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Abstract. We propose a version of the classical shape lemma for zero-dimensional ideals of a com-

mutative multivariate polynomial ring to the noncommutative setting of zero-dimensional ideals in an
algebra of differential operators.

1. Introduction

In the classical theory of Gröbner bases for commutative polynomial rings [3, 7, 1, 8, 4], the shape lemma
makes a statement about the form of the Gröbner basis with respect to a lexicographic term order of an
ideal of dimension zero. It was proposed by Gianni and Mora [9], and it is almost obvious.

Consider an ideal I ⊆ K[x, y] in a commutative polynomial ring over a perfect field K. The ideal has
dimension zero if and only if the corresponding algebraic set

V (I) = { (ξ, η) ∈ K̄2 | ∀ p ∈ I : p(ξ, η) = 0 }

is finite. Here, K̄ denotes the algebraic closure of K.

The finitely many points in V (I) have only finitely many distinct x-coordinates, and if p is a generator
of the elimination ideal I ∩K[x], then the roots of p are precisely these x-coordinates. The shape lemma
says that usually there is another polynomial q ∈ K[x] with deg(q) < deg(p) such that I is generated by
{y − q, p}. This q is then the interpolating polynomial of the points in V (I).

There may be no ideal basis of the required form if V (I) contains two distinct points with the same
x-coordinate. The ideal is said to be in normal position (w.r.t. x) if this is not the case, i.e., if any two
distinct elements of V (I) have distinct x-coordinates. If K is sufficiently large, then every ideal I of
dimension zero can be brought into normal position by applying a change of variables.

Theorem 1. (cf. Prop. 3.7.22 in [12]). Let P = K[x, y1, . . . , yn], let I ⊆ P be an ideal of dimension
zero, let t = dimK P/I, and suppose that |K| >

(
t
2

)
. Then there are constants c1, . . . , cn ∈ K such that

mapping x to x + c1y1 + c2y2 + · · · + cnyn (and each yi to itself) transforms I into an ideal in normal
position w.r.t. x.

A basis of the required form may also fail to exist if I is not a radical ideal. Recall that for a radical ideal I,
we have dimK K[x, y]/I = |V (I)|. Also recall that if p is a generator of I ∩K[x], then the equivalence
classes [1], [x], . . . , [xdeg p−1] are linearly independent over K and [1], [x], . . . , [xdeg p−1], [xdeg p] are linearly
dependent. Therefore, the following result is quite natural.

Theorem 2. (cf. Thm. 3.7.23 in [12]). Let P = K[x, y1, . . . , yn] and let I ⊆ P be a radical ideal of
dimension zero. Let p be a generator of I ∩K[x]. Then the following conditions are equivalent:

(1) I is in normal position w.r.t. x
(2) deg p = dimK P/I
(3) K[x]/〈p〉 and P/I are isomorphic as K-algebras.

Finally, the shape lemma can be stated as follows.

Theorem 3. (Shape Lemma; cf. Thm. 3.7.25 in [12]) Let P = K[x, y1, . . . , yn] and let I ⊆ P be a
radical ideal of dimension zero that is in normal position w.r.t. x. Let p be a generator of I ∩K[x]. Then
there are polynomials q1, . . . , qn−1 ∈ K[x] with deg(qi) < deg(p) for all i such that {y1−q1, . . . , yn−qn, p}
is a basis of I.
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Here and elsewhere, by a “basis” of an ideal we understand just a set of generators, not necessarily
minimal or independent in any sense.

The purpose of this note is to extend these well-known facts from commutative polynomial rings to rings
of differential operators. This is motivated by recent developments in the area of symbolic integration for
so-called D-finite functions [10]. Given such a function f(x, y), the goal is to evaluate a definite integral

F (x) =

∫
Ω

f(x, y) dy.

More precisely, given an ideal of annihilating operators for f(x, y), we want to compute an ideal of
annihilating operators for the integral F (x). A general approach to this problem is known as creative
telescoping [14, 15, 11, 6] and has been subject of intensive research during the past decades. There are
several algorithms for creative telescoping, some of which assume that the ideal of operators for f(x, y)
has a basis of the form {Dy −M,L}, where M and L are operators in Dx only. Thanks to the shape
lemma, this is a fair assumption.

The technique of creative telescoping also applies to summation problems. In this case, we have to deal
with recurrence operators rather than differential operators. It would be interesting to have a version of
the shape lemma also in this case. However, our results for the differential case do not seem to extend
easily to the recurrence case.

2. Differential operators

The role of the field K in the commutative setting sketched in the introduction is now taken over by the
field C(x, y1, . . . , yn) of rational functions in x and y1, . . . , yn, with coefficients in some constant field C
that we assume to have characteristic zero. Hence from now on, we let K = C(x, y1, . . . , yn). We will
also abbreviate y1, . . . , yn by y.

We use the symbols Dx and Dy1
, . . . , Dyn

to denote the partial derivation operators, i.e., Dx(f) = ∂f
∂x

and Dyi
(f) = ∂f

∂yi
(i = 1, . . . , n). Note that Dx(c) = Dyi

(c) = 0 for all c ∈ C and all i.

The action of Dx and Dy1
, . . . , Dyn

turns K into a partial differential field. In general, if L is a field,
a map D : L → L is called a derivation if D(a + b) = D(a) + D(b) and D(ab) = D(a)b + aD(b) for all
a, b ∈ L. We call L a partial differential extension field of K if it is equipped with n+ 1 derivations that
agree with the action of Dx and Dy1

, . . . , Dyn
on the subfield K.

Let K[Dx,Dy] := K[Dx, Dy1
, . . . , Dyn

] denote the ring of linear differential operators with rational
function coefficients, i.e.,

K[Dx,Dy] =

{ d∑
i,j1,...,jn=0

ai,j1,...,jn(x,y)Di
xD

j1
y1
· · ·Djn

yn

∣∣∣∣ d ∈ N, ai,j1,...,jn ∈ K
}
.

Because of the product rule, we have the commutation rules Dx · x = x ·Dx + 1 and Dyi · y = y ·Dyi + 1
for every i, so the ring K[Dx,Dy] is non-commutative. A linear partial differential equation can then be
written as L(f) = 0 with L ∈ K[Dx,Dy].

Let C[[x]] and C[[x,y]] denote, as usual, the rings of univariate and multivariate formal power series with
coefficients in C, and let C((x)) and C((x,y)) denote their respective quotient fields.

Let L =
∑r

i=0 ai(x)Di
x ∈ C(x)[Dx] be a linear ordinary differential operator. An element x0 ∈ C is called

a regular point (or ordinary point) of L if ar(x0) 6= 0 and ai(x0) is defined for all 0 ≤ i ≤ r, i.e., if no
coefficient ai has a pole at x0. Via the change of variables x← x− x0 the point x0 can be moved to the
origin. Hence, without loss of generality, assume that 0 is a regular point of L. Then the set of power
series solutions

V (L) = {f ∈ C[[x]] | L(f) = 0}
forms a C-vector space of dimension r.

For a power series f(x,y) ∈ C[[x,y]], we define the (K[Dx,Dy]-) annihilator of f as the set of all
operators that annihilate f , that is {L ∈ K[Dx,Dy] | L(f) = 0}. It is easily verified that this set forms
a (left) ideal in K[Dx,Dy]. The series f is called D-finite if dimK(K[Dx,Dy]/I) <∞, where I denotes
the annihilator of f . Equivalently, f is called D-finite if I is an ideal of dimension zero.

Also in the multivariate setting we can make a similar statement about the dimension of the solution
space, which directly follows from Thm. 3.7 in [5].
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Theorem 4. Let I be a zero-dimensional left ideal of K[Dx,Dy] and r = dimK(K[Dx,Dy]/I) ∈ N. If
0 is an ordinary point of I, then the set

V (I) = {f ∈ C[[x,y]] | ∀L ∈ I : L(f) = 0}
is a C-vector space of dimension r.

The definition of ordinary points proposed in [5] is a bit more complicated than the definition in the
univariate case. We won’t need it here, so we do not reproduce it. It suffices to know that almost every
point is ordinary, so if 0 is not a ordinary point, we always have the option to get into the situation of
Thm. 4 by making a change of variables.

For f1, . . . , fr ∈ C((x,y)), their Wronskian (with respect to the variable x) is denoted and defined as
follows:

Wrx(f1, . . . , fr) = det


f1 f2 · · · fr

Dx(f1) Dx(f2) · · · Dx(fr)
...

...
. . .

...
Dr−1

x (f1) Dr−1
x (f2) · · · Dr−1

x (fr)

 .

The Wronskian Wrx(f1, . . . , fr) is equal to zero if and only if the fi satisfy a linear relation with coefficients
that do not depend on x, e.g., if

∑r
i=1 aifi = 0 with ai ∈ C((y)) not all zero [2].

For later use, we state the following lemma.

Lemma 5. If L is a partial differential field extension of K and I is an ideal in L[Dx,Dy] which has a
basis in K[Dx,Dy], then also the elimination ideal I ∩ L[Dx] has a basis in K[Dx].

Proof. Let P1, . . . , Pm ∈ K[Dx,Dy] be a basis of I, and let M be an element in the elimination ideal
I ∩K[Dx]. Then there exist Q1, . . . , Qm ∈ L[Dx,Dy] such that M = Q1P1 + · · ·+QmPm.

Clearly, L can be viewed as a K-vector space, of potentially infinite dimension. In any case, there exists
a finite-dimensional K-subspace V of L that contains all the coefficients of the Qi (note that each Qi has
only finitely many coefficients in L). Now let B1, . . . , Bd be a K-basis of V , which means that there are
Qi,j ∈ K[Dx,Dy] such that Qi = Qi,1B1 + · · ·+Qi,dBd for all i. Hence we can write

(1) M =

m∑
i=1

( d∑
j=1

Qi,jBj

)
Pi =

d∑
j=1

( m∑
i=1

Qi,jPi

)
Bj .

Since the Bj are linearly independent over K, it follows that for each j, the quantity
∑m

i=1Qi,jPi is free
of Dy1

, . . . , Dyn
, because M is free of Dy1

, . . . , Dyn
and because there cannot be a cancellation on the

right-hand side of (1). Therefore, the coefficients
∑m

i=1Qi,jPi are in K[Dx], which proves the claim. �

For readers familiar with the theory of Gröbner bases, we offer the following alternative proof: from a
given basis of I with elements in K[Dx,Dy], we obtain a basis of I ∩ L[Dx] by computing a Gröbner
basis with respect to an elimination order. Since Buchberger’s algorithm never extends the ground field,
the resulting basis must be a subset of K[Dx].

3. The Shape Lemma

For an ideal I ⊆ K[Dx,Dy] of dimension zero, consider the quotient K[Dx,Dy]/I as a K[Dx]-module.
Since its dimension as K-vector space is finite, this module must be cyclic [13, Prop. 2.9]. If M ∈
K[Dx,Dy] is such that the equivalence class [M ] is a generator of the module, then there is an L ∈ K[Dx]
such that L · [M ] = [LM ] = [1]. Therefore, evaluating an integral

F (x) =

∫
Ω

f(x,y) dy

for a function f(x,y) whose ideal of annihilating operators is I is the same as evaluating the integral

F (x) =

∫
Ω

L · g(x,y) dy

where g(x,y) is defined as M(f(x,y)). The choice of M implies that the annihilating ideal J of g(x,y)
has a basis of the form {Dy1

−Q1, . . . , Dyn
−Qn, P} for some operators P,Q1, . . . , Qn in K[Dx].

Transforming I to J is known as gauge transform and can be considered as a satisfactory solution to our
problem: every ideal I ⊆ K[Dx,Dy] of dimension zero can brought to an ideal J to which the shape
lemma applies by means of a gauge transform.
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We shall propose an alternative approach here. Rather than applying a gauge transform, which amounts
to applying an operator to the integrand, our question is whether we can also obtain an ideal basis of the
required form by applying a linear change of variables, i.e., using

F (x) =

∫
Ω

f(x,y) dy =

∫
Ω̃

f(x, y1 + c1x, . . . , yn + cnx) dy

for some constants c1, . . . , cn (and an appropriately adjusted integration range). It turns out that this
perspective leads to a shape lemma for differential operators that matches more closely the situation in
the commutative case.

Note that

L(x, y1, . . . , yn, Dx, Dy1
, . . . , Dyn

) ∈ K[Dx, Dy]

is an annihilating operator of f(x,y + cx) = f(x, y1 + c1x, . . . , yn + cnx) if and only if

L(x, y1 − c1x, . . . , yn − cnx,Dx + c1Dy1
+ · · ·+ cnDyn

, Dy1
, . . . , Dyn

)

is an annihilating operator of f(x,y). In particular, the ideal of annihilating operators of f(x,y) has
dimension zero if and only this is the case for the ideal of annihilating operators of f(x,y + cx).

We shall show (Thm. 11 below) that every zero-dimensional left ideal of K[Dx,Dy] can be brought to
normal position by a change of variables y ← y + cx. For the notion of being in normal position, we
propose the following definition.

Definition 6. Let I ⊆ K[Dx,Dy] be an ideal of dimension zero, so that r = dimK K[Dx,Dy]/I is finite.
The ideal I is called in normal position (w.r.t. Dx) if for every choice of C-linearly independent solutions
f1, . . . , fr we have Wrx(f1, . . . , fr) 6= 0.

Example 7. For the ideal I = 〈(Dx−1)(Dx−2), Dy〉 we have r = 2. The solution space of I is generated
by exp(x) and exp(2x). We have Wrx(exp(x), exp(2x)) = exp(3x). Therefore, I is in normal position
w.r.t. Dx. However, as Dy(exp(x)) = Dy(exp(2x)) = 0, we also have Wry(exp(x), exp(2x)) = 0, so I is
not in normal position w.r.t. Dy.

With this notion of being in normal position, we can state the following result.

Theorem 8. (Shape Lemma; differential analog of Thms. 2 and 3) Let I ⊆ K[Dx,Dy] be an ideal of
dimension zero. Let P be a generator of I ∩K[Dx]. Then the following conditions are equivalent:

(1) I is in normal position w.r.t. Dx

(2) ord(P ) = dimK K[Dx,Dy]/I
(3) K[Dx]/〈P 〉 and K[Dx,Dy]/I are isomorphic as K[Dx]-modules.
(4) There are Q1, . . . , Qn ∈ K[Dx] with ord(Qi) < ord(P ) for all i such that {Dy1

−Q1, . . . , Dyn
−

Qn, P} is a basis of I.

Proof. Let r = dimK K[Dx,Dy]/I.

1 ⇒ 2 To show that ord(P ) = r, suppose that ord(P ) < r and let f1, . . . , fr be some C-linearly
independent solutions of I. By Thm. 4, we may assume that such solutions exist. As no more than
ord(P ) solutions of P can be linearly independent over C[[y]], it follows that f1, . . . , fr are linearly
dependent over C[[y]]. This implies Wrx(f1, . . . , fr) = 0, in contradiction to the assumption that I is in
normal position.

2 ⇒ 1 Let f1, . . . , fr be C-linearly independent solutions of I. We have to show that they are also
linearly independent over C((y)). Suppose otherwise. Then we may assume that fr is a C((y))-linear
combination of f1, . . . , fr−1. The operator

Q =

∣∣∣∣∣∣∣∣∣
f1 · · · fr−1 1

Dx(f1) · · · Dx(fr−1) Dx

...
...

...
Dr−1

x (f1) · · · Dr−1
x (fr−1) Dr−1

x

∣∣∣∣∣∣∣∣∣ ∈ C((x,y))[Dx]

has the solutions f1, . . . , fr−1 and fr. It must therefore belong to the ideal generated by I in the larger
ring C((x,y))[Dx,Dy], for if it didn’t, then dimC((x,y)) C((x,y))[Dx,Dy]/(〈I〉 + 〈Q〉) < r, which is
impossible when the solution space has C-dimension r.

By Lemma 5, P is also a generator of the elimination ideal 〈I〉 ∩ C((x,y))[Dx], where 〈I〉 denotes the
ideal generated by I in C((x,y))[Dx,Dy]. By assumption we have ord(P ) = r > ord(Q). This is a
contradiction.
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2⇒ 3 Consider the function φ : K[Dx]/〈P 〉 → K[Dx,Dy]/I defined by φ([L]〈P 〉) := [L]I . This function
is well-defined because 〈P 〉 ⊆ I. The function is obviously a morphism of K[Dx]-modules, and it is
injective, because if L ∈ K[Dx] is such that [L]I = [0]I , then L ∈ I, so L ∈ I∩K[Dx] = 〈P 〉, so [L]〈P 〉 = 0.
Being a morphism of K[Dx]-modules, φ is in particular a morphism of K-vector spaces. Therefore, since
dimK K[Dx]/〈P 〉 = r = dimK K[Dx,Dy]/I by assumption, injectivity implies bijectivity, and therefore
φ is an isomorphism.

3⇒ 2 clear.

2 ⇒ 4 By assumption, the elements [1], [Dx], . . . , [Dr−1
x ] of K[Dx,Dy]/I are K-linearly independent

and therefore form a vector space basis of K[Dx,Dy]/I. Therefore, the element [Dy] of K[Dx,Dy]/I
can be expressed as a K-linear combination of [1], [Dx], . . . , [Dr−1

x ]. This implies the existence of a Q.

4⇒ 2 By repeated addition of suitable multiples of basis elements, it can be seen that every element of
K[Dx,Dy] is equivalent modulo I to an element of the form q0 + q1Dx + · · ·+ qr−1D

r−1
x . Therefore, the

elements [1], . . . , [Dr−1
x ] generate K[Dx,Dy]/I as a K-vector space. This implies dimK K[Dx,Dy]/I ≤ r.

At the same time, the dimension cannot be smaller than r, because if [1], . . . , [Dr−1
x ] were K-linearly

dependent, then I ∩K[Dx] would contain an element of order less than ord(P ), which is impossible by
the choice of P . �

Again, readers familiar with the theory of Gröbner bases will have no difficulty finding shorter arguments
for some of the implications.

The similarity of Thm. 8 to the corresponding theorems for commutative polynomial rings is evident,
but there are some subtle differences as well. One difference is that Thms. 2 and 3 require the ideal to
be radical, while no such assumption is needed for Thm. 8.

However, it turns out that in order to also generalize Thm. 1 to differential operators, we do need to
introduce a restriction. Note that Thm. 1 becomes wrong for non-radical ideals if we interpret their
solutions as points with multiplicities. Indeed, in this sense, a non-radical ideal is never in normal
position, and no linear change of variables will suffice to turn a non-radical ideal into a radical ideal.

Ideals of differential operators cannot have multiple solutions (cf. Thm. 4). Instead, it seems appropriate
to adopt the following notion.

Definition 9. A finite dimensional C-vector space V is called linearly disjoint with K (over C) if
dimK K ⊗C V = dimC V , or equivalently, if any C-basis of V is K-linearly independent. A zero-
dimensional ideal I ⊆ K[Dx,Dy] is called D-radical if its solution space V (I) is linearly disjoint with K.

Observe the difference between Defs. 9 and 6. In both cases we require the absence of linear relations,
but with respect to different coefficient domains. For normal position, the coefficients must be free of x
but can depend in an arbitrary way on y, and for D-radical the coefficients must be rational functions in
x and y.

Example 10.

(1) Let I = 〈(Dx − 1)2, Dy〉 ⊆ K[Dx, Dy], then V (I) contains the C-linearly independent solutions
exp(x) and x exp(x). As these are not linearly independent over K, the ideal I is not D-radical.

(2) The solution space of the ideal 〈(Dx − 1)(Dx − 2), Dy〉 has the basis {exp(x), exp(2x)}. Since
exp(x) and exp(2x) are linearly independent over K = C(x), the ideal is D-radical.

Note that in both instances of Example 10 the generators of the ideal actually lie in the commutative ring
C[Dx, Dy]. We observe that the corresponding ideal in C[Dx, Dy] is radical (in the commutative sense) in
Case (2), but not radical in Case (1). This is not a coincidence. Our definition of D-radicality specializes
to the classical concept of radicality when differential operators with constant coefficients are considered,
which justifies the choice of the name. More precisely: for a zero-dimensional ideal I ⊆ C[Dx,Dy] we have
that I is D-radical if and only if it is radical (in the commutative sense). This can be understood by looking
at the closed-form solutions of such constant-coefficient differential equations: the solution space of the
operator (Dx − α1) · · · (Dx − αr) is spanned by exp(α1x), . . . , exp(αrx), which are linearly independent
over K, whenever the αi are pairwise disjoint. In contrast, the solution space of the operator (Dx − α)r

is spanned by exp(αx), x exp(αx), . . . , xr−1 exp(αx), which are clearly linearly dependent over K. This
argument applies analogously to the situation of several variables.

The correspondence between radical and D-radical also extends to Theorem 11 below, which reduces
to Theorem 1 for ideals generated by operators with constant coefficients. In particular, the change of
variable y ← y + cx keeps Dy1 , . . . , Dyn unchanged, and replaces Dx with Dx + c1Dy1 + · · · + cnDyn ,
and thus the theorem yields a change of variable with the same structure as Prop. 1.
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Theorem 11. (Differential analog of Thm. 1) Let I ⊆ K[Dx,Dy] be a zero-dimensional D-radical ideal.
Then there are constants c1, . . . , cn ∈ C such that the ideal J obtained from I by applying the linear
change of variables y ← y + cx (where c = (c1, . . . , cn)) is in normal position w.r.t. Dx.

Proof. We show that whenever f1(x,y), . . . , fr(x,y) form a C-basis of V (I) such that Wrx
(
fi(x,y +

cx)
)r
i=1

= 0 for all c ∈ Cn, then f1, . . . , fr are K-linearly dependent. Since the ideal is D-radical, this
implies that f1, . . . , fr are C-linearly dependent, which is a contradiction.

Consider c1, . . . , cn as an additional variables and recall that the assumption Wrx
(
fi(x,y + cx)

)r
i=1

= 0

implies that the fi(x,y + cx) are linearly dependent over the constant field with respect to x, i.e.,
C((y, c))-linearly dependent: thus we can assume that there exist p1, . . . , pr ∈ C((y, c)), not all 0, such
that

(2)

r∑
i=1

pi(y, c) · fi(x,y + cx) = 0.

Each fi has an expansion as a series in x:

fi(x,y + cx) =

∞∑
j=0

1

j!

∂jfi(x,y + cx)

∂xj

∣∣∣∣
x=0︸ ︷︷ ︸

=: fi,j(y, c)

· xj .

Note that the series coefficients fi,j are polynomials in c, because

∂jfi(x, y + cx)

∂xj

∣∣∣∣
x=0

=
∑

k0+···+kn=j

(
j

k0, . . . , kn

)
·
[
f

(k0,...,kn)
i (x,y + cx)

]
x=0︸ ︷︷ ︸

∈C((y))

·ck1
1 · · · ckn

n ∈ C((y))[c].

Here the notation f
(k0,...,kn)
i refers to k0-fold derivative w.r.t. the first argument, the k1-fold derivative

with respect to the second argument, etc.

It follows that Eq. (2) can be expanded as

∞∑
j=0

(
r∑

i=1

pi(y, c) · fi,j(y, c)

)
· xj = 0

and therefore, for all j ∈ N,
∑r

i=1 pi(y, c) · fi,j(y, c) = 0.

Let M be the matrix
(
fi,j(y, c)

)
j≥0,1≤i≤r with infinitely many rows and r columns. From the above,(

pi(y, c)
)r
i=1
∈ kerM,

and therefore M is rank-deficient; let R < r denote the rank of M . Hence there exists an integer m ∈ N
such that the rank of the (m × r)-submatrix M ′, that is obtained by taking the first m rows of M , is
also equal to R. It follows that ker(M ′) = ker(M), and since M ′ ∈ C((y))[c]m×r we have that ker(M ′)
is a subspace of C((y))(c)r. Therefore, the coefficients pi(y, c) can be chosen in C((y))(c). In fact, by
clearing denominators, we can even assume them to belong to C[[y]][c].

Now perform the substitution c← c− y/x in (2) to get

(3)

r∑
i=1

pi(y, c− y/x) · fi(x, cx) = 0.

Each pi(y, c− y/x) admits an expansion as a power series in y1, . . . , yn

pi(y, c− y/x) =

∞∑
j1,...,jn=0

qi,j1,...,jn(c, x)yj11 · · · yjnn .

Eq. (3) then expands as

∞∑
j1,...,jn=0

( r∑
i=1

qi,j(c, x) · fi(x, cx)
)
yj11 · · · yjnn = 0

and therefore, for all j1, . . . , jn ∈ Z,

(4)

r∑
i=1

qi,j(c, x) · fi(x, cx) = 0.
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Since the pi are not all 0, there must exist i, j1, . . . , jn with qi,j1,...,jn 6= 0, and therefore for such a choice
of j1, . . . , jn, the left-hand side of Eq. (4) is a non-trivial linear combination.

Furthermore, observe that since the pi are rational in their second argument, the coefficients qi are
rational functions. So finally, substituting c← y/x yields the desired dependency with coefficients in K:

r∑
i=1

qi(y/x, x)fi(x,y) = 0. �

Example 12. The annihilator I1 of exp(x) and y exp(x) is not D-radical. The annihilator I2 of exp(x)
and exp(x + y) is D-radical but not in normal position w.r.t. Dx. Setting y to y + cx in I1 gives the
annihilator of exp(x), (y + cx) exp(x), which is still not D-radical. However, setting y to y + cx in I2
gives the annihilator of exp(x), exp((1 + c)x+ y), which is in normal ∂x-position for every choice c 6= 0.

Recall that our motivation was the computation of an ideal of annihilating operators for an integral∫
Ω

f(x,y) dy

where f(x,y) is a D-finite function. Let I ⊆ K[Dx,Dy] be the annihilating ideal of f(x,y), and assume
that it is D-radical. According to Theorem 11, there exists c such that, after the change of variables
y ← y + cx, the ideal I is in normal position. According to the Shape Lemma 8, this implies that, after
change of variables, the ideal I is generated by P , and Dy1

−Q1, . . . , Dyn
−Qn, for certain P,Q1, . . . , Qn ∈

K[Dx]. This means that g(x,y) = f(x,y + cx) is such that P (g) = 0 and Dyi
(g) = Qi(g) for all i, and

we can use creative telescoping to compute an annihilating ideal J for∫
Ω̃

g(x,y) dy =

∫
Ω

f(x,y) dy,

where Ω̃ is the inverse image of Ω under the change of variables.

It remains open how these results extend to the recurrence case. While the restriction to the differential
case does not seem essential for the Shape Lemma itself (Theorem 8), there is a substantial difference
as far as the effect of a linear change of variables yi ← yi + cix on annihilating operators is concerned:
While Dx gets replaced by Dx + c1Dy1

+ · · ·+ cnDyn
in the differential case, the shift operator Sx would

have to be replaced by SxS
c1
y1
· · ·Scn

yn
. Even if we restrict c1, . . . , cn to nonnegative integers in order to

make this meaningful, it is not clear how Theorem 11 could be adapted to this situation.

Acknowledgement. We thank the anonymous referee for his or her valuable comments, in particular
a suggested change of notation that we initially were skeptic about but that indeed worked out more
smoothly than we had expected.
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