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Abstract

We prove a proposition that connects constant-PAF sequences and the corre-
sponding Legendre pairs with integer PSD values. We show how to determine
explicitly the complete spectrum of the (`/3)-rd value of the discrete Fourier trans-
form for Legendre pairs of lengths ` ≡ 0 (mod 3). This is accomplished by two new
algorithms based on number-theoretic arguments. As an application, we prove that
Legendre pairs of the open lengths 117, 129, 133, and 147 exist by finding Legendre
pairs of these lengths with a multiplier group of order at least 3. As a consequence,
85, 87, 115, 145, 159, 161, 169, 175, 177, 185, 187, 195 are the twelve integers in the
range < 200 for which the question of existence of Legendre pairs remains unsolved.
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1 Introduction

Let A denote a finite sequence A = [a1, . . . , a`] of length `.
The periodic autocorrelation function (PAF) of A at lag s is defined as

PAF(A, s) =
∑̀
i=1

ai ai+s, ∀ s = 0, . . . , `− 1, (1)

where i+ s is taken modulo `, when i+ s > `.
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The discrete Fourier transform (DFT) of A at lag s is defined as

DFT(A, s) =
∑̀
i=1

ai ω
s·(i−1), ∀ s = 1, . . . , `, (2)

where ω = cos (2π/`)+ i sin (2π/`) is the primitive `-th root of unity, that satisfies ω` = 1.
The power spectral density (PSD) of A at lag s is defined as

PSD(A, s) =
∣∣DFT(A, s)

∣∣2 = <(DFT(A, s))2 + =(DFT(A, s))2, ∀ s = 1, . . . , ` (3)

i.e., the PSD values are defined as the sum of squares of the real and imaginary parts of
the DFT values.

Let ` be an odd positive integer. Two sequences A = [a1, . . . , a`] and B = [b1, . . . , b`] of
length ` and consisting of elements from {−1,+1}, such that a1 + . . .+a` = b1 + . . .+b` =
±1 form a Legendre pair of length ` if

PAF(A, s) + PAF(B, s) = −2, ∀ s = 1, . . . ,
`− 1

2
. (4)

In the context of Legendre pairs, we typically work with the sole assumption that a1 +
. . .+ a` = 1 and b1 + . . .+ b` = 1, without loss of generality. It is well-known, see [3], that
if (A,B) form a Legendre pair of length `, then we have

PSD(A, s) + PSD(B, s) = 2`+ 2, ∀ s = 1, . . . ,
`− 1

2
. (5)

The paper [3] is fundamental in the study of Legendre pairs, as it initiated the use of
the PSD criterion, in the search for Legendre pairs. More specifically, the PSD criterion
asserts that if, in the course of a search algorithm, an index i in the range 1, . . . , (`− 1)/2
is detected, such that PSD(A, i) > 2`+ 2, then the corresponding (candidate) sequence A
can be discarded from the search, because it is unsuitable to form a Legendre pair. This
is due to the fact that the PSD values are always non-negative, as sums of norm squares.
Given a Legendre pair of length `, one can construct a Hadamard matrix of order 2`+ 2,
using a two circulant core template array found in [3].

Throughout this paper, we use the notation Z?
` to denote the multiplicative group

{j ∈ Z` | gcd(j, `) = 1}. Let I ⊆ Z`, then an element t ∈ Z?
` is called a multiplier of I if

there exists g ∈ Z` such that
t · I = I + g,

where I + g := {i + g | i ∈ I} and analogously for t · I. We say that t is a multiplier
for a sequence A = [a1, . . . , a`] ∈ {−1,+1}` if it is a multiplier of I := {i ∈ Z` | ai = 1}.
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See [9] for more details. In this paper, we restrict our searches for Legendre pairs to
sequences whose group of multipliers contains a prespecified subgroup of Z?

` , also known
as the union-of-orbits approach. In most instances considered here, we specify a subgroup
of size 3, so that the search space is neither too restrictive causing no Legendre pairs to
be found, nor too large causing the algorithm to get stuck in parts of the search space
that contain no Legendre pairs given the current computational resources.

The rest of the paper is organized as follows. In Section 2, we present some theoretical
results on the possible PSD values of sequences in Legendre pairs, under the assumption
that their length ` is divisible by 3. These results are then exploited in Section 4, where
we use them as additional filter criteria in order to speed up our exhaustive searches for
Legendre pairs. With the help of considerable computational resources, we succeeded to
find Legendre pairs of lengths ` = 117, ` = 129, and ` = 147. It was unknown until now
whether Legendre pairs of these lengths existed or not (see Sections 4.1 – 4.3). As an
encore, in Section 4.4 we hint at the possibility of extending our ideas to lengths ` that
are not necessarily divisible by 3 but by some other small prime, and for the first time
present some examples of Legendre pairs of length ` = 133.

2 Legendre pairs of length ` ≡ 0 (mod 3)

Consider (A,B) a Legendre pair of length ` such that ` ≡ 0 (mod 3) and set m = `/3.
The following lemma is proved in [4]

Lemma 1. Let ` be an odd integer such that ` ≡ 0 (mod 3) and let m = `/3. Let
A = [a1, . . . , a`] be a {−1,+1}-sequence. Then

DFT(A,m) =

(
A1 −

1

2
A2 −

1

2
A3

)
+

(√
3

2
A2 −

√
3

2
A3

)
i,

PSD(A,m) = A2
1 + A2

2 + A2
3 − A1A2 − A1A3 − A2A3,

where

A1 =
m−1∑
i=0

a3i+1, A2 =
m−1∑
i=0

a3i+2, A3 =
m−1∑
i=0

a3i+3.

The proof of Lemma 1 is based on the exact evaluation of the roots of the cyclotomic
polynomial of degree 3.
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Let A = {a1, . . . , a`}, and

e2(A) =
∑
i<j

aiaj

denote the second elementary symmetric function on A. Let

p1(A) =
∑̀
i=1

ai and p2(A) =
∑̀
i=1

a2i

denote the first and second power sums on A. The following special case of the Jacobi-
Trudi identity

e2(A) =
p1(A)2

2
− p2(A)

2
(6)

can be found in [7].

Applying Lemma 1 to a Legendre pair (A,B) of length ` such that ` ≡ 0 (mod 3), we
obtain the following:

Corollary 1. If ` ≡ 0 (mod 3), m = `/3, and if the two {−1,+1}-sequences A =
[a1, . . . , a`] and B = [b1, . . . , b`] form a Legendre pair of length `, then

PSD(A,m) =
3

2

(
A2

1 + A2
2 + A2

3

)
− 1

2

PSD(B,m) =
3

2

(
B2

1 +B2
2 +B2

3

)
− 1

2

(7)

A2
1 + A2

2 + A2
3 +B2

1 +B2
2 +B2

3 = 4m+ 2 (8)

where

A1 =
m−1∑
i=0

a3i+1, A2 =
m−1∑
i=0

a3i+2, A3 =
m−1∑
i=0

a3i+3,

B1 =
m−1∑
i=0

b3i+1, B2 =
m−1∑
i=0

b3i+2, B3 =
m−1∑
i=0

b3i+3.
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Proof. Applying Lemma 1 to the sequences A, B separately we obtain

PSD(A,m) = A2
1 + A2

2 + A2
3 − (A1A2 + A1A3 + A2A3)︸ ︷︷ ︸

e2(A1,A2,A3)

,

PSD(B,m) = B2
1 +B2

2 +B2
3 − (B1B2 +B1B3 +B2B3)︸ ︷︷ ︸

e2(B1,B2,B3)

.

The second elementary symmetric functions e2(A1, A2, A3) and e2(B1, B2, B3) are re-
lated to the first elementary symmetric functions e1(A1, A2, A3) and e1(B1, B2, B3) via
the special case of the Jacobi-Trudi identity (6). We also know that e1(A1, A2, A3) =
A1 + A2 + A3 = 1 and e1(B1, B2, B3) = B1 +B2 +B3 = 1. Therefore we obtain (7), and

A2
1 + A2

2 + A2
3 +B2

1 +B2
2 +B2

3 =
2 PSD(A,m) + 1

3
+

2 PSD(B,m) + 1

3

=
2(2`+ 2) + 2

3
=

4`+ 6

3
= 4m+ 2. �

In the sequel, we denote PSD(A,m) by Âm and PSD(B,m) by B̂m.
Corollary 1 can be used to derive additional decoupled constraints (i.e., involving Ai

and Bi separately) based on (8). From (5) we know:

Âm + B̂m = 2`+ 2. (9)

Moreover, from (7) we obtain:

A2
1 + A2

2 + A2
3 =

2Âm + 1

3
and B2

1 +B2
2 +B2

3 =
2B̂m + 1

3
. (10)

Since both these sums of three odd integer squares are integers, we obtain that 2Âm +1 ≡
9 (mod 24) and 2B̂m + 1 ≡ 9 (mod 24) i.e. Âm ≡ 4 (mod 12) and B̂m ≡ 4 (mod 12).

Therefore, the set of possible pairs of values
[
Âm, B̂m

]
can be restricted considerably.

In addition, a possible pair of values
[
Âm, B̂m

]
has to be compatible with the linear

constraints
A1 + A2 + A3 = 1 and B1 +B2 +B3 = 1. (11)

For a Legendre pair (A,B) of length `, we must have that A1, A2, A3, B1, B2, B3 are all

odd. For given fixed values of Âm, B̂m, equations (10) can be solved independently
as sums-of-squares Diophantine equations and typically have anywhere from 1 to 5 all-
odd solutions (up to sign), for the right-hand-side values that arise in the context of
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Legendre pairs of lengths ` < 200. These solutions give possible triplets of values for
(A1, A2, A3) and (B1, B2, B3) that must be compatible with the linear constraints (11).
The above discussion suffices to formulate an algorithm for determining explicitly the
complete spectrum of the (`/3)-rd PSD values for any Legendre pair of length ` divisible
by three. We outline this algorithm below.

Algorithm 1: Determination of the spectrum S
Input: An odd positive integer ` = 3 ·m ;
Initialization: S = {} ;
for s = 0, . . . , b(`− 1)/6c do

(1) form the candidate
[
Âm, B̂m

]
pair [12s+ 4, 2`+ 2− (12s+ 4)] ;

(2) compute the values of A2
1 + A2

2 + A2
3 and B2

1 +B2
2 +B2

3 using (10) ;
(3) solve (up to sign) the two sum-of-squares Diophantine equations

A2
1 + A2

2 + A2
3 =

2(12s+ 4) + 1

3
,

B2
1 +B2

2 +B2
3 =

2(2`+ 2− (12s+ 4)) + 1

3
;

if there are all-odd solutions of these two Diophantine equations, compatible
with the linear constraints (11) then

insert the pair [12s+ 4, 2`+ 2− (12s+ 4)] in S, as an element of the

spectrum of
[
Âm, B̂m

]
;

else
discard the pair [12s+ 4, 2`+ 2− (12s+ 4)] as it cannot be an element of

the spectrum of
[
Âm, B̂m

]
;

end

end

Output: the spectrum S of pairs of values
[
Âm, B̂m

]
for Legendre pairs (A,B) of

length ` = 3 ·m ;

Example 1. We illustrate Algorithm 1 with the case ` = 117 = 3 · 39, i.e., m = 39.
First, we have Âm + B̂m = 2 · 117 + 2 = 236 and in addition Âm ≡ 4 (mod 12) and

B̂m ≡ 4 (mod 12). Given that every pair of values
[
Âm, B̂m

]
determines the values of

A2
1 + A2

2 + A2
3 and B2

1 + B2
2 + B2

3 via (10), we obtain Table 1. The first row of Table 1

indicates a reason why a certain
[
Âm, B̂m

]
combination can be discarded. The last three

rows of Table 1 indicate the only three
[
Âm, B̂m

]
combinations that can possibly hold. The

remaining rows of the table corresponding to all other
[
Âm, B̂m

]
combinations are omitted.
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[
Âm, B̂m

]
(4, 232) A2

1 + A2
2 + A2

3 = 3, [1, 1, 1]
B2

1 +B2
2 +B2

3 = 155, [3, 5, 11], [5, 7, 9] no compatible assignments

(28, 208) A2
1 + A2

2 + A2
3 = 19, [1, 3, 3]

B2
1 +B2

2 +B2
3 = 139, [3, 3, 11], [3, 7, 9]

compatible assignments: (A1, A2, A3) = (1,−3, 3), (B1, B2, B3) = (3, 7,−9)

(64, 172) A2
1 + A2

2 + A2
3 = 43, [3, 3, 5]

B2
1 +B2

2 +B2
3 = 115, [3, 5, 9]

compatible assignments: (A1, A2, A3) = (3, 3,−5), (B1, B2, B3) = (−3,−5, 9)

(112, 124) A2
1 + A2

2 + A2
3 = 75, [1, 5, 7], [5, 5, 5]

B2
1 +B2

2 +B2
3 = 83, [1, 1, 9], [3, 5, 7]

compatible assignments: (A1, A2, A3) = (−1,−5, 7), (B1, B2, B3) = (3, 5,−7)

Table 1: Some computations using Algorithm 1 for the spectrum of
[
Âm, B̂m

]
for m = 39.

The omitted rows do not lead to compatible assignments for A1, A2, A3 and/or B1, B2, B3.
Only 3 pairs of values are not ruled out to occur in Legendre pairs of length 117. This
allows us to add an additional layer of parallelism when searching for such Legendre pairs.

If H is a subgroup of Z?
` of size 3, then H is cyclic and all of its elements must be

1 (mod 3). Moreover, ifH is a subgroup of Z?
` with all its members equal to 1 (mod 3), then

each orbit of H consists of elements that are equal to each other (mod 3). The consequence
is that each orbit contributes to exactly one of the three quantities A1, A2, A3 that were
defined in Lemma 1. We can exploit this observation to further confine the potential
values for Âm and B̂m. The following algorithm is formulated under the assumption that
the chosen orbits indicate the positions of the +1’s, but since Âm is a sum-of-squares in
the Ai, it works also in situations where the chosen orbits mark the positions of the −1’s.
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Algorithm 2: Determination of PSD values Âm compatible with the H orbits

Input: An odd positive integer ` = 3 ·m, a subgroup H of Z?
` s.t. h ≡ 1 (mod 3)

for all h ∈ H, and non-negative integers c1, . . . , ct indicating the number of
chosen orbits of sizes s1, . . . , st, respectively ;
for i = 1, . . . , t do

for j ∈ {0, 1, 2} do
ni,j = number of orbits of size si with elements ≡ j (mod 3) ;

end

end

T =
{

(k1,1, . . . , kt,1, k1,2, . . . , kt,2)
∣∣

0 ≤ k1,1 ≤ min{c1, n1,1}, . . . , 0 ≤ kt,1 ≤ min{ct, nt,1},
0 ≤ k1,2 ≤ min{c1, n1,2}, . . . , 0 ≤ kt,2 ≤ min{ct, nt,2},
0 ≤ c1 − k1,1 − k1,2 ≤ n1,0, . . . , 0 ≤ ct − kt,1 − kt,2 ≤ nt,0

}
;

C = {} ;
for (k1,1, . . . , kt,1, k1,2, . . . , kt,2) ∈ T do

A1 = −m+ 2 ·
∑t

i=1 si · ki,1 ;

A2 = −m+ 2 ·
∑t

i=1 si · ki,2 ;

A3 = −m+ 2 ·
∑t

i=1 si · (ci − ki,1 − ki,2) ;
P = A2

1 + A2
2 + A2

3 − A1A2 − A1A3 − A2A3 ;
C = C ∪ {P} ;

end

Output: the set C of potential values for Âm that are compatible with the choice
of c1, . . . , ct orbits of H ;

Example 2. Continuing Example 1 for ` = 117, we apply Algorithm 2 in order to show
that

[
Â39, B̂39

]
= [112, 124] cannot appear when we employ the subgroup H1 = {1, 16, 22}

for conducting a search with the orbits method. The subgroup H1 induces 2 orbits of size
s1 = 1, and 38 orbits of size s2 = 3. For such a search one may choose c1 = 2 orbits
of size 1 and c2 = 19 orbits of size 3. By looking at the orbits (they are listed explicitly
below in Section 4.1.1), we find n2,0 = 12 orbits whose elements are divisible by 3, and
similarly n2,1 = n2,2 = 13. Moreover, n1,0 = 2 and n1,1 = n1,2 = 0, which eventually
implies k1,1 = k1,2 = 0. Let k2,1 (resp. k2,2) denote the number of chosen 3-orbits whose
elements are 1 (mod 3) (resp. 2 (mod 3)). Then we obtain

A1 = 6 · k2,1 − 39, A2 = 6 · k2,2 − 39, A3 = 2 · 2 + 6 · (19− k2,1 − k2,2)− 39.

Letting k2,1 and k2,2 range over all admissible values, i.e.,

0 ≤ k2,1 ≤ 13 ∧ 0 ≤ k2,2 ≤ 13 ∧ 0 ≤ 19− k2,1 − k2,2 ≤ 12,
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we get all possible values for A1, A2, A3 and determine the potential values

Â39 = PSD(A, 39) = A2
1 + A2

2 + A2
3 − A1A2 − A1A3 − A2A3.

to be
28, 64, 100, 172, 208, 244, 316, 388, 496, . . . , 4132, 4348, 4564.

This list excludes the possibility of finding a Legendre pair with
[
Â39, B̂39

]
= [112, 124].

Note that this result does not change if we set c1 = 1 and c2 = 19 (a situation where the
chosen orbits indicate the positions of the −1’s).

3 Compression and constant-PAF sequences

The term “constant-PAF sequences” is taken to mean sequences all of whose PAF values
are equal to the same constant. We refer the reader to [2] for the definition and properties
of compression of Legendre pairs. It has been observed experimentally in the current
paper, as well as in [10], that some Legendre pairs of composite length ` = n ·m have the
properties that:

• their m-compression is made up from two constant-PAF sequences of length n

• some of the PSD values of the resulting Legendre pairs of length ` are integers.

In this section, we prove a proposition that elucidates the connection between these two
aforementioned facts.

Proposition 1. Let A = [a1, . . . , a`] and B = [b1, . . . , b`] be a Legendre pair of composite
length ` = n ·m. Let A = [A1, . . . , An], B = [B1, . . . , Bn], where

Aj =
m−1∑
i=0

ani+j and Bj =
m−1∑
i=0

bni+j

for j = 1, . . . , n, i.e. (A,B) is the m-compression of (A,B).
If the m-compression of (A,B) is made up from two constant-PAF sequences of length n:

PAF(A, 1) = PAF(A, 2) = · · · = PAF(A, n− 1

2
)

PAF(B, 1) = PAF(B, 2) = · · · = PAF(B, n− 1

2
)
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(where PAF(A, 1) + PAF(B, 1) = (−2) ·m), then the PSD values at integer multiples of
m of A and B are integers, with the explicit evaluations

PSD(A,m · s) = p2(A)− PAF(A, 1), s = 1, 2, . . . ,
n− 1

2

PSD(B,m · s) = p2(B)− PAF(B, 1), s = 1, 2, . . . ,
n− 1

2

(where PSD(A,m · s) + PSD(B,m · s) = 2 · `+ 2).

Proof. We use the fact that the PSD remains invariant under m-compression, see [2]. We
also use the Wiener-Khinchin theorem, see [3], that states that the PSD of a sequence
is equal to the DFT of its periodic autocorrelation function. We also use the fact that
certain sums of roots of unity vanish identically. For every s = 1, 2, . . . , (n− 1)/2 and ω
the primitive n-th root of unity we have:

PSD(A,m · s) = PSD(A, s)

=
n−1∑
j=0

PAF(A, j)ωjs

= PAF(A, 0) + PAF(A, 1)

(
n−1∑
j=1

ωjs

)
= p2(A)− PAF(A, 1).

The assertion PSD(B,m · s) = p2(B) − PAF(B, 1) is proved in a completely analogous
manner. �

We remark that the roles of n and m in Proposition 1 are not interchangeable. Propo-
sition 1 will be illustrated in the next section.

4 Computational results

We have implemented the systematic traversal of the search space in the C language,
gaining (not surprisingly) a considerable speed-up compared to our prototype implemen-
tations in Maple and Mathematica. For each sequence A in the search space, we first
apply Lemma 1 (provided that ` ≡ 0 (mod 3)), by computing the sums A1, A2, A3 and
then PSD(A, `/3) in exact arithmetic. If a sequence passes this test (or if ` 6≡ 0 (mod 3)),
our program continues with the full PSD test, i.e., it checks whether PSD(A, k) ≤ 2`+ 2
for all 1 ≤ k ≤ (`− 1)/2 (note that we can exploit early termination here). The DFT is
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computed in floating point arithmetic using double precision. For each sequence passing
this second test, we write the two sequences

(
PSD(A, k)

)
k∈I and

(
2`+ 2−PSD(A, k)

)
k∈I

with I = {1, . . . , (`− 1)/2} \ {`/3} into an output file. Since the PSD values are floating
point numbers, we convert them to integers and, in order to save disk space, hash them
modulo 16. The results are then saved as hexadecimal strings of length |I|. A Legendre
pair corresponds to two lines in the output file whose two strings match pairwise (but in
reverse order). Due to the hashing there is the possibility to find matches which do not
correspond to Legendre pairs, but the probability that this happens is negligible and such
false candidates can easily be sorted out in a post-processing step.

All times were measured on RICAM’s computing cluster radon1, which has 1168 Xeon
E5-2630v3 (2.4Ghz) threads. For the reported computations, we employed a moderate
parallelization, typically using 16 threads for one task. Since the parallelization is done
by splitting the search space into pieces, it scales very well. The reported times are given
in CPU hours, i.e., as the sum of the times of each thread.

4.1 Legendre pairs of length 117

We executed Algorithm 1 for Legendre pairs of length ` = 117 = 3 · 39 and obtained

[
PSD(A, 39),PSD(B, 39)

]
∈
{

[28, 208], [64, 172], [112, 124]
}
,

as in Example 1. There are four subgroups of order 3 in Z?
117

H1 = {1, 16, 22}, H2 = {1, 40, 79}, H3 = {1, 55, 100}, H4 = {1, 61, 94}.

In the following subsections we investigate these subgroups separately, by considering only
sequences whose multiplier group contains the respective subgroup.

4.1.1 Legendre pairs of length 117 via H1

The subgroup H1 = {1, 16, 22} of order 3 of Z?
117 acts on Z117 and yields 38 orbits of size

3 and 2 orbits of size 1. We list the 38 + 2 orbits of the action of H1 = {1, 16, 22} on Z117
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as follows:

H1 · 1 = {1, 16, 22}, H1 · 2 = {2, 32, 44}, H1 · 3 = {3, 48, 66},
H1 · 4 = {4, 64, 88}, H1 · 5 = {5, 80, 110}, H1 · 6 = {6, 15, 96},
H1 · 7 = {7, 37, 112}, H1 · 8 = {8, 11, 59}, H1 · 9 = {9, 27, 81},
H1 · 10 = {10, 43, 103}, H1 · 12 = {12, 30, 75}, H1 · 13 = {13, 52, 91},
H1 · 14 = {14, 74, 107}, H1 · 17 = {17, 23, 38}, H1 · 18 = {18, 45, 54},
H1 · 19 = {19, 67, 70}, H1 · 20 = {20, 86, 89}, H1 · 21 = {21, 102, 111},
H1 · 24 = {24, 33, 60}, H1 · 25 = {25, 49, 82}, H1 · 26 = {26, 65, 104},
H1 · 28 = {28, 31, 97}, H1 · 29 = {29, 53, 113}, H1 · 34 = {34, 46, 76},
H1 · 35 = {35, 68, 92}, H1 · 36 = {36, 90, 108}, H1 · 40 = {40, 55, 61},
H1 · 41 = {41, 71, 83}, H1 · 42 = {42, 87, 105}, H1 · 47 = {47, 50, 98},
H1 · 51 = {51, 69, 114}, H1 · 56 = {56, 62, 77}, H1 · 57 = {57, 84, 93},
H1 · 58 = {58, 106, 109}, H1 · 63 = {63, 72, 99}, H1 · 73 = {73, 85, 115},
H1 · 79 = {79, 94, 100}, H1 · 95 = {95, 101, 116},
H1 · 39 = {39}, H1 · 78 = {78}.

Subsequently, we distinguish two cases:

• Case (I): make use of 2 orbits of size 1 and 19 orbits of size 3, to make a subset of size
2·1+19·3 = 59 = (117+1)/2. The search space is of size:

(
2
2

)
·
(
38
19

)
= 35,345,263,800.

• Case (II): make use of 1 orbit of size 1 and 19 orbits of size 3, to make a subset of size
1·1+19·3 = 58 = (117−1)/2. The search space is of size:

(
2
1

)
·
(
38
19

)
= 70,690,527,600.

In order to have sequences whose entries sum up to 1, these orbits have to encode
the positions of the −1’s.

For case (I), we conducted an exhaustive search for Legendre pairs of order 117 using
the subgroup {1, 16, 22} in 31 CPU hours. The search yielded 69,735,984 candidate se-
quences passing the PSD test, among them 192 Legendre pairs of lengths 117 were found.
These pairs occur in 48 four-cycles (bipartite complete graphs K2,2): by a four-cycle we
mean four sequences A,B,C,D forming four Legendre pairs (A,B), (B,C), (C,D), and
(D,A). However, these 192 Legendre pairs contain some redundancy due to symmetries.
Denote by σ the cyclic (forward) shift and by ρ the reverting of a sequence, and assume
that (A,B) is a Legendre pair. Then also

(
A, ρi(σj(B))

)
is a Legendre pair for any choice

of i and j, because the sequence of PAF values is invariant under shifting and reverting,
i.e., PAF(B, s) = PAF(ρi(σj(B)), s) for any s. Note that most of these pairs will not be
found during this exhaustive search, because they are not compatible with the imposed
orbit structure. The only operation that is compatible is A 7→ ρ(σ(A)), because the set
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of orbits is invariant under i 7→ `− i. Thus, we can design four Legendre pairs from the
four sequences

A, ρ(σ(A)), B, ρ(σ(B)).

Ten out of the 192 Legendre pairs are given below in the form (Ak, Bk), k = 1, . . . , 10.
Moreover, all 10 Legendre pairs of length 117 shown below, have 117/3 = 39-th PSD
values equal to [64, 172]. Among the remaining Legendre pairs of length 117, some also
have 117/3 = 39-th PSD values equal to [28, 208]. Algorithm 2 explains why there are no
pairs with [112, 124], see Example 2. Taking advantage of this property computationally,
results in significant gains in CPU time, because we first use this property as a fast filtering
mechanism (using exact arithmetic), before applying the computationally expensive full
PSD test (using floating-point arithmetic). We also used the PSD constancy property
over the orbits, see [2], in order to compute solely one PSD value per orbit.

In the following list, each Legendre pair (A,B) is given by two index sets IA and IB.
The positions k where the sequence A equals 1, i.e., ak = 1, are given by

⋃
i∈IA H1 · i, and

the sequence A equals −1 at all other positions. Analogously, the index set IB encodes
the {−1,+1}-sequence B.

1. IA1 = {1, 3, 4, 7, 8, 13, 14, 17, 19, 24, 28, 29, 36, 39, 40, 47, 51, 56, 63, 78, 95}
IB1 = {2, 5, 7, 9, 13, 14, 18, 19, 20, 24, 34, 36, 39, 40, 42, 47, 56, 58, 73, 78, 79}

2. IA2 = {1, 4, 8, 10, 12, 18, 20, 29, 34, 35, 36, 39, 40, 47, 56, 57, 58, 63, 73, 78, 95}
IB2 = {3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 26, 28, 39, 40, 41, 47, 56, 78}

3. IA3 = {1, 2, 4, 6, 7, 8, 10, 14, 18, 29, 34, 36, 39, 47, 51, 56, 63, 73, 78, 79, 95}
IB3 = {2, 3, 5, 7, 10, 12, 13, 14, 20, 24, 26, 28, 34, 36, 39, 40, 41, 47, 56, 63, 78}

4. IA4 = {2, 3, 6, 7, 9, 19, 21, 26, 29, 34, 39, 40, 41, 47, 56, 58, 63, 73, 78, 79, 95}
IB4 = {1, 2, 3, 4, 5, 14, 17, 18, 25, 26, 29, 35, 36, 39, 40, 56, 57, 58, 63, 73, 78}

5. IA5 = {2, 3, 9, 10, 17, 18, 19, 20, 25, 34, 36, 39, 41, 47, 56, 57, 58, 73, 78, 79, 95}
IB5 = {1, 2, 4, 8, 9, 13, 14, 17, 21, 26, 29, 39, 40, 42, 56, 57, 58, 63, 73, 78, 95}

6. IA6 = {1, 2, 4, 5, 6, 8, 13, 17, 18, 19, 21, 34, 36, 39, 40, 41, 47, 51, 56, 73, 78}
IB6 = {2, 4, 7, 8, 9, 10, 13, 18, 24, 25, 29, 35, 39, 40, 51, 56, 63, 73, 78, 79, 95}

7. IA7 = {2, 5, 6, 7, 8, 10, 13, 17, 18, 20, 21, 36, 39, 40, 41, 51, 58, 73, 78, 79, 95}
IB7 = {3, 4, 5, 7, 10, 14, 17, 18, 26, 28, 29, 35, 36, 39, 40, 41, 57, 63, 78, 79, 95}

8. IA8 = {3, 4, 5, 7, 8, 18, 21, 24, 25, 28, 29, 34, 39, 40, 41, 42, 47, 56, 73, 78, 95}
IB8 = {3, 9, 14, 17, 19, 21, 25, 28, 29, 34, 35, 39, 40, 47, 51, 57, 58, 73, 78, 79, 95}
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9. IA9 = {1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 18, 28, 29, 34, 35, 39, 41, 42, 56, 78, 95}
IB9 = {5, 6, 8, 9, 10, 13, 14, 19, 20, 25, 28, 34, 36, 39, 41, 51, 56, 58, 63, 73, 78}

10. IA10 = {1, 2, 5, 7, 8, 9, 19, 20, 24, 29, 35, 36, 39, 40, 51, 58, 63, 73, 78, 79, 95}
IB10 = {5, 7, 9, 10, 13, 14, 17, 20, 21, 26, 28, 35, 39, 40, 42, 56, 57, 63, 78, 79, 95}

We also list the above 10 Legendre pairs of pairs length 117 in a more succinct manner,
using the lexicographic ranks of the subsets encoding the positions of +1′s:

(10327421105, 25363140085), (15300082821, 29082145926),
(5172847060, 20669267508), (21265971921, 810444739),
(22124932714, 6023154169), (4370665803, 24003646556),
(24634133277, 27568254144), (27457918899, 31248697558),
(5218049000, 33814036464), (6896605532, 34222709639).

More specifically, these are the 19-element subsets of {1, . . . , 38}, ranked lexicographically
from 0 to

(
38
19

)
− 1 = 35,345,263,800 − 1. See [5] for ranking and unranking algorithms

for k-element subsets and other useful combinatorial structures. For example, the integer
10327421105 encodes the subset

{1, 3, 4, 7, 8, 12, 13, 14, 16, 19, 22, 23, 26, 27, 30, 31, 32, 35, 38} ⊂ {1, . . . , 38},

which corresponds to IA1 (using the order of the orbits as displayed above).
For case (II), we conducted an exhaustive search for Legendre pairs of order 117 using

the subgroup {1, 16, 22}. The search yielded 139,471,968 candidate sequences passing
the PSD test, among them 768 Legendre pairs of lengths 117 were found. These 768
Legendre pairs occur in 48 K4,4 bipartite graphs. Similar to case (I), we can explain this
phenomenon via the underlying symmetries.

Recall the notations σ and ρ for the cyclic shift and reverting of a sequence. In
case (I) we chose both 1-orbits, and therefore all sequences A in the search space satisfied
A39 = A78 = 1 and A117 = −1. In contrast, we choose in case (II) only one 1-orbit
and hence the sequences in the search space have (A39, A78, A117) equal to (−1, 1, 1) or
(1,−1, 1). A sequence of the first type (A39 = −1) can be mapped to one of the second
type (A78 = −1) by σ39, notably without leaving the search space, because the set of orbits
is invariant under i 7→ i + 39 (mod 117). Hence one finds the following four sequences
with identical PAF values in the search space of case (II):

A, σ39(A), ρ(σ(A)), ρ(σ40(A)).

Combining any of these four sequences with any of the four sequences with complementary
PAF sequence forms a Legendre pair. This explains the occurrence of K4,4 bipartite
graphs.
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Also note that for any sequence A with A39 = −1 in case (II), we find the sequence
σ−39(A) in the search space of case (I). Ignoring the symmetries, i.e., picking one represen-
tative from each class, yields 48 Legendre pairs which are non-equivalent under shifting
and reverting.

4.1.2 Legendre pairs of length 117 via H2

The subgroup H2 = {1, 40, 79} of order 3 of Z?
117 acts on Z117 and yields 38 size 1 orbits

and 26 size 3 orbits, which gives a lot of possible combinations to build subsets of size
58 (or 59). We have not been able to construct Legendre pairs of length 117 using H2,
possibly because we did not implement an exhaustive search in this case.

4.1.3 Legendre pairs of length 117 via H3

The subgroup H3 = {1, 55, 100} of order 3 of Z?
117 acts on Z117 and yields 8 size 1 orbits

and 36 size 3 orbits, which gives 3 possible combinations to build subsets of size 59:

(a) 8 · 1 + 17 · 3 = 59 with search space of size 8,597,496,600 (2.7 CPU hours); there are
2,812,308 sequences passing the PSD test.

(b) 5 · 1 + 18 · 3 = 59 with search space of size 508,207,576,800 (95 CPU hours); there
are 50,685,120 sequences passing the PSD test.

(c) 2 · 1 + 19 · 3 = 59 with search space of size 240,729,904,800 (49 CPU hours); there
are 36,699,600 sequences passing the PSD test.

In addition, there are also 3 possible combinations to build blocks of size 58:

(d) 7 · 1 + 17 · 3 = 58 with search space of size 68,779,972,800 (13.5 CPU hours); there
are 10,485,600 sequences passing the PSD test.

(e) 4 · 1 + 18 · 3 = 58 with search space of size 635,259,471,000 (119 CPU hours); there
are 63,356,400 sequences passing the PSD test.

(f) 1 · 1 + 19 · 3 = 58 with search space of size 68,779,972,800 (22 CPU hours); there
are 22,498,464 sequences passing the PSD test.

No Legendre pair of length 117 whose multiplier group contains H3 exists.
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4.1.4 Legendre pairs of length 117 via H4

The subgroup H4 = {1, 61, 94} of order 3 of Z?
117 acts on Z117 and yields a search space

of size:
(
2
2

)
·
(
38
19

)
= 35,345,263,800, because there are 38 orbits of size 3 and 2 orbits of

size 1, and we need 19 orbits of size 3 and 2 orbits of size 1 to make a subset of size
19 · 3 + 2 · 1 = 59 = (117 + 1)/2. We found 240 Legendre pairs of length 117 via an
exhaustive search. Some of them are shown below in LexRank form:

(8221110983, 12044164377), (12702071296, 15372978390), (23944768832, 15178414396),
(20338660993, 90051589), (7146518669, 23738703053), (3073133857, 30770050335),
(32540516078, 3097218289), (33749219312, 4797783684), (5422010999, 7269176966).

Among the 240 pairs, there are 144 pairs with [PSD(A, 39),PSD(B, 39)] equal to [64, 172]
and 96 pairs with [PSD(A, 39),PSD(B, 39)] equal to [28, 208].

A search with block size 58 delivered 960 Legendre pairs of length 117. Analogous to
subgroup H1, any of these pairs can be obtained from others by shifting and reverting
one or both sequences. Hence, we can extract 60 Legendre pairs using H4 which are
non-equivalent under shifting and reverting.

4.2 Legendre pairs of length 129

We executed Algorithm 1 for Legendre pairs of length ` = 129 = 3 · 43 and obtained that
the spectrum of possible pairs of values for PSD(A, 43) and PSD(B, 43) is made up of
only 5 pairs:

[
PSD(A, 43),PSD(B, 43)

]
∈
{

[4, 256], [16, 244], [52, 208], [64, 196], [112, 148]
}
.

There is one subgroup of order 3 in Z?
129

H = {1, 49, 79}

acting on Z129 and yielding a search space of size
(
2
2

)
·
(
42
21

)
= 538,257,874,440. Since there

are 42 orbits of size 3 and 2 orbits of size 1, we need 21 orbits of size 3 and 2 orbits of
size 1, to make a subset of size 21 · 3 + 2 · 1 = 65 = (129 + 1)/2. The 42 + 2 orbits of the
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action of H = {1, 49, 79} on Z129 are

H · 1 = {1, 49, 79}, H · 2 = {2, 29, 98}, H · 3 = {3, 18, 108},
H · 4 = {4, 58, 67}, H · 5 = {5, 8, 116}, H · 6 = {6, 36, 87},
H · 7 = {7, 37, 85}, H · 9 = {9, 54, 66}, H · 10 = {10, 16, 103},
H · 11 = {11, 23, 95}, H · 12 = {12, 45, 72}, H · 13 = {13, 121, 124},
H · 14 = {14, 41, 74}, H · 15 = {15, 24, 90}, H · 17 = {17, 53, 59},
H · 19 = {19, 28, 82}, H · 20 = {20, 32, 77}, H · 21 = {21, 111, 126},
H · 22 = {22, 46, 61}, H · 25 = {25, 40, 64}, H · 26 = {26, 113, 119},
H · 27 = {27, 33, 69}, H · 30 = {30, 48, 51}, H · 31 = {31, 100, 127},
H · 34 = {34, 106, 118}, H · 35 = {35, 38, 56}, H · 39 = {39, 105, 114},
H · 42 = {42, 93, 123}, H · 44 = {44, 92, 122}, H · 47 = {47, 101, 110},
H · 50 = {50, 80, 128}, H · 52 = {52, 97, 109}, H · 55 = {55, 88, 115},
H · 57 = {57, 84, 117}, H · 60 = {60, 96, 102}, H · 62 = {62, 71, 125},
H · 63 = {63, 75, 120}, H · 65 = {65, 89, 104}, H · 68 = {68, 83, 107},
H · 70 = {70, 76, 112}, H · 73 = {73, 91, 94}, H · 78 = {78, 81, 99},
H · 43 = {43}, H · 86 = {86}.

We conducted an exhaustive search for Legendre pairs of order 129 using the subgroup
H = {1, 49, 79} in 431 CPU hours. The search was done in parallel on 16 threads and
yielded output files of total size 80 gigabytes, containing more than 460 million sequences
which passed the PSD test; among them 112 Legendre pairs of length 129 were found.
Analogous to ` = 117, this list can be condensed to 28 pairs, where the remaining ones
are obtained by symmetry.

Here are two Legendre pairs of length 129, given by index sets IA, IB:

1. IA = {1, 2, 5, 13, 17, 19, 21, 22, 25, 26, 27, 34, 39, 43, 50, 55, 60, 62, 63, 68, 73, 78, 86}
IB = {1, 3, 11, 12, 13, 17, 21, 26, 31, 34, 35, 42, 43, 47, 50, 52, 57, 60, 62, 68, 70, 78, 86}

2. IA = {1, 2, 5, 13, 17, 19, 21, 22, 25, 26, 27, 34, 39, 43, 50, 55, 60, 62, 63, 68, 73, 78, 86}
IB = {1, 2, 3, 4, 5, 6, 10, 11, 12, 17, 19, 20, 21, 22, 27, 30, 34, 43, 50, 57, 70, 73, 86}

Both the above Legendre pairs of length 129 have
[
Â43, B̂43

]
= [148, 112]. In fact, all

the 112 Legendre pairs of length 129 that we found have this property. This is partly
explained by applying Algorithm 2, where

4, 76, 112, 148, 256, 292, 364, 400, . . .

are returned as potential values for Â43 and B̂43, leaving only two possible pairs, namely
[4, 256] and [112, 148].
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4.3 Legendre pairs of length 147

We executed Algorithm 1 for Legendre pairs of length ` = 147 = 3 · 49 and obtained that
the spectrum of possible pairs of values for PSD(A, 49) and PSD(B, 49) is made up of
only 6 pairs[

PSD(A, 49),PSD(B, 49)
]
∈
{

[4, 292], [28, 268], [52, 244], [100, 196], [124, 172], [148, 148]
}
.

Algorithm 2 further shows that in fact only two of the above six pairs (namely the first and
the last one) are compatible with the particular orbit structure induced by the subgroup
H of order 3 in Z?

147

H = {1, 67, 79}
acting on Z147. This information prevents us from conducting redundant computations
and helps us target the search more narrowly. The 50 orbits of the action of H =
{1, 67, 79} on Z147 are

H · 1 = {1, 67, 79}, H · 2 = {2, 11, 134}, H · 3 = {3, 54, 90},
H · 4 = {4, 22, 121}, H · 5 = {5, 41, 101}, H · 6 = {6, 33, 108},
H · 7 = {7, 28, 112}, H · 8 = {8, 44, 95}, H · 9 = {9, 15, 123},
H · 10 = {10, 55, 82}, H · 12 = {12, 66, 69}, H · 13 = {13, 136, 145},
H · 14 = {14, 56, 77}, H · 16 = {16, 43, 88}, H · 17 = {17, 20, 110},
H · 18 = {18, 30, 99}, H · 19 = {19, 31, 97}, H · 21 = {21, 42, 84},
H · 23 = {23, 53, 71}, H · 24 = {24, 132, 138}, H · 25 = {25, 58, 64},
H · 26 = {26, 125, 143}, H · 27 = {27, 45, 75}, H · 29 = {29, 32, 86},
H · 34 = {34, 40, 73}, H · 35 = {35, 119, 140}, H · 36 = {36, 51, 60},
H · 37 = {37, 127, 130}, H · 38 = {38, 47, 62}, H · 39 = {39, 114, 141},
H · 46 = {46, 106, 142}, H · 48 = {48, 117, 129}, H · 49 = {49},
H · 50 = {50, 116, 128}, H · 52 = {52, 103, 139}, H · 57 = {57, 93, 144},
H · 59 = {59, 104, 131}, H · 61 = {61, 115, 118}, H · 63 = {63, 105, 126},
H · 65 = {65, 92, 137}, H · 68 = {68, 80, 146}, H · 70 = {70, 91, 133}
H · 72 = {72, 102, 120}, H · 74 = {74, 107, 113}, H · 76 = {76, 94, 124},
H · 78 = {78, 81, 135}, H · 83 = {83, 89, 122}, H · 85 = {85, 100, 109},
H · 87 = {87, 96, 111}, H · 98 = {98}.

Here is a Legendre pair (A,B) of length ` = 147, given by two index sets IA and IB.
The positions k where the sequence A equals 1, i.e., ak = 1, are given by

⋃
i∈IA H · i, and

the sequence A equals −1 at all other positions. Analogously, the index set IB encodes
the {−1,+1}-sequence B:

IA = {1, 2, 3, 5, 7, 8, 10, 14, 16, 17, 19, 21, 27, 35, 38, 39, 49, 52, 57, 61, 70, 72, 74, 83, 87, 98},
IB = {1, 2, 6, 7, 9, 10, 12, 16, 17, 19, 23, 24, 26, 35, 39, 46, 48, 49, 50, 59, 65, 68, 70, 78, 85, 98}.
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The LexRank encoding of the Legendre pair (A,B) of length ` = 147 is

(2279447240326, 6981583007090).

This Legendre pair (A,B) of length ` = 147 has
[
Â49, B̂49

]
= [148, 148], the second pair

of values predicted by Algorithms 1 and 2.
We also give three Legendre pairs of length ` = 147 with

[
Â49, B̂49

]
= [4, 292], the

first pair of values predicted by Algorithms 1 and 2:

1. (1685512212865, 3612702197526),

2. (2926263388957, 265692014998),

3. (4357037511235, 3728601853735).

We remark that the combination of Algorithms 1 and 2 was of critical importance, in
order to traverse the first portion (15%) of the huge search space of 32 trillion elements
and find the Legendre pairs of length ` = 147.

4.4 Legendre pairs of length 133

We used the subgroup of order 3, H = {1, 11, 121}, acting on Z133. This yields a search
space of size

(
44
22

)
= 2,104,098,963,720 elements. The computation was stopped after 20%

of the search space was traversed, in 707 hours of CPU time. The output files grew to a
total size of 108 gigabytes and 5 new Legendre pairs of length 133 were discovered (we
display their lexicographic rank for a 22-subset of the 44 orbits of size 3, but this time
these indices give the positions of the −1’s):

1. (128572618842, 210086022915),

2. (17644506807, 41167368128),

3. (179364459458, 27235734754),

4. (213277890206, 251235525902),

5. (272147218211, 279717372516).

These five Legendre pairs can be used to make Hadamard matrices of order 2·133+2 =
268, via the two circulant core template array in [3]. The order 268 was the smallest open
order for Hadamard matrices until 1985 [6].

These five Legendre pairs have integer PSD values at integer multiples of the prime
factor 19 of ` = 133. More specifically, using the above numbering we have
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1.
[
Â19, B̂19

]
=
[
Â38, B̂38

]
=
[
Â57, B̂57

]
= [176, 92],

2.
[
Â19, B̂19

]
=
[
Â38, B̂38

]
=
[
Â57, B̂57

]
= [92, 176],

3.
[
Â19, B̂19

]
=
[
Â38, B̂38

]
=
[
Â57, B̂57

]
= [36, 232],

4.
[
Â19, B̂19

]
=
[
Â38, B̂38

]
=
[
Â57, B̂57

]
= [92, 176],

5.
[
Â19, B̂19

]
=
[
Â38, B̂38

]
=
[
Â57, B̂57

]
= [92, 176].

Using Proposition 1 with ` = 133,m = 19, n = 7, we are able to ascertain the cause
of this property.

• For the 3rd Legendre pair of length 133 we found, using the notations of Proposi-
tion 1 we have:

A = [1, 1, 1, 1, 1, 1,−5], PAF(A, 1) = PAF(A, 2) = PAF(A, 3) = −5,

B = [−1,−1, 5,−1, 5, 5,−11], PAF(B, 1) = PAF(B, 2) = PAF(B, 3) = −33.

Therefore, by applying Proposition 1, we obtain (note that −5− 33 = 2 · (−19))

PSD(A, 19) = PSD(A, 38) = PSD(A, 57) = p2(A)− PAF(A, 1) = 31 + 5 = 36,

PSD(B, 19) = PSD(B, 38) = PSD(B, 57) = p2(B)− PAF(B, 1) = 199 + 33 = 232.

• For the 5th Legendre pair of length 133 we found, using the notations of Proposition
1 we have:

A = [1, 1,−3, 1,−3,−3, 7], PAF(A, 1) = PAF(A, 2) = PAF(A, 3) = −13,

B = [−5,−5, 5,−5, 5, 5, 1], PAF(B, 1) = PAF(B, 2) = PAF(B, 3) = −25.

Therefore, by applying Proposition 1, we obtain (note that −13− 25 = 2 · (−19))

PSD(A, 19) = PSD(A, 38) = PSD(A, 57) = p2(A)− PAF(A, 1) = 79 + 13 = 92,

PSD(B, 19) = PSD(B, 38) = PSD(B, 57) = p2(B)− PAF(B, 1) = 151 + 25 = 176.
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5 Conclusion

We prove a proposition that connects constant-PAF sequences and the corresponding
Legendre pairs with integer PSD values. We update the list of open lengths for Legendre
pairs, in [1]. In particular, we furnish the first ever examples of Legendre pairs of the four
open lengths 117, 129, 133, 147. In the case of the three open lengths 117, 129, 147, we make
extensive use of two new algorithms. Our first algorithm yields the determination of the
complete spectrum of the (resp. 39-th, 43-rd, 49-th) value of the discrete Fourier transform
for Legendre pairs. In fact, our algorithm yields the complete spectrum of the (`/3)-rd
value of the discrete Fourier transform for Legendre pairs of lengths ` ≡ 0 (mod 3). Our
second algorithm exploits the particular orbit structure induced by specific subgroups
of their multiplier group, to disqualify certain elements of the spectrum determined by
the first algorithm. The combination of both algorithms for Legendre pairs of lengths
` ≡ 0 (mod 3) was a decisive factor in discovering Legendre pairs of the three open
lengths 117, 129, 147. A Legendre pair of length ` = 77 was reported in 2020 in [8], see
[10]. Therefore, the state-of-the-art list of twelve integers in the range < 200 for which
the question of existence of Legendre pairs is still unsolved is

85, 87, 115, 145, 159, 161, 169, 175, 177, 185, 187, 195.

For ` = 87, the order-7 subgroup {1, 7, 16, 25, 49, 52, 82}, and both subgroups of or-
der 4 (namely, {1, 17, 28, 41} and {1, 28, 46, 70}) did not yield any solutions by exhaus-
tive search. We also tried some of the subgroups of order 2 (there are three of them:
{1, 28}, {1, 59}, {1, 86}), which admit many possible combinations of their associated sub-
sets, some of whose search spaces being beyond our computational resources, but without
success. Therefore, even twenty years after the fundamental paper [3] for Legendre pairs
appeared, there are still interesting questions and open problems to ponder in this area.
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