrence.

In[345]:= ann = Annihilator[q (̂(i+ j)̂ 2 + j 2̂)/QPochhammer[q, q, n− i− j]
/QPochhammer[q, q, i]/QPochhammer[q, q, j]),
{QS[qi, q î],QS[qj, q ĵ],QS[qn, q n̂]}]

Out[345]= {(qi qj− q qn)Sqn,q − qi qj,
(q qj− 1)Sqj,q + (q2qi2qj4 − q2 qi qj3qn),
(q qi− 1)Sqi,q + (q qi2qj2 − q qi qj qn)}

In[346]:= Takayama[ann, {i, j}]
Out[346]= {(1− q4qn)S4

qn,q +
(−q14qn4 +q11qn3−q8qn2−q7qn2 +q6qn+q5qn+q4qn−q3−q2−q−1)S3

qn,q +
(q13qn4 − q11qn3 + q9qn2 + 2q8qn2 + q7qn2 − q7qn− q6qn− q5qn +

q5 + q4 + 2q3 + q2 + q)S2
qn,q +

(−q9qn2 − q8qn2 + q7qn− q6 − q5 − q4 − q3)Sqn,q + q6}
In[347]:= Takayama[ann, {qi, qj}, StartDegree→ 7]

Out[347]= {(q3qn− 1)S3
qn,q +

(q10qn4 − q8qn3 + q6qn2 + q5qn2 − q4qn− q3qn + q2 + q + 1)S2
qn,q +

(−q6qn2 − q5qn2 + q4qn− q3 − q2 − q)Sqn,q + q3}

In the last example, the input is not holonomic, and hence Takayama would
run for ever if not given the option MaxDegree.

In[348]:= Takayama[Annihilator[1/(k2 + n2), {S[k],S[n]}], k,MaxDegree→ 20]

Out[348]= $Failed

O See Also

Annihilator, CreativeTelescoping, OreGroebnerBasis, Printlevel

89



ToOrePolynomial

ToOrePolynomial
[
expr

]
converts expr to an OrePolynomial expression.

ToOrePolynomial
[
expr, alg

]
converts expr to an OrePolynomial expression in the Ore algebra alg.

ToOrePolynomial
[
eqn, f [v1, . . . , vk]

]
converts the equation of f into operator notation.

O More Information

The input expr must be a polynomial in the involved Ore operators and all
other generators of alg (if specified); in particular these are not allowed in the
denominator. Also all Ore operators that occur in expr must be part of alg. If an
equation eqn is given, then the Ore operators are determined by the occurrences
of f . The equation eqn must be linear and homogeneous.

If expr is a standard Mathematica polynomial, i.e., if it does not involve Non-
CommutativeMultiply, then it is assumed that in its expanded form all
monomials are in standard form according to the order of the generators of
alg (regardless how Mathematica sorts the factors).

Otherwise use NonCommutativeMultiply, written as **, to fix the order of
the factors in a product.

If no Ore algebra is given, then the rational Ore algebra that is generated by all
Ore operators in expr is chosen.

The following options can be given:

MonomialOrder → DegreeLexicographic
the monomial order in which the terms of the Ore polynomial are ordered;
see the description of OreGroebnerBasis (p. 57) for a list of supported
monomial orders.

O Examples

In[349]:= ToOrePolynomial[(1− x̂ 2) Der[x] + (n+ 1) S[n]− x− nx]

Out[349]= (1− x2)Dx + (n+ 1)Sn + (−nx− x)

In[350]:= ToOrePolynomial[(−x− nx)f [x, n] + (1 + n)f [x, 1 + n] +
(1− x̂ 2)D[f [x, n], x], f [x, n]]

Out[350]= (1− x2)Dx + (n+ 1)Sn + (−nx− x)

In[351]:= ToOrePolynomial[Der[x]x, OreAlgebra[x,Der[x]]]

Out[351]= xDx

In[352]:= ToOrePolynomial[Der[x]x, OreAlgebra[Der[x], x]]
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Out[352]= Dxx

In[353]:= ChangeOreAlgebra[%,OreAlgebra[%%]]

Out[353]= xDx + 1

In[354]:= ToOrePolynomial[S[n] ∗∗ (1/n̂ 3)]

Out[354]=
1

(n+ 1)3
Sn

In[355]:= ToOrePolynomial[S[n] ∗∗ (1/n̂ 3),OreAlgebra[n, S[n]]]
ToOrePolynomial::nopoly : The input is not a polynomial w.r.t. generators of the algebra.

Out[355]= $Failed

In[356]:= ToOrePolynomial[Der[x]̂ 2 ∗∗ (f [x] + x̂ 3)]

Out[356]= (f [x] + x3)D2
x + (2f ′[x] + 6x2)Dx + (f ′′[x] + 6x)

In[357]:= ToOrePolynomial[S[n]̂ n]
OrePower::exp : Unvalid exponent n.

ToOrePolynomial::badalg : The input cannot be represented in the corresponding algebra.

Out[357]= $Failed

O See Also

OreAlgebra, OreOperatorQ, OreOperators, OrePolynomial
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UnderTheStaircase

UnderTheStaircase
[
gb
]

computes the list of monomials (power products) that lie under the stairs
of the Gröbner basis gb.

UnderTheStaircase
[
exps

]
computes the list of exponent vectors that lie under the stairs defined by
the exponent vectors exps.

O More Information

The input gb is a list of OrePolynomial expressions. The command Under-
TheStaircase just looks at their leading power products and assumes that they
in fact form a Gröbner basis (this property is not checked). Alternatively, the
exponent vectors of the leading power products can be given.

If the left ideal that is generated by gb is zero-dimensional, then the power
products that lie under its stairs are returned as a list of OrePolynomial
expressions. If the ideal is not zero-dimensional, the symbol Infinity is returned.
If exponent vectors are given, then also a list of exponent vectors (or Infinity)
is returned.

If the input consists of OrePolynomial expressions, the output is sorted ac-
cording to the monomial order in which gb is given. If the input consists of
exponent vectors, the output is not sorted.

O Examples

In[358]:= gb = Annihilator[StruveH[n, x]]

Out[358]= {x2D2
x + (−2nx− x)Sn − 2nxDx + (n2 + n+ x2),

xSnDx + (n+ 1)Sn − x,
(2nx+ 3x)S2

n + (−4n2 − 10n− x2 − 6)Sn − x2Dx + (3nx+ 3x)}
In[359]:= UnderTheStaircase[gb]

Out[359]= {1, Dx, Sn}
In[360]:= UnderTheStaircase[Take[gb, 2]]

Out[360]=∞
In[361]:= UnderTheStaircase[ToOrePolynomial[{1},OreAlgebra[Der[x], S[y]]]]

Out[361]= {}
In[362]:= UnderTheStaircase[ToOrePolynomial[{S[a], S[b],S[c]}̂ 2]]

Out[362]= {1, Sc, Sb, Sa, SbSc, SaSc, SaSb, SaSbSc}
In[363]:= UnderTheStaircase[{{2, 0, 0}, {0, 2, 0}, {0, 0, 2}}]

Out[363]= {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}

O See Also

Annihilator, AnnihilatorDimension, OreGroebnerBasis,
LeadingExponent, LeadingPowerProduct, LeadingTerm, Support
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