A Generalized Apagodu-Zeilberger Algorithm

Shaoshi Chen, Manuel Kauers, Christoph Koutschan

23 July 2014 ISSAC Kobe, Japan

Background

Different approaches to creative telescoping:

Elimination approach:

Zeilberger's slow algorithm (1990), Takayama's algorithm (1990)

 \longrightarrow works for general ∂ -finite holonomic functions

Background

Different approaches to creative telescoping:

Elimination approach:

Zeilberger's slow algorithm (1990), Takayama's algorithm (1990)

 \longrightarrow works for general ∂ -finite holonomic functions

Loop approach:

Zeilberger's fast algorithm, Almkvist-Zeilberger algorithm (1990)

 \longrightarrow generalization to ∂ -finite functions (Chyzak 1998)

Background

Different approaches to creative telescoping:

Elimination approach:

Zeilberger's slow algorithm (1990), Takayama's algorithm (1990)

 \longrightarrow works for general ∂ -finite holonomic functions

Loop approach:

Zeilberger's fast algorithm, Almkvist-Zeilberger algorithm (1990)

 \longrightarrow generalization to ∂ -finite functions (Chyzak 1998)

Prediction approach:

Apagodu-Zeilberger algorithms (2005, 2006)

 \longrightarrow generalization to ∂ -finite functions (NEW!)

Definition.

1. Field: $K \supseteq \mathbb{Q}$

Definition.

1. Field: $K \supseteq \mathbb{Q}$

2. Rational Functions: K(x,y)

- 1. Field: $K \supseteq \mathbb{Q}$
- 2. Rational Functions: K(x,y)
- 3. Automorphisms: $\sigma_x, \sigma_y \colon K(x,y) \to K(x,y)$ s.t. $\sigma_x \sigma_y = \sigma_y \sigma_x$

- 1. Field: $K \supseteq \mathbb{Q}$
- 2. Rational Functions: K(x,y)
- 3. Automorphisms: $\sigma_x, \sigma_y \colon K(x,y) \to K(x,y)$ s.t. $\sigma_x \sigma_y = \sigma_y \sigma_x$
- 4. Derivations: K-linear maps $\delta_x, \delta_y \colon K(x,y) \to K(x,y)$ s.t.

$$\delta_x(ab) = \delta_x(a)b + \sigma_x(a)\delta_x(b), \quad \delta_y(ab) = \delta_y(a)b + \sigma_y(a)\delta_y(b)$$

Definition.

- 1. Field: $K \supseteq \mathbb{Q}$
- 2. Rational Functions: K(x,y)
- 3. Automorphisms: $\sigma_x, \sigma_y \colon K(x,y) \to K(x,y)$ s.t. $\sigma_x \sigma_y = \sigma_y \sigma_x$
- 4. Derivations: K-linear maps $\delta_x, \delta_y \colon K(x,y) \to K(x,y)$ s.t.

$$\delta_x(ab) = \delta_x(a)b + \sigma_x(a)\delta_x(b), \quad \delta_y(ab) = \delta_y(a)b + \sigma_y(a)\delta_y(b)$$

5. Algebra: $\mathbb{A} = K(x,y)[\partial_x,\partial_y]$, noncommutative multiplication:

$$\partial_x a = \sigma_x(a)\partial_x + \delta_x(a), \quad \partial_y a = \sigma_y(a)\partial_y + \delta_y(a), \quad a \in K(x,y)$$

Definition.

- 1. Field: $K \supseteq \mathbb{Q}$
- 2. Rational Functions: K(x,y)
- 3. Automorphisms: $\sigma_x,\sigma_y\colon K(x,y)\to K(x,y)$ s.t. $\sigma_x\sigma_y=\sigma_y\sigma_x$
- 4. Derivations: K-linear maps $\delta_x, \delta_y \colon K(x,y) \to K(x,y)$ s.t.

$$\delta_x(ab) = \delta_x(a)b + \sigma_x(a)\delta_x(b), \quad \delta_y(ab) = \delta_y(a)b + \sigma_y(a)\delta_y(b)$$

5. Algebra: $A = K(x,y)[\partial_x, \partial_y]$, noncommutative multiplication:

$$\partial_x a = \sigma_x(a)\partial_x + \delta_x(a), \quad \partial_y a = \sigma_y(a)\partial_y + \delta_y(a), \quad a \in K(x,y)$$

Additional assumptions: For all $p \in K[x, y]$:

$$\sigma_x(p), \sigma_y(p), \delta_x(p), \delta_y(p) \in K[x, y],$$

$$\deg_x(\sigma_x(p)) = \deg_x(p), \qquad \deg_y(\sigma_x(p)) = \deg_y(p),$$

$$\deg_x(\delta_x(p)) \le \deg_x(p) - 1, \quad \deg_y(\delta_x(p)) \le \deg_y(p),$$

and likewise for σ_y, δ_y .

∂-Finite Functions

Hypergeometric term:

f(x,y) is hg. if $f(x+1,y)/f(x,y), f(x,y+1)/f(x,y) \in K(x,y)$. $\longrightarrow f(x,y)$ satisfies first-order recurrence equations in x and y.

∂-Finite Functions

Hypergeometric term:

f(x,y) is hg. if $f(x+1,y)/f(x,y), f(x,y+1)/f(x,y) \in K(x,y).$ $\longrightarrow f(x,y)$ satisfies first-order recurrence equations in x and y.

Hyperexponential function:

f(x,y) is hyperexponential if f_x/f and f_y/f are rational. $\longrightarrow f(x,y)$ satisfies first-order differential equations in x and y.

∂-Finite Functions

Hypergeometric term:

f(x,y) is hg. if $f(x+1,y)/f(x,y), f(x,y+1)/f(x,y) \in K(x,y).$ $\longrightarrow f(x,y)$ satisfies first-order recurrence equations in x and y.

Hyperexponential function:

f(x,y) is hyperexponential if f_x/f and f_y/f are rational. $\longrightarrow f(x,y)$ satisfies first-order differential equations in x and y.

∂ -finite function:

f(x,y) is ∂ -finite if the annihilator $\operatorname{ann}_{\mathbb{A}}(f) := \{P \in \mathbb{A} \mid P \cdot f = 0\}$ is a zero-dimensional left ideal, i.e., $\dim_{K(x,y)}(\mathbb{A}/\operatorname{ann}_{\mathbb{A}}(f)) < \infty$. $\longrightarrow f(x,y)$ satisfies a higher-order system of linear equations.

Setting: Work in the Ore algebra $\mathbb{A} = K(x,y)[\partial_x,\partial_y]$ where

- lacksquare denotes the x-shift operator $(\sigma_x(x)=x+1,\ \delta_x=0)$
- lacksquare denotes the forward y-difference $(\sigma_y(y)=y+1,\ \delta_y(y)=1)$

Setting: Work in the Ore algebra $A = K(x,y)[\partial_x,\partial_y]$ where

- $lacksymbol{
 ho}$ ∂_x denotes the x-shift operator $(\sigma_x(x)=x+1,\,\delta_x=0)$
- ullet ∂_y denotes the forward y-difference $\left(\sigma_y(y)=y+1,\,\delta_y(y)=1\right)$

Problem: Find

- ▶ telescoper $T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x] \setminus \{0\}$
- ightharpoonup certificate $C \in K(x,y)$

such that $T \cdot h(x,y) = \partial_y C \cdot h(x,y)$.

Setting: Work in the Ore algebra $A = K(x,y)[\partial_x,\partial_y]$ where

- lacksquare denotes the x-shift operator $(\sigma_x(x)=x+1,\,\delta_x=0)$
- ullet ∂_y denotes the forward y-difference $\left(\sigma_y(y)=y+1,\,\delta_y(y)=1\right)$

Problem: Find

- ▶ telescoper $T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x] \setminus \{0\}$
- ightharpoonup certificate $C \in K(x,y)$

such that $T \cdot h(x,y) = \partial_y C \cdot h(x,y)$.

Idea:

1. Bound the shape (numerator degree, denominator) of the left-hand side in dependence of r.

Setting: Work in the Ore algebra $A = K(x,y)[\partial_x,\partial_y]$ where

- lacksquare denotes the x-shift operator $(\sigma_x(x)=x+1,\,\delta_x=0)$
- ullet ∂_y denotes the forward y-difference $\left(\sigma_y(y)=y+1,\,\delta_y(y)=1\right)$

Problem: Find

- ▶ telescoper $T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x] \setminus \{0\}$
- certificate $C \in K(x,y)$

such that $T \cdot h(x,y) = \partial_y C \cdot h(x,y)$.

Idea:

- 1. Bound the shape (numerator degree, denominator) of the left-hand side in dependence of r.
- 2. Choose ${\cal C}$ such that the right-hand side matches these data.

Setting: Work in the Ore algebra $\mathbb{A} = K(x,y)[\partial_x,\partial_y]$ where

- lacksquare ∂_x denotes the x-shift operator $(\sigma_x(x)=x+1,\ \delta_x=0)$
- $lacksymbol{ ilde{\partial}}_y$ denotes the forward y-difference $\left(\sigma_y(y)=y+1,\ \delta_y(y)=1\right)$

Problem: Find

- ▶ telescoper $T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x] \setminus \{0\}$
- ightharpoonup certificate $C \in K(x,y)$

such that $T \cdot h(x,y) = \partial_y C \cdot h(x,y)$.

Idea:

- 1. Bound the shape (numerator degree, denominator) of the left-hand side in dependence of r.
- 2. Choose C such that the right-hand side matches these data.
- 3. The condition #unknowns > #equations yields an upper bound for r, the order of the telescoper.

Consider the simple example
$$h(x,y):=\frac{1}{\Gamma(ax+by)},\quad a,b\in\mathbb{N}.$$

Consider the simple example $h(x,y):=\frac{1}{\Gamma(ax+by)}, \quad a,b\in\mathbb{N}.$

1. Investigate telescoper part, $T = t_0 + t_1 \partial_x + \cdots + t_r \partial_x^r$:

$$T \cdot h(x,y) = \frac{u}{(ax+by)\cdots(ax+by+ra-1)}h(x,y)$$

for some polynomial u of y-degree ra .

Consider the simple example $h(x,y):=\frac{1}{\Gamma(ax+bn)}, \quad a,b\in\mathbb{N}.$

1. Investigate telescoper part, $T = t_0 + t_1 \partial_x + \cdots + t_r \partial_r^r$:

$$T \cdot h(x,y) = \frac{u}{(ax+by)\cdots(ax+by+ra-1)}h(x,y)$$

for some polynomial u of y-degree ra.

2. Choose certificate part such that rhs matches lhs:

$$C = \frac{c_0 + c_1 y + \dots + c_s y^s}{(ax + by)(ax + by + 1) \cdots (ax + by + ra - b - 1)}$$

$$\partial_y C \cdot h(x, y) = \frac{v}{(ax + by) \cdots (ax + by + ra - 1)} h(x, y)$$
 for some polynomial v of y -degree $s + b$. Take $s = ra - b$.

5 / 24

Consider the simple example $h(x,y) := \frac{1}{\Gamma(ax + by)}, \quad a,b \in \mathbb{N}.$

1. Investigate telescoper part, $T = t_0 + t_1 \partial_x + \cdots + t_r \partial_x^r$:

$$T \cdot h(x,y) = \frac{u}{(ax+by)\cdots(ax+by+ra-1)}h(x,y)$$

for some polynomial u of y-degree ra.

2. Choose certificate part such that rhs matches lhs:

$$C = \frac{c_0 + c_1 y + \dots + c_s y^s}{(ax + by)(ax + by + 1) \cdots (ax + by + ra - b - 1)}$$

$$\partial_y C \cdot h(x, y) = \frac{v}{(ax + by) \cdots (ax + by + ra - 1)} h(x, y)$$
 for some polynomial v of y -degree $s + b$. Take $s = ra - b$.

3. Coefficient comparison w.r.t. y yields ra+1 equations in (r+1)+(ra-b+1) unknowns (the t_i 's and the c_j 's).

Consider the simple example $h(x,y) := \frac{1}{\Gamma(ax + bu)}, \quad a,b \in \mathbb{N}.$

1. Investigate telescoper part, $T = t_0 + t_1 \partial_x + \cdots + t_r \partial_x^r$:

$$T \cdot h(x,y) = \frac{u}{(ax+by)\cdots(ax+by+ra-1)}h(x,y)$$

for some polynomial u of y-degree ra.

2. Choose certificate part such that rhs matches lhs:

$$C = \frac{c_0 + c_1 y + \dots + c_s y^s}{(ax + by)(ax + by + 1) \cdots (ax + by + ra - b - 1)}$$
$$\partial_y C \cdot h(x, y) = \frac{v}{(ax + by) \cdots (ax + by + ra - 1)} h(x, y)$$

for some polynomial v of y-degree s+b. Take s=ra-b.

3. Coefficient comparison w.r.t. y yields ra+1 equations in (r+1)+(ra-b+1) unknowns (the t_i 's and the c_j 's). \longrightarrow For $r\geq b$ we get a nontrivial solution.

$$\blacktriangleright \ (a;i)_y := \prod_{j=0}^{i-1} \sigma_y^j(a) \text{ for } a \in K(x,y) \text{ and } i \in \mathbb{N}$$

- $lackbox{ } (a;i)_y := \prod_{j=0}^{i-1} \sigma_y^j(a) \text{ for } a \in K(x,y) \text{ and } i \in \mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$

- lacksquare $(a;i)_y:=\prod_{j=0}^{i-1}\sigma_y^j(a)$ for $a\in K(x,y)$ and $i\in\mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $ightharpoonup \sigma_y = \mathrm{id}$: squarefree decomposition

- $lackbox{ } (a;i)_y := \prod_{j=0}^{i-1} \sigma_y^j(a) \text{ for } a \in K(x,y) \text{ and } i \in \mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $\sigma_y = id$: squarefree decomposition
- ullet $\sigma_y(y)=y+1$: greatest factorial factorization

Factorials:

- lacksquare $(a;i)_y:=\prod_{j=0}^{i-1}\sigma_y^j(a)$ for $a\in K(x,y)$ and $i\in\mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $ightharpoonup \sigma_y = \mathrm{id}$: squarefree decomposition
- $\sigma_y(y) = y + 1$: greatest factorial factorization

Left and Right Borders:

$$\begin{array}{ll} p\lceil_y := \prod_{i=1}^n p_i & \text{(left border)} \\ p\rceil_y := \prod_{i=1}^n \sigma_y^{i-1}(p_i) & \text{(right border)} \end{array}$$

Factorials:

- lacksquare $(a;i)_y:=\prod_{j=0}^{i-1}\sigma_y^j(a)$ for $a\in K(x,y)$ and $i\in\mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $ightharpoonup \sigma_y = \mathrm{id}$: squarefree decomposition
- $\sigma_y(y) = y + 1$: greatest factorial factorization

Left and Right Borders:

$$\begin{array}{ll} p\lceil_y := \prod_{i=1}^n p_i & \text{(left border)} \\ p\rceil_y := \prod_{i=1}^n \sigma_y^{i-1}(p_i) & \text{(right border)} \end{array}$$

▶ if $\sigma_y = id$: $p\lceil_y = p\rceil_y = \text{squarefree part of } p$.

Factorials:

- lacksquare $(a;i)_y:=\prod_{j=0}^{i-1}\sigma_y^j(a)$ for $a\in K(x,y)$ and $i\in\mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $ightharpoonup \sigma_y = \mathrm{id}$: squarefree decomposition
- $\sigma_y(y) = y + 1$: greatest factorial factorization

Left and Right Borders:

$$\begin{array}{ll} p\lceil_y := \prod_{i=1}^n p_i & \text{(left border)} \\ p\rceil_y := \prod_{i=1}^n \sigma_y^{i-1}(p_i) & \text{(right border)} \end{array}$$

- ▶ if $\sigma_y = id$: $p\lceil_y = p\rceil_y = \text{squarefree part of } p$.
- $\blacktriangleright \ p \, \sigma_y(\, p \, \big\rceil_y) = \, p \, \big\lceil_y \, \sigma_y(p)$ and other similar identities

Factorials:

- \bullet $(a;i)_y := \prod_{i=0}^{i-1} \sigma_y^i(a)$ for $a \in K(x,y)$ and $i \in \mathbb{N}$
- ▶ unique decomposition: polynomial $p = c \prod_{i=1}^{n} (p_i; i)_y$
- $\sigma_u = id$: squarefree decomposition
- $\sigma_y(y) = y + 1$: greatest factorial factorization

Left and Right Borders:

$$\begin{array}{ll} p\lceil_y := \prod_{i=1}^n p_i & \text{(left border)} \\ p\rceil_y := \prod_{i=1}^n \sigma_y^{i-1}(p_i) & \text{(right border)} \end{array}$$

- if $\sigma_y = id$: $p |_{y} = p |_{y} = squarefree part of <math>p$.
- $ightarrow p \, \sigma_y(p)_y) = p \lceil_y \, \sigma_y(p)$ and other similar identities

$$\longrightarrow$$
 Analogously: $(a;i)_x, \ p\lceil_x, \ p\rceil_x$.

Definition.

• $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \ldots, b_n\}$, a K(x,y)-basis of \mathbb{A}/\mathfrak{a}

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \dots, b_n\}$, a K(x,y)-basis of \mathbb{A}/\mathfrak{a}
- every $w \in \mathbb{A}/\mathfrak{a}$ can be written uniquely $wb = \sum_{i=1}^n w_i b_i$ for $w = (w_1, \dots, w_n) \in K(x, y)^n$ and $b = (b_1, \dots, b_n)^T$.

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \dots, b_n\}$, a K(x,y)-basis of \mathbb{A}/\mathfrak{a}
- every $w \in \mathbb{A}/\mathfrak{a}$ can be written uniquely $wb = \sum_{i=1}^n w_i b_i$ for $w = (w_1, \dots, w_n) \in K(x, y)^n$ and $b = (b_1, \dots, b_n)^T$.
- ▶ for all $b_i \in B$: $\partial_x b_i = \sum_{j=1}^n m_{i,j} b_j$ with $m_{i,j} \in K(x,y)$.

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \dots, b_n\}$, a K(x,y)-basis of \mathbb{A}/\mathfrak{a}
- every $w \in \mathbb{A}/\mathfrak{a}$ can be written uniquely $wb = \sum_{i=1}^n w_i b_i$ for $w = (w_1, \dots, w_n) \in K(x, y)^n$ and $b = (b_1, \dots, b_n)^T$.
- ▶ for all $b_i \in B$: $\partial_x b_i = \sum_{j=1}^n m_{i,j} b_j$ with $m_{i,j} \in K(x,y)$.
- with $M=(m_{i,j})_{1\leq i,j\leq n}\in K(x,y)^{n\times n}$ rewrite to $\partial_x b=Mb$

Multiplication Matrices

Definition.

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \dots, b_n\}$, a K(x, y)-basis of \mathbb{A}/\mathfrak{a}
- every $w \in \mathbb{A}/\mathfrak{a}$ can be written uniquely $wb = \sum_{i=1}^n w_i b_i$ for $w = (w_1, \dots, w_n) \in K(x, y)^n$ and $b = (b_1, \dots, b_n)^T$.
- ▶ for all $b_i \in B$: $\partial_x b_i = \sum_{j=1}^n m_{i,j} b_j$ with $m_{i,j} \in K(x,y)$.
- with $M=(m_{i,j})_{1\leq i,j\leq n}\in K(x,y)^{n\times n}$ rewrite to $\partial_x b=Mb$

Multiplication Matrices

Definition.

- ullet $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$, a ∂ -finite ideal
- $ightharpoonup B = \{b_1, \dots, b_n\}$, a K(x, y)-basis of \mathbb{A}/\mathfrak{a}
- every $w \in \mathbb{A}/\mathfrak{a}$ can be written uniquely $wb = \sum_{i=1}^n w_i b_i$ for $w = (w_1, \dots, w_n) \in K(x, y)^n$ and $b = (b_1, \dots, b_n)^T$.
- ▶ for all $b_i \in B$: $\partial_x b_i = \sum_{j=1}^n m_{i,j} b_j$ with $m_{i,j} \in K(x,y)$.
- with $M=(m_{i,j})_{1\leq i,j\leq n}\in K(x,y)^{n\times n}$ rewrite to $\partial_x b=Mb$
- ▶ Similarly, there exists a matrix $N \in K(x,y)^{n \times n}$ such that $\partial_y b = Nb$ and $\partial_y (wb) = (\sigma_y (w)N + \delta_y (w))b$.

Conventions

The matrices M and N correspond to the

- lacktriangle shift quotients $\partial_x h/h$ and $\partial_y h/h$ in the hypergeometric case,
- ▶ logarithmic derivatives in the hyperexponential case.

Conventions

The matrices M and N correspond to the

- ▶ shift quotients $\partial_x h/h$ and $\partial_y h/h$ in the hypergeometric case,
- ▶ logarithmic derivatives in the hyperexponential case.

Notation:

Set
$$M=\frac{1}{u}U$$
, $N=\frac{1}{v}V$ with $u,v\in K[x,y]$ and $U,V\in K[x,y]^{n\times n}.$

Conventions

The matrices M and N correspond to the

- ▶ shift quotients $\partial_x h/h$ and $\partial_y h/h$ in the hypergeometric case,
- ▶ logarithmic derivatives in the hyperexponential case.

Notation:

Set
$$M = \frac{1}{u}U$$
, $N = \frac{1}{v}V$ with $u, v \in K[x, y]$ and $U, V \in K[x, y]^{n \times n}$.

Admissible basis:

 $1 \in \mathbb{A}/\mathfrak{a}$ is represented by a polynomial vector $e \in K(x)[y]^n$.

Telescoper Part

Ansatz: $T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x], \quad t_i \in K(x).$

Task: Predict the shape of the vector $Te \in K(x,y)^n$.

Telescoper Part

Ansatz:
$$T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x], \quad t_i \in K(x).$$

Task: Predict the shape of the vector $Te \in K(x,y)^n$.

Lemma. Let $e \in K(x)[y]^n$ be some polynomial vector. For every $i \geq 0$ we have $\partial_x^i e = w/(u;i)_x$ for some vector $w \in K(x)[y]^n$ with $\deg_y(w) \leq \deg_y(e) + i \max\{\deg_y(u), \deg_y(U)\}$

where \deg_y refers to the maximum degree of all components.

Proof. By induction on i.

Telescoper Part

Ansatz:
$$T = t_0 + t_1 \partial_x + \dots + t_r \partial_x^r \in K(x)[\partial_x], \quad t_i \in K(x).$$

Task: Predict the shape of the vector $Te \in K(x,y)^n$.

Lemma. Let $e \in K(x)[y]^n$ be some polynomial vector. For every $i \ge 0$ we have $\partial_x^i e = w/(u;i)_x$ for some vector $w \in K(x)[y]^n$ with $\deg_u(w) \le \deg_u(e) + i \max\{\deg_u(u), \deg_u(U)\}$

where \deg_y refers to the maximum degree of all components. **Proof.** By induction on i.

- \longrightarrow Thus we obtain $Te = w/(u; r)_x$ for some polynomial vector w
 - whose entries are K(x)[y]-linear combinations of t_0, \ldots, t_r ,
 - ▶ whose degree is bounded by $\deg_y(e) + r \max\{\deg_y(u), \deg_y(U)\}.$

Certificate Part

Task: Characterize those certificates $C \in \mathbb{A}$ for which the vector $\partial_y Ce$ matches a prescribed numerator degree and a prescribed denominator $d \in K(x)[y]$ (coming from the telescoper part).

Certificate Part

Task: Characterize those certificates $C \in \mathbb{A}$ for which the vector $\partial_y Ce$ matches a prescribed numerator degree and a prescribed denominator $d \in K(x)[y]$ (coming from the telescoper part).

Observation: Common factors of d and v behave slightly different than other factors. This motivates the decomposition

$$d = (f_1; p_1)_y \cdots (f_m; p_m)_y g, p_1, \dots, p_m > 0,$$

$$v = (f_1; q_1)_y \cdots (f_m; q_m)_y \sigma_y(h), q_1, \dots, q_m > 0.$$

(no coprimeness conditions on the f_i 's with g and h is imposed.)

Certificate Part

Task: Characterize those certificates $C \in \mathbb{A}$ for which the vector $\partial_y Ce$ matches a prescribed numerator degree and a prescribed denominator $d \in K(x)[y]$ (coming from the telescoper part).

Observation: Common factors of d and v behave slightly different than other factors. This motivates the decomposition

$$d = (f_1; p_1)_y \cdots (f_m; p_m)_y g, p_1, \dots, p_m > 0,$$

$$v = (f_1; q_1)_y \cdots (f_m; q_m)_y \sigma_y(h), q_1, \dots, q_m > 0.$$

(no coprimeness conditions on the f_i 's with g and h is imposed.)

 \longrightarrow W.l.o.g. assume $p_i \ge q_i$, otherwise move some factors to $\sigma_y(h)$.

Certificate Part (2)

For convenience, set $c := Ce \in K(x, y)^n$.

Lemma. Assume that $p_i \geq q_i \geq 1$ for $i = 1, \dots, m$ and let

$$z = \sigma_y^{-1} \left(\frac{(f_1; p_1)_y \cdots (f_m; p_m)_y}{(f_1; q_1)_y \cdots (f_m; q_m)_y} \right) \frac{g}{g|_y} \in K(x)[y].$$

Let $w \in K(x)[y]^n$ be any polynomial vector and consider $c = \frac{h}{z}w$. Then $\partial_y c = \frac{1}{d}\tilde{w}$ for some polynomial vector $\tilde{w} \in K(x)[y]^n$ with $\deg_y(\tilde{w}) \leq \deg_y(w) + \deg_y(g\lceil_y) + \max\{\deg_y(v) - 1, \deg_y(V)\}$.

Proof. By "straight-forward" calculation, but a bit technical.

Are we already there? No!

Are we already there? No!

Subtle problem:

- ▶ The denominator $(u; r)_x$ coming from the telescoper part is expressed with respect to σ_x .
- ightharpoonup For the certificate part, it has to be written in terms of σ_y .

Are we already there? No!

Subtle problem:

- ▶ The denominator $(u; r)_x$ coming from the telescoper part is expressed with respect to σ_x .
- ▶ For the certificate part, it has to be written in terms of σ_y .

Solution:

1. Differential case: no problem here since $\sigma_x = \sigma_y = id$.

Are we already there? No!

Subtle problem:

- ▶ The denominator $(u; r)_x$ coming from the telescoper part is expressed with respect to σ_x .
- ▶ For the certificate part, it has to be written in terms of σ_y .

Solution:

- 1. Differential case: no problem here since $\sigma_x = \sigma_y = id$.
- 2. Hypergeometric case: admit only proper hypergeometric terms.

Are we already there? No!

Subtle problem:

- ▶ The denominator $(u; r)_x$ coming from the telescoper part is expressed with respect to σ_x .
- ▶ For the certificate part, it has to be written in terms of σ_y .

Solution:

- 1. Differential case: no problem here since $\sigma_x = \sigma_y = id$.
- 2. Hypergeometric case: admit only proper hypergeometric terms.
- 3. General case: impose certain conditions on the input ideal \mathfrak{a} ; this leads to our definition of proper ∂ -finite ideals:
 - ▶ It generalizes the notion of proper hypergeometric terms.
 - ▶ It refines properness by distinguishing the free variable x from the summation/integration variable y.

Definition.

1. A polynomial $u \in K[x,y]$ is called y-proper (w.r.t. σ_x,σ_y) if $\deg_y \left((u;r)_x \lceil_y \right) = \mathrm{O}(1)$ as $r \to \infty$.

Definition.

- 1. A polynomial $u \in K[x,y]$ is called y-proper (w.r.t. σ_x, σ_y) if $\deg_y (u;r)_x \lceil_y) = \mathrm{O}(1)$ as $r \to \infty$.
- 2. A ∂ -finite ideal $\mathfrak{a} \subseteq \mathbb{A}$ is called proper (with respect to y) if there exists a y-admissible basis B of \mathbb{A}/\mathfrak{a} , for which the denominator u of the multiplication matrix M is y-proper.

Definition.

- 1. A polynomial $u \in K[x,y]$ is called y-proper (w.r.t. σ_x, σ_y) if $\deg_y (u;r)_x\lceil_y) = \mathrm{O}(1)$ as $r \to \infty$.
- 2. A ∂ -finite ideal $\mathfrak{a} \subseteq \mathbb{A}$ is called proper (with respect to y) if there exists a y-admissible basis B of \mathbb{A}/\mathfrak{a} , for which the denominator u of the multiplication matrix M is y-proper.

Examples.

1. Let $u \in K[x,y]$ and $\sigma_x = \sigma_y = \mathrm{id}$. Then trivially we get $(u;r)_x = u^r = (u;r)_y$ and $(u;r)_x\lceil_y = \mathrm{sfp}(u)$ for all $r \geq 1$.

Definition.

- 1. A polynomial $u \in K[x,y]$ is called y-proper (w.r.t. σ_x, σ_y) if $\deg_y((u;r)_x\lceil_y) = \mathrm{O}(1)$ as $r \to \infty$.
- 2. A ∂ -finite ideal $\mathfrak{a} \subseteq \mathbb{A}$ is called proper (with respect to y) if there exists a y-admissible basis B of \mathbb{A}/\mathfrak{a} , for which the denominator u of the multiplication matrix M is y-proper.

Examples.

- 1. Let $u \in K[x,y]$ and $\sigma_x = \sigma_y = \mathrm{id}$. Then trivially we get $(u;r)_x = u^r = (u;r)_y$ and $(u;r)_x\lceil_y = \mathrm{sfp}(u)$ for all $r \geq 1$.
- 2. Let $\sigma_x(x) = x + 1$, $\sigma_y(y) = y + 1$, and take u = x + 2y. Then

$$\begin{split} (u;r)_x &= \prod_{i=0}^{r-1} (x+2y+i) = \prod_{i=0}^{(r-1)/2} (x+2(y+i)) \prod_{i=0}^{r/2-1} (x+2(y+i)+1) \\ &= \left(x+2y; \left\lfloor \frac{r-1}{2} \right\rfloor \right)_y \left(x+2y+1; \left\lfloor \frac{r}{2} \right\rfloor - 1 \right)_y \end{split}$$

13 / 24

and hence $(u;r)_x \lceil_y = (x+2y)(x+2y+1)$ for all $r \geq 2$.

Height of ∂-Finite Ideals

Definition.

1. Let $\eta \in \mathbb{N}$ be the smallest number such that for all $r \geq 1$ there exist $f_1, \ldots, f_m, g, h \in K[x, y]$, $p_1, \ldots, p_m, q_1, \ldots, q_m \in \mathbb{N}$, $p_i \geq q_i \geq 1$ for $i = 1, \ldots, m$, with

$$v = \sigma_y(h) \prod_{i=1}^m (f_i;q_i)_y$$
 and $(u;r)_x = g \prod_{i=1}^m (f_i;p_i)_y$

and $\deg_y(g\lceil_y) \le \eta$. Then

$$\eta + \max\{\deg_y(v) - 1, \deg_y(V)\}$$

is called the height of $\mathfrak a$ with respect to the basis B.

Height of ∂-Finite Ideals

Definition.

1. Let $\eta \in \mathbb{N}$ be the smallest number such that for all $r \geq 1$ there exist $f_1, \ldots, f_m, g, h \in K[x, y]$, $p_1, \ldots, p_m, q_1, \ldots, q_m \in \mathbb{N}$, $p_i \geq q_i \geq 1$ for $i = 1, \ldots, m$, with

$$v = \sigma_y(h) \prod_{i=1}^m (f_i;q_i)_y$$
 and $(u;r)_x = g \prod_{i=1}^m (f_i;p_i)_y$

and $\deg_y(g|_y) \leq \eta$. Then

$$\eta + \max\{\deg_y(v) - 1, \deg_y(V)\}\$$

is called the height of $\mathfrak a$ with respect to the basis B.

2. Let $\mathfrak{a} \subseteq \mathbb{A}$ be a proper ∂ -finite ideal. The height of \mathfrak{a} is defined as the minimum height of \mathfrak{a} with respect to all admissible bases of \mathbb{A}/\mathfrak{a} .

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

▶ The annihilating ideal a is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

▶ The annihilating ideal a is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

▶ Choose $1 \in \mathbb{A}/\mathfrak{a}$ as the single basis element b_1 .

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

The annihilating ideal α is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

▶ Choose $1 \in \mathbb{A}/\mathfrak{a}$ as the single basis element b_1 .

$$M = \frac{1}{u}U = \frac{x^2 + y^2}{(x+1)^2 + y^2}$$

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

The annihilating ideal α is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

▶ Choose $1 \in \mathbb{A}/\mathfrak{a}$ as the single basis element b_1 .

$$M = \frac{1}{u}U = \frac{x^2 + y^2}{(x+1)^2 + y^2}$$

▶ The denominator *u* is not *y*-proper.

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

▶ The annihilating ideal a is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

▶ Choose $1 \in \mathbb{A}/\mathfrak{a}$ as the single basis element b_1 .

$$M = \frac{1}{u}U = \frac{x^2 + y^2}{(x+1)^2 + y^2}$$

- ▶ The denominator u is not y-proper.
- ▶ Try a basis change to obtain $\tilde{M} = 1$.

Shift case: consider the bivariate sequence $f = 1/(x^2 + y^2)$.

▶ The annihilating ideal a is generated by

$$\langle ((x+1)^2+y^2)\partial_x - x^2 - y^2, (x^2+(y+1)^2)\partial_y - x^2 - y^2 \rangle.$$

▶ Choose $1 \in \mathbb{A}/\mathfrak{a}$ as the single basis element b_1 .

$$M = \frac{1}{u}U = \frac{x^2 + y^2}{(x+1)^2 + y^2}$$

- ▶ The denominator u is not y-proper.
- lacktriangle Try a basis change to obtain $\tilde{M}=1$.
- ▶ However, this basis is not admissible since $1 \in A/\mathfrak{a}$ is not represented by a polynomial vector.

Again shift case: consider f(x,y)=1/(x+y)!+1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

Again shift case: consider f(x,y) = 1/(x+y)! + 1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).

Again shift case: consider f(x,y) = 1/(x+y)! + 1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).

$$M = \frac{1}{p} \begin{pmatrix} \frac{x^2 - 2xy + y^2 + x - y - 1}{y - x + 1} & \frac{2y}{y - x - 1} \\ \frac{2(y + 1)}{x + y + 2} & -\frac{x^2 + 2xy + y^2 + 3x + 3y + 1}{x + y + 2} \end{pmatrix} \text{ where }$$

$$p = y^2 - x^2 + y - x + 1.$$

Again shift case: consider f(x,y) = 1/(x+y)! + 1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).

$$M = \frac{1}{p} \begin{pmatrix} \frac{x^2 - 2xy + y^2 + x - y - 1}{y - x + 1} & \frac{2y}{y - x - 1} \\ \frac{2(y + 1)}{x + y + 2} & -\frac{x^2 + 2xy + y^2 + 3x + 3y + 1}{x + y + 2} \end{pmatrix} \text{ where }$$

$$p = y^2 - x^2 + y - x + 1.$$

▶ The denominator is not *y*-proper.

Again shift case: consider f(x,y) = 1/(x+y)! + 1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

- ▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).
- $M = \frac{1}{p} \begin{pmatrix} \frac{x^2 2xy + y^2 + x y 1}{y x + 1} & \frac{2y}{y x 1} \\ \frac{2(y + 1)}{x + y + 2} & -\frac{x^2 + 2xy + y^2 + 3x + 3y + 1}{x + y + 2} \end{pmatrix} \text{ where }$ $p = y^2 x^2 + y x + 1.$
- ▶ The denominator is not *y*-proper.
- ▶ On the other hand, by a basis change we can get

$$\tilde{M} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & \frac{1}{x-y+1} \end{pmatrix}, \quad \tilde{N} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & x-y \end{pmatrix}.$$

Again shift case: consider f(x,y) = 1/(x+y)! + 1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

- ▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).
- $M = \frac{1}{p} \begin{pmatrix} \frac{x^2 2xy + y^2 + x y 1}{y x + 1} & \frac{2y}{y x 1} \\ \frac{2(y + 1)}{x + y + 2} & -\frac{x^2 + 2xy + y^2 + 3x + 3y + 1}{x + y + 2} \end{pmatrix} \text{ where }$ $p = y^2 x^2 + y x + 1.$
- ▶ The denominator is not *y*-proper.
- ▶ On the other hand, by a basis change we can get

$$\tilde{M} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & \frac{1}{x-y+1} \end{pmatrix}, \quad \tilde{N} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & x-y \end{pmatrix}.$$

▶ The basis elements \tilde{b}_1 , \tilde{b}_2 are now 1/(x+y)! and 1/(x-y)!.

Example

Again shift case: consider f(x,y)=1/(x+y)!+1/(x-y)!, which is not hypergeometric but ∂ -finite with holonomic rank 2.

- ▶ Take standard monomial basis $B = \{1, \partial_y\}$, where the basis elements b_1 and b_2 correspond to f(x, y) and f(x, y + 1).
- $M = \frac{1}{p} \begin{pmatrix} \frac{x^2 2xy + y^2 + x y 1}{y x + 1} & \frac{2y}{y x 1} \\ \frac{2(y + 1)}{x + y + 2} & -\frac{x^2 + 2xy + y^2 + 3x + 3y + 1}{x + y + 2} \end{pmatrix} \text{ where }$ $p = y^2 x^2 + y x + 1.$
- ▶ The denominator is not *y*-proper.
- ▶ On the other hand, by a basis change we can get

$$\tilde{M} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & \frac{1}{x-y+1} \end{pmatrix}, \quad \tilde{N} = \begin{pmatrix} \frac{1}{x+y+1} & 0 \\ 0 & x-y \end{pmatrix}.$$

- ▶ The basis elements \tilde{b}_1 , \tilde{b}_2 are now 1/(x+y)! and 1/(x-y)!.
- ▶ This example is proper ∂ -finite.

Main Theorem

Theorem. Assume that $\mathfrak{a} \subseteq \mathbb{A} = K(x,y)[\partial_x,\partial_y]$ is proper ∂ -finite w.r.t. y. Let ϱ be the height of \mathfrak{a} , let $n=\dim_{K(x,y)}\mathbb{A}/\mathfrak{a}$, and let $\phi=\dim_{K(x)}\{W\in\mathbb{A}/\mathfrak{a}\mid\partial_yW=0\}.$

Then there exist $T \in K(x)[\partial_x] \setminus \{0\}$ and $C \in \mathbb{A}$ such that $T - \partial_y C \in \mathfrak{a}$ and $\operatorname{ord}(T) \leq n\varrho + \phi$.

Main Theorem

Theorem. Assume that $\mathfrak{a}\subseteq \mathbb{A}=K(x,y)[\partial_x,\partial_y]$ is proper ∂ -finite w.r.t. y. Let ϱ be the height of \mathfrak{a} , let $n=\dim_{K(x,y)}\mathbb{A}/\mathfrak{a}$, and let

$$\phi = \dim_{K(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \}.$$

Then there exist $T \in K(x)[\partial_x] \setminus \{0\}$ and $C \in \mathbb{A}$ such that $T - \partial_y C \in \mathfrak{a}$ and $\operatorname{ord}(T) \leq n\varrho + \phi$.

Note: The quantity ϕ ensures solutions with nonzero telescoper. Apagodu and Zeilberger excluded rational functions as input.

$$\sigma_x = \sigma_y = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \delta_y = \frac{\partial}{\partial y}$$

$$\sigma_x = \sigma_y = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \delta_y = \frac{\partial}{\partial y}$$

Facts:

1. Every ∂ -finite ideal is proper ∂ -finite.

$$\sigma_x = \sigma_y = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \delta_y = \frac{\partial}{\partial y}$$

Facts:

- 1. Every ∂ -finite ideal is proper ∂ -finite.
- 2. Our bound reduces exactly to the known bound for the hyperexponential case.

$$\sigma_x = \sigma_y = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \delta_y = \frac{\partial}{\partial y}$$

Facts:

- 1. Every ∂ -finite ideal is proper ∂ -finite.
- 2. Our bound reduces exactly to the known bound for the hyperexponential case.
- 3. In the definition of the height, we have always $\eta = 0$.

$$\sigma_x = \sigma_y = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \delta_y = \frac{\partial}{\partial y}$$

Facts:

- 1. Every ∂ -finite ideal is proper ∂ -finite.
- 2. Our bound reduces exactly to the known bound for the hyperexponential case.
- 3. In the definition of the height, we have always $\eta = 0$.

Proposition. If $\mathfrak{a}\subseteq \mathbb{A}$ is ∂ -finite, B is a basis of \mathbb{A}/\mathfrak{a} and the multiplication matrices are $\frac{1}{u}U,\frac{1}{v}V$, then the squarefree part of u in K(x)[y] divides the squarefree part of v in K(x)[y].

$$n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$$

$$n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$$

$$\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$$

$$n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$$

$$\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$$

$$B = \{ p^{-1/3}, p^{-1/5} \}$$

- $n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$
- $\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$
- $B = \{p^{-1/3}, p^{-1/5}\}$
- ▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

- $n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$
- $\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$
- $B = \{p^{-1/3}, p^{-1/5}\}$
- ▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

$$M = \frac{D_x(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}, \ N = \frac{D_y(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}$$

Consider the bivariate function $f(x,y) = p(x,y)^{-1/3} + p(x,y)^{-1/5}$ where p is a random polynomial of y-degree 2.

$$n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$$

$$\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$$

$$B = \{ p^{-1/3}, p^{-1/5} \}$$

▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

$$M = \frac{D_x(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}, \ N = \frac{D_y(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}$$

$$u = v = p$$

Consider the bivariate function $f(x,y) = p(x,y)^{-1/3} + p(x,y)^{-1/5}$ where p is a random polynomial of y-degree 2.

$$n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$$

$$\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$$

$$B = \{p^{-1/3}, p^{-1/5}\}$$

▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

$$M = \frac{D_x(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}, \ N = \frac{D_y(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}$$

$$u = v = p$$

$$\max\{\deg_y(v) - 1, \deg_y(V)\} = 1$$

- $n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$
- $\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$
- $B = \{p^{-1/3}, p^{-1/5}\}\$
- ▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

$$M = \frac{D_x(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}, \ N = \frac{D_y(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}$$

- u = v = p
- $\max\{\deg_y(v) 1, \deg_y(V)\} = 1$
- ▶ Predicted bound $1 \cdot 2 + 0 = 2$ is exact.

- $n = \dim_{\mathbb{Q}(x,y)} \mathbb{A}/\mathfrak{a} = 2$
- $\phi = \dim_{\mathbb{Q}(x)} \{ W \in \mathbb{A}/\mathfrak{a} \mid \partial_y W = 0 \} = 0$
- $B = \{p^{-1/3}, p^{-1/5}\}$
- ▶ $1 \in \mathbb{A}/\mathfrak{a}$ is represented by the vector $(1,1) \in \mathbb{K}(x)[y]^2$.

$$M = \frac{D_x(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}, \ N = \frac{D_y(p)}{p} \begin{pmatrix} -1/3 & 0\\ 0 & -1/5 \end{pmatrix}$$

- u = v = p
- $\max\{\deg_u(v) 1, \deg_u(V)\} = 1$
- ▶ Predicted bound $1 \cdot 2 + 0 = 2$ is exact.
- More generally, consider $f=p^{e_1}+\cdots+p^{e_n}$ with random polynomial p of y-degree d; our theorem produces the bound n(d-1) which is exact for $d=2,\ldots,5$ and $n=1,\ldots,4$.

$$\sigma_x(x) = x + 1, \sigma_y(y) = y + 1, \delta_x = \sigma_x - id, \delta_y = \sigma_y - id$$

$$\sigma_x(x) = x + 1, \sigma_y(y) = y + 1, \delta_x = \sigma_x - id, \delta_y = \sigma_y - id$$

Our bound does not exactly reduce to the hypergeometric case:

▶ It is worse: because of the additional term $\eta = \deg_y(g\lceil_y)$.

$$\sigma_x(x) = x + 1, \sigma_y(y) = y + 1, \delta_x = \sigma_x - id, \delta_y = \sigma_y - id$$

Our bound does not exactly reduce to the hypergeometric case:

- ▶ It is worse: because of the additional term $\eta = \deg_y(g\lceil_y)$.
- ▶ It is better: because we take ∂_y to be the forward difference rather than the shift operator (this sometimes improves the bound by 1).

$$\sigma_x(x) = x + 1, \sigma_y(y) = y + 1, \delta_x = \sigma_x - id, \delta_y = \sigma_y - id$$

Our bound does not exactly reduce to the hypergeometric case:

- ▶ It is worse: because of the additional term $\eta = \deg_y(g\lceil_y)$.
- ▶ It is better: because we take ∂_y to be the forward difference rather than the shift operator (this sometimes improves the bound by 1).

Proposition. A ∂ -finite ideal $\mathfrak a$ is proper if and only if there exists an admissible basis B of $\mathbb A/\mathfrak a$ for which the multiplication matrices $\frac{1}{u}U$, $\frac{1}{v}V$ are such that u is a product of integer-linear polynomials.

$$\sigma_x(x) = x + 1, \sigma_y(y) = y + 1, \delta_x = \sigma_x - \mathrm{id}, \delta_y = \sigma_y - \mathrm{id}$$

Our bound does not exactly reduce to the hypergeometric case:

- ▶ It is worse: because of the additional term $\eta = \deg_y(g\lceil_y)$.
- ▶ It is better: because we take ∂_y to be the forward difference rather than the shift operator (this sometimes improves the bound by 1).

Proposition. A ∂ -finite ideal $\mathfrak a$ is proper if and only if there exists an admissible basis B of $\mathbb A/\mathfrak a$ for which the multiplication matrices $\frac{1}{u}U$, $\frac{1}{v}V$ are such that u is a product of integer-linear polynomials.

Note: This implies that a function f(x,y) is proper hypergeometric if and only if its annihilating ideal is proper ∂ -finite with respect to both x and y.

For fixed $n \geq 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

For fixed $n \ge 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

For fixed $n \ge 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

- ightharpoonup height ϱ

For fixed $n \ge 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

- ightharpoonup height ϱ
- $\phi = 0$

For fixed $n \ge 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

- ightharpoonup height ϱ
- $\phi = 0$
- ▶ Our theorem gives the bound $n\varrho$.

For fixed $n \geq 0$ and ϱ , consider the bivariate sequence

$$f(x,y) = \frac{1 + 2^y + 3^y + \dots + n^y}{\Gamma(x + \varrho y)}$$

- ightharpoonup height ϱ
- $\phi = 0$
- ▶ Our theorem gives the bound $n\varrho$.
- The minimal telescoper is

$$T = (\partial_x^{\varrho} - 1)(\partial_x^{\varrho} - 2) \cdots (\partial_x^{\varrho} - n).$$

$$\sigma_x = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \sigma_y(y) = y + 1, \delta_y = \sigma_y - \mathrm{id}.$$

$$\sigma_x = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \sigma_y(y) = y + 1, \delta_y = \sigma_y - \mathrm{id}.$$

The family $f_k(x,y)$ involving the Bessel function of the first kind

$$f_k(x,y) = (y+1)^{-k} J_y(x), \quad k \in \mathbb{N},$$

is $\partial\text{-finite w.r.t. }\mathbb{A}=K(x,y)[\partial_x,\partial_y].$

$$\sigma_x = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \sigma_y(y) = y + 1, \delta_y = \sigma_y - \mathrm{id}.$$

The family $f_k(x,y)$ involving the Bessel function of the first kind

$$f_k(x,y) = (y+1)^{-k} J_y(x), \quad k \in \mathbb{N},$$

is ∂ -finite w.r.t. $\mathbb{A} = K(x,y)[\partial_x,\partial_y].$

For any fixed k, the annihilator $\mathfrak a$ of $f_k(x,y)$ is generated by two operators: $\mathfrak a = {}_{\mathbb A}\langle x^2\partial_x^2 + x\partial_x + x^2 - y^2, \dots \rangle$.

$$\sigma_x = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \sigma_y(y) = y + 1, \delta_y = \sigma_y - \mathrm{id}.$$

The family $f_k(x,y)$ involving the Bessel function of the first kind

$$f_k(x,y) = (y+1)^{-k} J_y(x), \quad k \in \mathbb{N},$$

is ∂ -finite w.r.t. $\mathbb{A}=K(x,y)[\partial_x,\partial_y].$

- For any fixed k, the annihilator $\mathfrak a$ of $f_k(x,y)$ is generated by two operators: $\mathfrak a = {}_{\mathbb A}\langle x^2\partial_x^2 + x\partial_x + x^2 y^2, \dots \rangle$.
- $n = \dim_{K(x,y)}(\mathbb{A}/\mathfrak{a}) = 2$

$$\sigma_x = \mathrm{id}, \delta_x = \frac{\partial}{\partial x}, \sigma_y(y) = y + 1, \delta_y = \sigma_y - \mathrm{id}.$$

The family $f_k(x,y)$ involving the Bessel function of the first kind

$$f_k(x,y) = (y+1)^{-k} J_y(x), \quad k \in \mathbb{N},$$

is ∂ -finite w.r.t. $\mathbb{A}=K(x,y)[\partial_x,\partial_y].$

- ▶ For any fixed k, the annihilator \mathfrak{a} of $f_k(x,y)$ is generated by two operators: $\mathfrak{a} = \mathbb{A}\langle x^2 \partial_x^2 + x \partial_x + x^2 y^2, \ldots \rangle$.
- $\mathbf{n} = \dim_{K(x,y)}(\mathbb{A}/\mathfrak{a}) = 2$
- ▶ As a basis B for \mathbb{A}/\mathfrak{a} choose the monomials 1 and ∂_x .

multiplication matrices:

$$U = \begin{pmatrix} 0 & x^2 \\ y^2 - x^2 & -x \end{pmatrix}$$

$$V = \begin{pmatrix} xy(y+1)^k - x^2(y+2)^k & -x^2(y+1)^k \\ (y+1)^k(x^2 - y^2 - y) & x(y+1)^{k+1} - x^2(y+2)^k \end{pmatrix}$$

with denominators $u = x^2$ and $v = x^2(y+2)^k$.

multiplication matrices:

$$U = \begin{pmatrix} 0 & x^2 \\ y^2 - x^2 & -x \end{pmatrix}$$

$$V = \begin{pmatrix} xy(y+1)^k - x^2(y+2)^k & -x^2(y+1)^k \\ (y+1)^k(x^2 - y^2 - y) & x(y+1)^{k+1} - x^2(y+2)^k \end{pmatrix}$$

with denominators $u = x^2$ and $v = x^2(y+2)^k$.

▶ height of $\mathfrak a$ is (at most) $\max\{\deg_y(v)-1,\deg_y(V)\}=k+2.$

multiplication matrices:

$$U = \begin{pmatrix} 0 & x^2 \\ y^2 - x^2 & -x \end{pmatrix}$$

$$V = \begin{pmatrix} xy(y+1)^k - x^2(y+2)^k & -x^2(y+1)^k \\ (y+1)^k(x^2 - y^2 - y) & x(y+1)^{k+1} - x^2(y+2)^k \end{pmatrix}$$

with denominators $u = x^2$ and $v = x^2(y+2)^k$.

- ▶ height of $\mathfrak a$ is (at most) $\max\{\deg_y(v)-1,\deg_y(V)\}=k+2.$
- $\phi = 0$

multiplication matrices:

$$U = \begin{pmatrix} 0 & x^2 \\ y^2 - x^2 & -x \end{pmatrix}$$

$$V = \begin{pmatrix} xy(y+1)^k - x^2(y+2)^k & -x^2(y+1)^k \\ (y+1)^k(x^2 - y^2 - y) & x(y+1)^{k+1} - x^2(y+2)^k \end{pmatrix}$$

with denominators $u = x^2$ and $v = x^2(y+2)^k$.

- ▶ height of $\mathfrak a$ is (at most) $\max\{\deg_y(v)-1,\deg_y(V)\}=k+2.$
- $\phi = 0$
- \longrightarrow Our theorem produces the bound 2(k+2) for the order of T.
- \longrightarrow The minimal telescoper (conjecturally) has order 2k+1.

Conclusion and Outlook