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Different approaches to creative telescoping:

Elimination approach:
Zeilberger's slow algorithm (1990), Takayama's algorithm (1990)
— works for general J-finite holonomic functions

Loop approach:
Zeilberger's fast algorithm, Almkvist-Zeilberger algorithm (1990)
— generalization to O-finite functions (Chyzak 1998)

Prediction approach:
Apagodu-Zeilberger algorithms (2005, 2006)
— generalization to J-finite functions (NEW!)
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4. Derivations: K-linear maps d,,0,: K(z,y) = K(x,y) s.t.

dz(ab) = 6,(a)b + 05(a)d,(b), dy(ab) = dy(a)b+ oy(a)dy(b)
Algebra: A = K(z,y)[0z, 0y], noncommutative multiplication:
Opa = 05(a)0p+05(a), Oya = oy(a)dy+dy(a), a€ K(z,y)

Additional assumptions: For all p € K|z, y]:

05(p), oy(p), 0:(p), 6y(p) € K|z, ],
deg,(02(p)) = deg,(p), deg, (02(p)) = deg,(p),
deg,(6z(p)) < deg,(p) — 1, deg,(dz(p)) < deg,(p),

and likewise for oy, dy.
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O-Finite Functions

Hypergeometric term:
f(z,y) is hg. if f(z+1Ly)/f(z,y), f(z,y+1)/f(z,y) € K(z,y).
— f(z,y) satisfies first-order recurrence equations in = and y.
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O-Finite Functions

Hypergeometric term:

f(z,y) is hg. if f(z+1Ly)/f(z,y), f(z,y+1)/f(z,y) € K(z,y).
— f(z,y) satisfies first-order recurrence equations in = and y.

Hyperexponential function:
f(x,y) is hyperexponential if f,/f and f,/f are rational.
— f(z,y) satisfies first-order differential equations in x and y.

O-finite function:

f(z,y) is O-finite if the annihilator annp (f) :={P € A | P- f =0}
is a zero-dimensional left ideal, i.e., dimg(, ) (A/anna(f)) < co.
— f(z,y) satisfies a higher-order system of linear equations.

S

Y
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The Apagodu-Zeilberger Algorithm
Setting: Work in the Ore algebra A = K(z,y)[0:, 0y] where
» O denotes the z-shift operator (o,(z) =z + 1, 6, = 0)
» 0y denotes the forward y-difference (o, (y) = y+1, §,(y) = 1)
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» 0y denotes the forward y-difference (o, (y) = y+1, §,(y) = 1)

Problem: Find
» telescoper T'=to + 10, + - - - + £,05 € K(x)[01] \ {0}
» certificate C € K(z,vy)

such that T'- h(z,y) = 0,C - h(x,y).

Idea:

1. Bound the shape (numerator degree, denominator) of the
left-hand side in dependence of r.

2. Choose C' such that the right-hand side matches these data.

3. The condition #unknowns > #equations yields an upper
bound for r, the order of the telescoper.
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Consider the simple example h(z,y) := m, a,b € N.
1. Investigate telescoper part, T =tg + 10, + - - - + t,0%:
u
T-h = h
(z,9) (ax +by)---(ax +by +ra—1) (z.9)

for some polynomial u of y-degree ra.

2. Choose certificate part such that rhs matches lhs:
co+ay+-+csy’
(ax +by)(ax+by+1)---(ax +by+ra—>b—1)

v
90 - hz,y) = (ax +by)---(ax + by +ra—1

for some polynomial v of y-degree s +b. Take s = ra — b.

)h(l‘,y)

3. Coefficient comparison w.r.t. y yields ra 4+ 1 equations in
(r+1) 4 (ra — b+ 1) unknowns (the ¢;'s and the ¢;'s).
— For r > b we get a nontrivial solution.
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Factorials:

> (ayi)y = H;;% ol(a) for a € K(x,y) and i € N

» unique decomposition: polynomial p = ¢ [, (pi; i)y
» o0, = id: squarefree decomposition

» oy(y) =y + 1: greatest factorial factorization

Left and Right Borders:

pfy =11, pi (left border)
pl, = IIi= o) (pi) (right border)

» if oy =id: p[y = p]y = squarefree part of p.
» poy(pl,) = pl, oy(p) and other similar identities

— Analogously: (a;i)s, pl,, pl,-
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Multiplication Matrices

Definition.

>

>

>

a C A= K(z,y)[0, 0y, a O-finite ideal
B = {b1,...,by}, a K(x,y)-basis of A/a

every w € A /a can be written uniquely wb =" | w;b;
for w = (wy,...,w,) € K(z,y)" and b= (b1,...,b,)7T.

for all b; € B: 0,b; = Z?:l mi,jbj with mij; € K(x,y)
with M = (mi’j)lgi’jgn S K(JJ, y>n><n rewrite to d,b = Mb
dp(wb) = (02(w)0y + 62(w))b = (05 (w)M + 65(w))b

Similarly, there exists a matrix N € K(z,y)"*" such that
dyb = Nb and 9, (wb) = (o (w)N + dy(w))b.

7/2
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The matrices M and N correspond to the
» shift quotients d,h/h and dyh/h in the hypergeometric case,
» logarithmic derivatives in the hyperexponential case.
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Conventions

The matrices M and N correspond to the
» shift quotients d,h/h and dyh/h in the hypergeometric case,

» logarithmic derivatives in the hyperexponential case.

Notation:
Set M = LU, N =1V with u,v € K[z,y] and U,V € K[z, y]" "

Admissible basis:
1 € A/ais represented by a polynomial vector e € K (x)[y]™.
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Telescoper Part
Ansatz: T =tg+ 10, + -+ + 1,0, € K(x)[0,], t;i € K(x).

Task: Predict the shape of the vector Te € K(z,y)".
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Ansatz: T =tg+ 10, + -+ + 1,0, € K(x)[0,], t;i € K(x).
Task: Predict the shape of the vector Te € K(z,y)".

Lemma. Let e € K(x)[y]" be some polynomial vector. For every
i > 0 we have d'e = w/(u;1), for some vector w € K (x)[y]™ with
deg, (w) < deg,(e) + i max{deg,(u), deg,(U)}

where deg,, refers to the maximum degree of all components.

Proof. By induction on 1.

— Thus we obtain Te = w/(u; ), for some polynomial vector w
» whose entries are K (z)[y]-linear combinations of to,..., %,
» whose degree is bounded by deg, (e) + r max{deg,(u), deg, (U)}.
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0yCe matches a prescribed numerator degree and a prescribed
denominator d € K(x)[y] (coming from the telescoper part).
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Certificate Part

Task: Characterize those certificates C' € A for which the vector
0yCe matches a prescribed numerator degree and a prescribed
denominator d € K(x)[y] (coming from the telescoper part).

Observation: Common factors of d and v behave slightly different
than other factors. This motivates the decomposition

d= (f1;p1)y " (fm;Pm)y 9 Pls- s Pm >0,
U:(fl;q1)y"'(fm;Qm)yUy(h)a Q1a'-‘7Qm>0-

(no coprimeness conditions on the f;'s with g and h is imposed.)

— W.l.o.g. assume p; > g;, otherwise move some factors to oy (h).
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Certificate Part (2)

For convenience, set ¢ := Ce € K(x,y)".

Lemma. Assume that p; > ¢; > 1fori=1,...,m and let

_ 1 Gupy o (fmim)y ) 9 .
s= o (G ) o e K@l

h

Let w € K(x)[y]" be any polynomial vector and consider ¢ = Jw.

Then 0yc = éu? for some polynomial vector w € K (z)[y]™ with
deg, (w) < deg, (w) + deg, (g[,) + max{deg, (v) —1,deg, (V)}.

Proof. By “straight-forward” calculation, but a bit technical.
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Complication
Are we already there? No!

Subtle problem:

» The denominator (u;r), coming from the telescoper part is
expressed with respect to 0.

» For the certificate part, it has to be written in terms of o,.

Solution:

1. Differential case: no problem here since 0, = o, = id.

2. Hypergeometric case: admit only proper hypergeometric terms.

3. General case: impose certain conditions on the input ideal a;
this leads to our definition of proper J-finite ideals:

» It generalizes the notion of proper hypergeometric terms.

» It refines properness by distinguishing the free variable z
from the summation/integration variable y.

12 /24



Proper O-Finite Ideals
Definition.

1. A polynomial w € K[z, y] is called y-proper (w.r.t. o, 0y) if
deg, ((u;7)2[,) = O(1) as r — oc.
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Proper O-Finite Ideals
Definition.
1. A polynomial w € K[z, y] is called y-proper (w.r.t. o, 0y) if
deg, ((u;7)2[,) = O(1) as r — oc.
2. A O-finite ideal a C A is called proper (with respect to y) if
there exists a y-admissible basis B of A/a, for which the
denominator u of the multiplication matrix M is y-proper.

Examples.
1. Let u € Kz,y| and 0, = 0y = id. Then trivially we get
(u;r)e =u" = (u;r)y and (u;r)y[, = sfp(u) for all r > 1.
2. Letoy(x) =2 +1, oy(y) =y +1, and take u = 2+ 2y. Then

r—1 (r-1)/2 r/2—1
(usr)s = H(fv +2y+i) = [[(@+2+i) [[(=+2(y+i) + 1)
=0 i=0 i=0

( +2y; | 55H]), (e + 2y + 1[5 - 1),
(u;

and hence (u;7)s[, = (z +2y)(z + 2y + 1) for all r > 2. 13/ 24



Height of O-Finite Ideals
Definition.

1. Let n € N be the smallest number such that for all » > 1
there exist f1,..., fm,9,h € Klz,y],
Dly s PmsQls---yqm €N, p; > q; > 1 fori=1,... m, with

H fu% and (u; T)a: = gH(fﬁpi)y
i=1 i=1

and deg,(g[,) <n. Then
n + max{deg,(v) — 1,deg,(V)}

is called the height of a with respect to the basis B.
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1. Let n € N be the smallest number such that for all » > 1
there exist f1,..., fm,9,h € Klz,y],
Dly s PmsQls---yqm €N, p; > q; > 1 fori=1,... m, with

H fw% and (u; T)a: = QH(fz‘Qpi)y
i=1 i=1

and deg,(g[,) <n. Then
n + max{deg, (v) — 1,deg,(V)}

is called the height of a with respect to the basis B.

2. Let a C A be a proper O-finite ideal. The height of a is
defined as the minimum height of a with respect to all
admissible bases of A /a.

14 /24
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Shift case: consider the bivariate sequence f = 1/(2? + ¢?).
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» The annihilating ideal a is generated by
<((a: + 1)2 + y2)8x — 22— 2 (:L‘2 + (y+ 1)2)8y — - y2>.
» Choose 1 € A/a as the single basis element b;.
1 a4yl

M=-U=——"_“<
g WY (z+1)2 + 92

» The denominator « is not y-proper.
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The Classic Example
Shift case: consider the bivariate sequence f = 1/(2? + ¢?).

» The annihilating ideal a is generated by
<((ac + 1)2 + y2)8x — 22— 2 (:L‘2 + (y+ 1)2)8y — - y2>.

Choose 1 € A/a as the single basis element b;.

1 2 2
M:fU:&
U (x +1)2 4+ y2

» The denominator « is not y-proper.

v

v

» Try a basis change to obtain M = 1.

» However, this basis is not admissible since 1 € A /a is not
represented by a polynomial vector.

15 / 24



Example
Again shift case: consider f(z,y) =1/(x +y)! +1/(z —y)!, which
is not hypergeometric but O-finite with holonomic rank 2.
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Example
Again shift case: consider f(z,y) =1/(x +y)! +1/(z —y)!, which
is not hypergeometric but O-finite with holonomic rank 2.

» Take standard monomial basis B = {1, 0, }, where the basis
elements by and by correspond to f(z,y) and f(x,y + 1).

1 2 —2xy+y’+ar—y—1 2y
—— ——
» M= - v , where
D 2(y+1) 2?4+ 2zy+y*+3x+3y+1
T+y+2 T+y+2
2

p=y’ -2 +y—z+1
» The denominator is not y-proper.

» On the other hand, by a basis change we can get

. - — 0 - 1 0
g O (Hyﬂ )
0 =5 0 z-y

» The basis elements by, by are now 1/(x +y)! and 1/(z — y)!.

» This example is proper O-finite.
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Main Theorem

Theorem. Assume that a C A = K(x,y)[04, 0,] is proper O-finite
w.r.t. y. Let o be the height of a, let n = dimg(,,) A/a, and let

o= dlmK(z){W S A/Cl | 8yW = 0}.

Then there exist T' € K(x)[0,] \ {0} and C' € A such that
T — 0,C € a and ord(T") < np+ ¢.
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Main Theorem

Theorem. Assume that a C A = K(x,y)[04, 0,] is proper O-finite
w.r.t. y. Let o be the height of a, let n = dimg(,,) A/a, and let

o= dlmK(z){W S A/Cl | GyW = 0}.

Then there exist T' € K(x)[0,] \ {0} and C' € A such that
T — 0,C € a and ord(T") < np+ ¢.

Note: The quantity ¢ ensures solutions with nonzero telescoper.
Apagodu and Zeilberger excluded rational functions as input.
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Differential Case

0y = 0y =id, 0

2 5

T = Fpo

y—ay
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Differential Case

: o)
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Facts:
1. Every O-finite ideal is proper O-finite.
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Differential Case
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2. Our bound reduces exactly to the known bound for the
hyperexponential case.
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Differential Case

: o) 0
Umza_yzld;éx:%y(sy:%

Facts:
1. Every O-finite ideal is proper O-finite.
2. Our bound reduces exactly to the known bound for the
hyperexponential case.
3. In the definition of the height, we have always 1 = 0.

Proposition. If a C A is O-finite, B is a basis of A/a and the
multiplication matrices are %U, %V, then the squarefree part of u
in K (z)[y] divides the squarefree part of v in K(z)[y].

18 / 24



Example: Sharp Family

Consider the bivariate function f(z,y) = p(x,y)~ /3 + p(z,y)
where p is a random polynomial of y-degree 2.
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where p is a random polynomial of y-degree 2.
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Example: Sharp Family

Consider the bivariate function f(z,y) = p(x,y) /3 + p(z,y)~1/°
where p is a random polynomial of y-degree 2.

» n=dimg,,) A/a=2

¢ = dimgye){W € A/a |9,V =0} =0

B = {p~'/3,p=1/%}

» 1€ A/ais represented by the vector (1,1) € K(z)[y]%.
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Example: Sharp Family
Consider the bivariate function f(z,y) = p(x,y) /3 + p(z,y)~1/°
where p is a random polynomial of y-degree 2.
» n=dimg,,) A/a=2
¢ = dimg{W € A/a| W =0} =0
B = {p 1/3 1/5}
» 1eA/ais represented by the vector (1,1

P =B (0 ) v p()< 0 )
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» 1eA/ais represented by the vector (1,1

=B 1) (Y

> U=V =
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Example: Sharp Family

Consider the bivariate function f(z,y) = p(x,y) /3 + p(z,y)~1/°
where p is a random polynomial of y-degree 2.

» n=dimg,,) A/a=2
¢ = dimg{W € A/a| W =0} =0
B = {p 1/3 1/5}
» 1eA/ais represented by the vector (1,1 )

_ Du(p) (-1/3 0 _ y() —1/3 0

> M= ( 0 1/5>’N p 0 -1/5
> U=V=p

max{deg,(v) — 1,deg,(V)} =1

v

v
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Example: Sharp Family
Consider the bivariate function f(z,y) = p(x,y) /3 + p(z,y)~1/°
where p is a random polynomial of y-degree 2.
» n=dimg,,) A/a=2
» ¢ =dimg,){W e A/a|d,W =0} =0
» B = {p 1/3 1/5}
» 1eA/ais represented by the vector (1,1 )
_ Du(p) (-1/3 0 _ y() —1/3 0
> M= ( 0 1/5>’N p 0 -1/5
> U=V=p

max{deg,(v) — 1,deg,(V)} =1
» Predicted bound 1-2 + 0 = 2 is exact.
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Example: Sharp Family
Consider the bivariate function f(z,y) = p(x,y) /3 + p(z,y)~1/°
where p is a random polynomial of y-degree 2.
» n=dimg,,) A/a=2
» ¢ =dimg,){W e A/a|d,W =0} =0
» B = {p 1/3 1/5}
» 1eA/ais represented by the vector (1,1 :
D.;(p) (-1
= BT ) = < i)
> U=V=p
max{deg,(v) — 1,deg,(V)} =1
» Predicted bound 12+ 0 = 2 is exact.

More generally, consider f = p° + --- 4+ p®* with random
polynomial p of y-degree d; our theorem produces the bound
n(d — 1) which is exact ford =2,...,5and n=1,...,4.

v

v
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Shift Case

o) =2+ 1,00(y) =y+1,0, =0, —id, 0y = 0y —id

Our bound does not exactly reduce to the hypergeometric case:
» It is worse: because of the additional term 7 = deg, (g][,)-
» It is better: because we take 9, to be the forward difference
rather than the shift operator (this sometimes improves the
bound by 1).

Proposition. A O-finite ideal a is proper if and only if there exists
an admissible basis B of A /a for which the multiplication matrices
%U, %V are such that u is a product of integer-linear polynomials.

Note: This implies that a function f(z,y) is proper
hypergeometric if and only if its annihilating ideal is proper O-finite
with respect to both z and y.

20 / 24
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For fixed n > 0 and g, consider the bivariate sequence
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Example: Sharp Family

For fixed n > 0 and g, consider the bivariate sequence

1+2Y+3Y 4 4 n¥

T,y) =

fz,y) T+ oy)
> dimK(x,y) (ZA/CL) =N

» height o

» p=0

» Our theorem gives the bound np.
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Example: Sharp Family

For fixed n > 0 and g, consider the bivariate sequence

1+2Y+3Y 4 4 n¥

T,y) =

fz,y) T+ oy)
> dimK(x,y) (ZA/CL) =N

» height o

» p=0

» Our theorem gives the bound np.

» The minimal telescoper is

T = (92— 1)(92 —2)--- (92— n).

21/ 24



Example (Mixed Case)

ax:id,(sx:E%,Uy(y):y+l,5y:ay—id.
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Example (Mixed Case)

Jx:id,éx:a%,ay(y):y—&—l,éy:ay—id.

The family fi(z,y) involving the Bessel function of the first kind
fe(zy) = (y+ 1) FJy(x), keN,

is O-finite w.r.t. A = K(z,y)[04, 0y).
» For any fixed k, the annihilator a of fi(x,y) is generated by
two operators: a = p (2202 + 20, + 2% —y?,...).
> N = dimK(w,y) (A/a) =2
» As a basis B for A/a choose the monomials 1 and 0.
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Example (Mixed Case)

» multiplication matrices:

0 x2
(7

V= (xy(y Tt ey + 2 —a?(y + 1) )
N\ DN =y ) aly+ DT 2%y 4 2)F

with denominators u = z2 and v = 2%(y + 2)*.
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Example (Mixed Case)

» multiplication matrices:

0 x2
(7

V= (xy(y Tt ey + 2 —a?(y + 1) )
T\ WDy -y a(y+ DM 2Py + 2)F

with denominators u = z2 and v = 2%(y + 2)*.

» height of a is (at most) max{deg, (v) — 1,deg,(V)} =k + 2.

» p=0
— Our theorem produces the bound 2(k + 2) for the order of T

— The minimal telescoper (conjecturally) has order 2k + 1.
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Conclusion and Outlook

24 /24



