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Background

Different approaches to creative telescoping:

Elimination approach:
Zeilberger’s slow algorithm (1990), Takayama’s algorithm (1990)
−→ works for general ∂-finite holonomic functions

Loop approach:
Zeilberger’s fast algorithm, Almkvist-Zeilberger algorithm (1990)
−→ generalization to ∂-finite functions (Chyzak 1998)

Prediction approach:
Apagodu-Zeilberger algorithms (2005, 2006)
−→ generalization to ∂-finite functions (NEW!)

1 / 24



Background

Different approaches to creative telescoping:

Elimination approach:
Zeilberger’s slow algorithm (1990), Takayama’s algorithm (1990)
−→ works for general ∂-finite holonomic functions

Loop approach:
Zeilberger’s fast algorithm, Almkvist-Zeilberger algorithm (1990)
−→ generalization to ∂-finite functions (Chyzak 1998)

Prediction approach:
Apagodu-Zeilberger algorithms (2005, 2006)
−→ generalization to ∂-finite functions (NEW!)

1 / 24



Background

Different approaches to creative telescoping:

Elimination approach:
Zeilberger’s slow algorithm (1990), Takayama’s algorithm (1990)
−→ works for general ∂-finite holonomic functions

Loop approach:
Zeilberger’s fast algorithm, Almkvist-Zeilberger algorithm (1990)
−→ generalization to ∂-finite functions (Chyzak 1998)

Prediction approach:
Apagodu-Zeilberger algorithms (2005, 2006)
−→ generalization to ∂-finite functions (NEW!)

1 / 24



Ore Algebras
Definition.

1. Field: K ⊇ Q

2. Rational Functions: K(x, y)
3. Automorphisms: σx, σy : K(x, y)→ K(x, y) s.t. σxσy = σyσx
4. Derivations: K-linear maps δx, δy : K(x, y)→ K(x, y) s.t.

δx(ab) = δx(a)b+ σx(a)δx(b), δy(ab) = δy(a)b+ σy(a)δy(b)

5. Algebra: A = K(x, y)[∂x, ∂y], noncommutative multiplication:

∂xa = σx(a)∂x+δx(a), ∂ya = σy(a)∂y+δy(a), a ∈ K(x, y)

Additional assumptions: For all p ∈ K[x, y]:

σx(p), σy(p), δx(p), δy(p) ∈ K[x, y],

degx(σx(p)) = degx(p), degy(σx(p)) = degy(p),

degx(δx(p)) ≤ degx(p)− 1, degy(δx(p)) ≤ degy(p),

and likewise for σy, δy.
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∂-Finite Functions
Hypergeometric term:
f(x, y) is hg. if f(x+ 1, y)/f(x, y), f(x, y + 1)/f(x, y) ∈ K(x, y).
−→ f(x, y) satisfies first-order recurrence equations in x and y.

Hyperexponential function:
f(x, y) is hyperexponential if fx/f and fy/f are rational.
−→ f(x, y) satisfies first-order differential equations in x and y.

∂-finite function:
f(x, y) is ∂-finite if the annihilator annA(f) := {P ∈ A | P · f = 0}
is a zero-dimensional left ideal, i.e., dimK(x,y)(A/ annA(f)) <∞.
−→ f(x, y) satisfies a higher-order system of linear equations.
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The Apagodu-Zeilberger Algorithm
Setting: Work in the Ore algebra A = K(x, y)[∂x, ∂y] where

I ∂x denotes the x-shift operator (σx(x) = x+ 1, δx = 0)

I ∂y denotes the forward y-difference (σy(y) = y+ 1, δy(y) = 1)

Problem: Find

I telescoper T = t0 + t1∂x + · · ·+ tr∂
r
x ∈ K(x)[∂x] \ {0}

I certificate C ∈ K(x, y)

such that T · h(x, y) = ∂yC · h(x, y).

Idea:

1. Bound the shape (numerator degree, denominator) of the
left-hand side in dependence of r.

2. Choose C such that the right-hand side matches these data.

3. The condition #unknowns > #equations yields an upper
bound for r, the order of the telescoper.
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The Apagodu-Zeilberger Algorithm (Example)

Consider the simple example h(x, y) :=
1

Γ(ax+ by)
, a, b ∈ N.

1. Investigate telescoper part, T = t0 + t1∂x + · · ·+ tr∂
r
x:

T · h(x, y) =
u

(ax+ by) · · · (ax+ by + ra− 1)
h(x, y)

for some polynomial u of y-degree ra.

2. Choose certificate part such that rhs matches lhs:

C =
c0 + c1y + · · ·+ csy

s

(ax+ by)(ax+ by + 1) · · · (ax+ by + ra− b− 1)

∂yC · h(x, y) =
v

(ax+ by) · · · (ax+ by + ra− 1)
h(x, y)

for some polynomial v of y-degree s+ b. Take s = ra− b.

3. Coefficient comparison w.r.t. y yields ra+ 1 equations in
(r + 1) + (ra− b+ 1) unknowns (the ti’s and the cj ’s).

−→ For r ≥ b we get a nontrivial solution.
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Technical Definitions
Factorials:

I (a; i)y :=
∏i−1

j=0 σ
j
y(a) for a ∈ K(x, y) and i ∈ N

I unique decomposition: polynomial p = c
∏n

i=1(pi; i)y

I σy = id: squarefree decomposition

I σy(y) = y + 1: greatest factorial factorization

Left and Right Borders:

pdy :=
∏n

i=1 pi (left border)

pey :=
∏n

i=1 σ
i−1
y (pi) (right border)

I if σy = id: pdy = pey = squarefree part of p.

I p σy(pey) = pdy σy(p) and other similar identities

−→ Analogously: (a; i)x, pdx, pex.
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Multiplication Matrices

Definition.

I a ⊆ A = K(x, y)[∂x, ∂y], a ∂-finite ideal

I B = {b1, . . . , bn}, a K(x, y)-basis of A/a

I every w ∈ A/a can be written uniquely wb =
∑n

i=1wibi
for w = (w1, . . . , wn) ∈ K(x, y)n and b = (b1, . . . , bn)T .

I for all bi ∈ B: ∂xbi =
∑n

j=1mi,jbj with mi,j ∈ K(x, y).

I with M = (mi,j)1≤i,j≤n ∈ K(x, y)n×n rewrite to ∂xb = Mb

I ∂x(wb) =
(
σx(w)∂x + δx(w)

)
b =

(
σx(w)M + δx(w)

)
b

I Similarly, there exists a matrix N ∈ K(x, y)n×n such that
∂yb = Nb and ∂y(wb) =

(
σy(w)N + δy(w)

)
b.
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Conventions

The matrices M and N correspond to the

I shift quotients ∂xh/h and ∂yh/h in the hypergeometric case,

I logarithmic derivatives in the hyperexponential case.

Notation:
Set M = 1

uU , N = 1
vV with u, v ∈ K[x, y] and U, V ∈ K[x, y]n×n.

Admissible basis:
1 ∈ A/a is represented by a polynomial vector e ∈ K(x)[y]n.
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Telescoper Part

Ansatz: T = t0 + t1∂x + · · ·+ tr∂
r
x ∈ K(x)[∂x], ti ∈ K(x).

Task: Predict the shape of the vector Te ∈ K(x, y)n.

Lemma. Let e ∈ K(x)[y]n be some polynomial vector. For every
i ≥ 0 we have ∂ixe = w/(u; i)x for some vector w ∈ K(x)[y]n with

degy(w) ≤ degy(e) + imax{degy(u), degy(U)}

where degy refers to the maximum degree of all components.

Proof. By induction on i.

−→ Thus we obtain Te = w/(u; r)x for some polynomial vector w

I whose entries are K(x)[y]-linear combinations of t0, . . . , tr,

I whose degree is bounded by degy(e) + rmax{degy(u),degy(U)}.
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Certificate Part

Task: Characterize those certificates C ∈ A for which the vector
∂yCe matches a prescribed numerator degree and a prescribed
denominator d ∈ K(x)[y] (coming from the telescoper part).

Observation: Common factors of d and v behave slightly different
than other factors. This motivates the decomposition

d = (f1; p1)y · · · (fm; pm)y g, p1, . . . , pm > 0,

v = (f1; q1)y · · · (fm; qm)y σy(h), q1, . . . , qm > 0.

(no coprimeness conditions on the fi’s with g and h is imposed.)

−→ W.l.o.g. assume pi ≥ qi, otherwise move some factors to σy(h).
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Certificate Part (2)

For convenience, set c := Ce ∈ K(x, y)n.

Lemma. Assume that pi ≥ qi ≥ 1 for i = 1, . . . ,m and let

z = σ−1
y

(
(f1; p1)y · · · (fm; pm)y
(f1; q1)y · · · (fm; qm)y

)
g

gey
∈ K(x)[y].

Let w ∈ K(x)[y]n be any polynomial vector and consider c = h
zw.

Then ∂yc = 1
d w̃ for some polynomial vector w̃ ∈ K(x)[y]n with

degy(w̃) ≤ degy(w) + degy(gdy) + max{degy(v)− 1,degy(V )}.

Proof. By “straight-forward” calculation, but a bit technical.
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Complication
Are we already there? No!

Subtle problem:

I The denominator (u; r)x coming from the telescoper part is
expressed with respect to σx.

I For the certificate part, it has to be written in terms of σy.

Solution:

1. Differential case: no problem here since σx = σy = id.

2. Hypergeometric case: admit only proper hypergeometric terms.

3. General case: impose certain conditions on the input ideal a;
this leads to our definition of proper ∂-finite ideals:

I It generalizes the notion of proper hypergeometric terms.

I It refines properness by distinguishing the free variable x
from the summation/integration variable y.
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Proper ∂-Finite Ideals
Definition.

1. A polynomial u ∈ K[x, y] is called y-proper (w.r.t. σx, σy) if
degy

(
(u; r)xdy

)
= O(1) as r →∞.

2. A ∂-finite ideal a ⊆ A is called proper (with respect to y) if
there exists a y-admissible basis B of A/a, for which the
denominator u of the multiplication matrix M is y-proper.

Examples.

1. Let u ∈ K[x, y] and σx = σy = id. Then trivially we get
(u; r)x = ur = (u; r)y and (u; r)xdy = sfp(u) for all r ≥ 1.

2. Let σx(x) = x+ 1, σy(y) = y+ 1, and take u = x+ 2y. Then

(u; r)x =

r−1∏
i=0

(x+ 2y + i) =

(r−1)/2∏
i=0

(x+ 2(y+i))

r/2−1∏
i=0

(x+ 2(y+i) + 1)

=
(
x+ 2y;

⌊
r−1
2

⌋)
y

(
x+ 2y + 1;

⌊
r
2

⌋
− 1
)
y

and hence (u; r)xdy = (x+ 2y)(x+ 2y + 1) for all r ≥ 2.
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Height of ∂-Finite Ideals
Definition.

1. Let η ∈ N be the smallest number such that for all r ≥ 1
there exist f1, . . . , fm, g, h ∈ K[x, y],
p1, . . . , pm, q1, . . . , qm ∈ N, pi ≥ qi ≥ 1 for i = 1, . . . ,m, with

v = σy(h)

m∏
i=1

(fi; qi)y and (u; r)x = g

m∏
i=1

(fi; pi)y

and degy(gdy) ≤ η. Then

η + max{degy(v)− 1, degy(V )}

is called the height of a with respect to the basis B.

2. Let a ⊆ A be a proper ∂-finite ideal. The height of a is
defined as the minimum height of a with respect to all
admissible bases of A/a.
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The Classic Example

Shift case: consider the bivariate sequence f = 1/
(
x2 + y2

)
.

I The annihilating ideal a is generated by〈
((x+ 1)2 + y2)∂x − x2 − y2, (x2 + (y + 1)2)∂y − x2 − y2

〉
.

I Choose 1 ∈ A/a as the single basis element b1.

I M =
1

u
U =

x2 + y2

(x+ 1)2 + y2

I The denominator u is not y-proper.

I Try a basis change to obtain M̃ = 1.

I However, this basis is not admissible since 1 ∈ A/a is not
represented by a polynomial vector.
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Example
Again shift case: consider f(x, y) = 1/(x+ y)! + 1/(x− y)!, which
is not hypergeometric but ∂-finite with holonomic rank 2.

I Take standard monomial basis B = {1, ∂y}, where the basis
elements b1 and b2 correspond to f(x, y) and f(x, y + 1).

I M =
1

p

x2−2xy+y2+x−y−1
y−x+1

2y
y−x−1

2(y+1)
x+y+2 −x2+2xy+y2+3x+3y+1

x+y+2

 where

p = y2 − x2 + y − x+ 1.

I The denominator is not y-proper.

I On the other hand, by a basis change we can get

M̃ =

(
1

x+y+1 0

0 1
x−y+1

)
, Ñ =

( 1
x+y+1 0

0 x− y

)
.

I The basis elements b̃1, b̃2 are now 1/(x+ y)! and 1/(x− y)!.

I This example is proper ∂-finite.
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Main Theorem

Theorem. Assume that a ⊆ A = K(x, y)[∂x, ∂y] is proper ∂-finite
w.r.t. y. Let % be the height of a, let n = dimK(x,y)A/a, and let

φ = dimK(x)

{
W ∈ A/a | ∂yW = 0

}
.

Then there exist T ∈ K(x)[∂x] \ {0} and C ∈ A such that
T − ∂yC ∈ a and ord(T ) ≤ n%+ φ.

Note: The quantity φ ensures solutions with nonzero telescoper.
Apagodu and Zeilberger excluded rational functions as input.
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Differential Case

σx = σy = id, δx = ∂
∂x , δy = ∂

∂y

Facts:

1. Every ∂-finite ideal is proper ∂-finite.

2. Our bound reduces exactly to the known bound for the
hyperexponential case.

3. In the definition of the height, we have always η = 0.

Proposition. If a ⊆ A is ∂-finite, B is a basis of A/a and the
multiplication matrices are 1

uU,
1
vV , then the squarefree part of u

in K(x)[y] divides the squarefree part of v in K(x)[y].
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Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}

I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)

I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Example: Sharp Family
Consider the bivariate function f(x, y) = p(x, y)−1/3 + p(x, y)−1/5

where p is a random polynomial of y-degree 2.

I n = dimQ(x,y)A/a = 2

I φ = dimQ(x){W ∈ A/a | ∂yW = 0} = 0

I B = {p−1/3, p−1/5}
I 1 ∈ A/a is represented by the vector (1, 1) ∈ K(x)[y]2.

I M =
Dx(p)

p

(
−1/3 0

0 −1/5

)
, N =

Dy(p)

p

(
−1/3 0

0 −1/5

)
I u = v = p

I max{degy(v)− 1, degy(V )} = 1

I Predicted bound 1 · 2 + 0 = 2 is exact.

I More generally, consider f = pe1 + · · ·+ pen with random
polynomial p of y-degree d; our theorem produces the bound
n(d− 1) which is exact for d = 2, . . . , 5 and n = 1, . . . , 4.

19 / 24



Shift Case

σx(x) = x+ 1, σy(y) = y + 1, δx = σx − id, δy = σy − id

Our bound does not exactly reduce to the hypergeometric case:

I It is worse: because of the additional term η = degy(gdy).
I It is better: because we take ∂y to be the forward difference

rather than the shift operator (this sometimes improves the
bound by 1).

Proposition. A ∂-finite ideal a is proper if and only if there exists
an admissible basis B of A/a for which the multiplication matrices
1
uU , 1

vV are such that u is a product of integer-linear polynomials.

Note: This implies that a function f(x, y) is proper
hypergeometric if and only if its annihilating ideal is proper ∂-finite
with respect to both x and y.
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1
uU , 1

vV are such that u is a product of integer-linear polynomials.

Note: This implies that a function f(x, y) is proper
hypergeometric if and only if its annihilating ideal is proper ∂-finite
with respect to both x and y.
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Example: Sharp Family

For fixed n ≥ 0 and %, consider the bivariate sequence

f(x, y) =
1 + 2y + 3y + · · ·+ ny

Γ(x+ %y)

I dimK(x,y)(A/a) = n

I height %

I φ = 0

I Our theorem gives the bound n%.

I The minimal telescoper is

T = (∂%x − 1)(∂%x − 2) · · · (∂%x − n).
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Example (Mixed Case)

σx = id, δx = ∂
∂x , σy(y) = y + 1, δy = σy − id.

The family fk(x, y) involving the Bessel function of the first kind

fk(x, y) = (y + 1)−kJy(x), k ∈ N,

is ∂-finite w.r.t. A = K(x, y)[∂x, ∂y].

I For any fixed k, the annihilator a of fk(x, y) is generated by
two operators: a = A〈x2∂2x + x∂x + x2 − y2, . . . 〉.

I n = dimK(x,y)(A/a) = 2

I As a basis B for A/a choose the monomials 1 and ∂x.
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Example (Mixed Case)

I multiplication matrices:

U =

(
0 x2

y2 − x2 −x

)
V =

(
xy(y + 1)k − x2(y + 2)k −x2(y + 1)k

(y + 1)k(x2 − y2 − y) x(y + 1)k+1 − x2(y + 2)k

)
with denominators u = x2 and v = x2(y + 2)k.

I height of a is (at most) max{degy(v)− 1,degy(V )} = k + 2.

I φ = 0

−→ Our theorem produces the bound 2(k + 2) for the order of T .

−→ The minimal telescoper (conjecturally) has order 2k + 1.
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Conclusion and Outlook
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