Zeilberger’s Holonomic Ansatz for Pfaffians

Masao Ishikawa1 and Christoph Koutschan2

1 University of the Ryukyus, Okinawa, Japan
2 MSR-INRIA Joint Centre, Orsay, France

24 July 2012
ISSAC
Introduction

The HOLONOMIC ANSATZ II.
Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations
Introduction

The HOLONOMIC ANSATZ II.
Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations
Introduction

The HOLONOMIC ANSATZ II.
Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations

Algorithmic method to prove determinant evaluations of the form

\[
det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n \quad (n \geq 1)
\]

where
Introduction

The **HOLONOMIC ANSATZ II.**
Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations

Algorithmic method to prove determinant evaluations of the form

\[\det A_n = \det_{1 \leq i,j \leq n} a_{i,j} = b_n \quad (n \geq 1) \]

where

- \(a_{i,j} \) is a bivariate **holonomic** sequence, not depending on \(n \),
Introduction

The **HOLONOMIC ANSATZ II.**
Automatic DISCOVERY(!) and PROOF(!!)
of **Holonomic** Determinant Evaluations

Algorithmic method to prove determinant evaluations of the form

\[
\det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n \quad (n \geq 1)
\]

where

- \(a_{i,j} \) is a bivariate **holonomic** sequence, not depending on \(n \),

 - linear recurrences
 - polynomial coefficients
 - finitely many initial values
Introduction

The HOLONOMIC ANSATZ II.
Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations

Algorithmic method to prove determinant evaluations of the form

\[
\det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n \quad (n \geq 1)
\]

where

- \(a_{i,j}\) is a bivariate holonomic sequence, not depending on \(n\),
- \(b_n \neq 0\) for all \(n \geq 1\).
Some Examples

\[
\det_{1 \leq i,j \leq n} \frac{1}{i+j-1} = \frac{1}{(2n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^2}{(k+1)_{n-1}}
\]

\[
\det_{0 \leq i,j \leq n-1} \begin{pmatrix} 2i + 2a \\ j + b \end{pmatrix} = 2^{n(n-1)/2} \prod_{k=0}^{n-1} \frac{(2k + 2a)!k!}{(k + b)!(2k + 2a - b)!}
\]

\[
\det_{0 \leq i,j \leq n-1} \sum_{k} \binom{i}{k} \binom{j}{k} 2^k = 2^{n(n-1)/2}
\]
A Prominent Example

C. K., M. Kauers, D. Zeilberger:

Proof of George Andrews’s and David Robbins’s
q-TSPP Conjecture

A Prominent Example

C. K., M. Kauers, D. Zeilberger:

Proof of George Andrews’s and David Robbins’s q-TSPP Conjecture

By evaluating the q-holonomic determinant

$$\det_{1 \leq i,j \leq n} \left(q^{i+j-1} \left[\begin{array}{c} i+j-2 \\ i-1 \end{array} \right]_q + q^{i+j} \left[\begin{array}{c} i+j-1 \\ i \end{array} \right]_q + (1 + q^i) \delta_{i,j} - \delta_{i,j+1} \right)$$

$$= \prod_{1 \leq i \leq j \leq k \leq n} \left(\frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}} \right)^2$$

a long-standing combinatorial problem (first stated in 1983) was solved, the q-enumeration of totally symmetric plane partitions.
Determinant Evaluation: Proof by Induction

Problem: Prove that $\det A_n = \det a_{i,j} = b_n$ for all $n \in \mathbb{N}$.

Base case: verify that $a_{1,1} = b_1$.

Induction hypothesis: assume that $\det A_{n-1} = b_{n-1} \neq 0$.

Induction step: the assumption implies that the linear system:

\[
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 a_{n,1} & \cdots & a_{n,n-1} & a_{n,n}
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 \vdots \\
 0 \\
 0
\end{pmatrix}
\]

has a unique solution, namely $c_{n,i} = \left(-1\right)^{n+i}M_{n,i}/M_{n,n}$.

Now use $c_{n,i}$ to do Laplace expansion of A_n w.r.t. the last row:

$\det A_n = \sum_{i=1}^n M_{n,n} c_{n,i} a_{n,i}$.

Showing that the sum evaluates to b_n completes the induction step.
Determinant Evaluation: Proof by Induction

Problem: Prove that $\det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n$ for all $n \in \mathbb{N}$.

Base case: verify that $a_{1,1} = b_1$.
Determinant Evaluation: Proof by Induction

Problem: Prove that \(\det A_n = \det a_{i,j} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,1} = b_1 \).

Induction hypothesis: assume that \(\det A_{n-1} = b_{n-1} \neq 0 \).
Determinant Evaluation: Proof by Induction

Problem: Prove that \(\det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,1} = b_1 \).

Induction hypothesis: assume that \(\det A_{n-1} = b_{n-1} \neq 0 \).

Induction step: the assumption implies that the linear system

\[
\begin{pmatrix}
a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{n,1} \\
\vdots \\
c_{n,n-1} \\
c_{n,n}
\end{pmatrix}
= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}
\]

Showing that the sum evaluates to \(b_n \) completes the induction step.
Determinant Evaluation: Proof by Induction

Problem: Prove that \(\det A_n = \det_{1 \leq i,j \leq n} a_{i,j} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,1} = b_1 \).

Induction hypothesis: assume that \(\det A_{n-1} = b_{n-1} \neq 0 \).

Induction step: the assumption implies that the linear system

\[
\begin{pmatrix}
a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{n,1} \\
\vdots \\
c_{n,n-1} \\
c_{n,n}
\end{pmatrix}
= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}
\]

has a unique solution, namely \(c_{n,i} = (-1)^{n+i} M_{n,i} / M_{n,n} \).
Determinant Evaluation: Proof by Induction

Problem: Prove that $\det A_n = \det_{1 \leq i, j \leq n} a_{i,j} = b_n$ for all $n \in \mathbb{N}$.

Base case: verify that $a_{1,1} = b_1$.

Induction hypothesis: assume that $\det A_{n-1} = b_{n-1} \neq 0$.

Induction step: the assumption implies that the linear system

$$
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}
$$

has a unique solution, namely $c_{n,i} = (-1)^{n+i} M_{n,i}/M_{n,n}$.

Now use $c_{n,i}$ to do Laplace expansion of A_n w.r.t. the last row:

$$
\det A_n = \sum_{i=1}^{n} M_{n,n} c_{n,i} a_{n,i}.
$$

Showing that the sum evaluates to b_n completes the induction step.
Explanation for $c_{n,i}$

It’s easy to see that $c_{n,i} = (-1)^{n+i} M_{n,i} / M_{n,n}$ is the solution of the system

$$
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.$$

Let $A(j)_n$ denote the matrix that is obtained from A_n by replacing the last row by the j-th row ($1 \leq j < n$).

Laplace expansion of $A(j)_n$ w.r.t. the last row:

$$\det A(j)_n = 0 = n \sum_{i=1} M_{n,n} c_{n,i} a_{j,i}.$$
Explanation for \(c_{n,i} \)

It’s easy to see that \(c_{n,i} = (-1)^{n+i} M_{n,i}/M_{n,n} \) is the solution of the system

\[
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.
\]

Let \(A_{n}^{(j)} \) denote the matrix that is obtained from \(A_n \) by replacing the last row by the \(j \)-th row \((1 \leq j < n)\).
Explanation for $c_{n,i}$

It’s easy to see that $c_{n,i} = (-1)^{n+i} M_{n,i}/M_{n,n}$ is the solution of the system

$$
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix} \begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix} = \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.
$$

Let $A_{n}^{(j)}$ denote the matrix that is obtained from A_n by replacing the last row by the j-th row ($1 \leq j < n$).

Laplace expansion of $A_{n}^{(j)}$ w.r.t. the last row:

$$
\det A_{n}^{(j)} = 0 = \sum_{i=1}^{n} M_{n,n} c_{n,i} a_{j,i}.
$$

This is just the j-th row in the above system.
How to get $c_{n,i}$

We cannot expect to be able to compute $c_{n,i}$ explicitly!
(at least not for symbolic n)
How to get $c_{n,i}$

We cannot expect to be able to compute $c_{n,i}$ explicitly!
(at least not for symbolic n)

Instead:

- Hope that $c_{n,i}$ is holonomic.
How to get \(c_{n,i} \)

We cannot expect to be able to compute \(c_{n,i} \) explicitly! (at least not for symbolic \(n \))

Instead:

- Hope that \(c_{n,i} \) is holonomic.
- Try to work with an implicit (recursive) definition of \(c_{n,i} \).
How to get $c_{n,i}$

We cannot expect to be able to compute $c_{n,i}$ explicitly!
(at least not for symbolic n)

Instead:

- Hope that $c_{n,i}$ is holonomic.
- Try to work with an implicit (recursive) definition of $c_{n,i}$.
- The values of $c_{n,i}$ can be computed for concrete $n, i \in \mathbb{N}$.
How to get $c_{n,i}$

We cannot expect to be able to compute $c_{n,i}$ explicitly!
(at least not for symbolic n)

Instead:

- Hope that $c_{n,i}$ is holonomic.
- Try to work with an implicit (recursive) definition of $c_{n,i}$.
- The values of $c_{n,i}$ can be computed for concrete $n, i \in \mathbb{N}$.
- If recurrences exist they can be guessed automatically (e.g. with M. Kauers’s Mathematica package Guess)
Zeilberger’s Holonomic Ansatz

1. Compute many values of $c_{n,i}$ (e.g. for $1 \leq i \leq n \leq 100$).
2. Guess linear recurrences for $c_{n,i}$ from that data.
3. Prove the following identities using holonomic closure properties and creative telescoping:

$$c_{n,n} = 1 \quad (n \geq 1),$$ \hspace{1cm} (D1)

$$\sum_{i=1}^{n} c_{n,i} a_{j,i} = 0 \quad (1 \leq j < n),$$ \hspace{1cm} (D2)

$$\sum_{i=1}^{n} c_{n,i} a_{n,i} = \frac{b_n}{b_{n-1}} \quad (n \geq 1).$$ \hspace{1cm} (D3)

Note: all these steps can be executed automatically!
Pfaffians

Consider a skew-symmetric matrix A, i.e., $A = -A^T$:

\[
A = \begin{pmatrix}
 0 & a_{1,2} & a_{1,3} & \cdots \\
-a_{1,2} & 0 & a_{2,3} & \cdots \\
-a_{1,3} & -a_{2,3} & 0 & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

(it is easy to see that $\det A = 0$ if A has odd dimensions).
Pfaffians

Consider a skew-symmetric matrix A, i.e., $A = -A^T$:

$$A = \begin{pmatrix}
0 & a_{1,2} & a_{1,3} & \cdots \\
-a_{1,2} & 0 & a_{2,3} & \cdots \\
-a_{1,3} & -a_{2,3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}$$

(it is easy to see that $\det A = 0$ if A has odd dimensions).

Now let A be a skew-symmetric matrix of size $2n \times 2n$. Then the Pfaffian of A is defined as

$$\text{Pf } A := \frac{1}{2^n n!} \sum_{\sigma \in S_{2n}} \text{sgn}(\sigma) \prod_{i=1}^{n} a_{\sigma(2i-1), \sigma(2i)}.$$

Note that $(\text{Pf } A)^2 = \det A$.
Try to Apply Determinant Techniques
Zeilberger’s holonomic ansatz doesn’t work, since it requires
\[\det A_n \neq 0 \text{ for all } n. \]
Try to Apply Determinant Techniques

Zeilberger’s holonomic ansatz doesn’t work, since it requires

\[\det A_n \neq 0 \text{ for all } n. \]

In the paper

Advanced Computer Algebra for Determinants

C.K. and T. Thanatipanonda presented a variant of Zeilberger’s holonomic ansatz that considers the quotient

\[\frac{\det A_n}{\det A_{n-2}}. \]
Try to Apply Determinant Techniques

Zeilberger’s holonomic ansatz doesn’t work, since it requires

$$\det A_n \neq 0 \text{ for all } n.$$

In the paper

Advanced Computer Algebra for Determinants

C.K. and T. Thanatipanonda presented a variant of Zeilberger’s holonomic ansatz that considers the quotient

$$\frac{\det A_n}{\det A_{n-2}}.$$

- This double step method works in theory,
- but is complicated in practice and
- leads to very large computations.
Laplace Expansion for Pfaffians

- Let $A = (a_{i,j})_{1 \leq i, j \leq 2n}$ be a skew-symmetric matrix.
- Denote by $A(i, j)$ the $(2n - 2) \times (2n - 2)$ matrix which is obtained by deleting the rows and columns i and j from A.
- Define the cofactors $\Gamma_{i,j} := \begin{cases} (-1)^{j-i-1} \text{Pf } A(i, j) & \text{if } i < j, \\ (-1)^{i-j} \text{Pf } A(j, i) & \text{if } j < i, \\ 0 & \text{if } i = j. \end{cases}$
Laplace Expansion for Pfaffians

• Let $A = (a_{i,j})_{1 \leq i,j \leq 2n}$ be a skew-symmetric matrix.

• Denote by $A(i,j)$ the $(2n - 2) \times (2n - 2)$ matrix which is obtained by deleting the rows and columns i and j from A.

• Define the cofactors $\Gamma_{i,j} := \begin{cases} (-1)^{j-i-1} \text{Pf} A(i,j) & \text{if } i < j, \\ (-1)^{i-j} \text{Pf} A(j,i) & \text{if } j < i, \\ 0 & \text{if } i = j. \end{cases}$

Then there exists a Laplace-type expansion for the Pfaffian of A:

$$\delta_{j,k} \text{Pf} A = \sum_{i=1}^{2n} a_{j,i} \Gamma_{k,i} = \sum_{i=1}^{2n} a_{i,j} \Gamma_{i,k}.$$
Laplace Expansion for Pfaffians

• Let \(A = (a_{i,j})_{1 \leq i,j \leq 2n} \) be a skew-symmetric matrix.

• Denote by \(A(i, j) \) the \((2n - 2) \times (2n - 2)\) matrix which is obtained by deleting the rows and columns \(i \) and \(j \) from \(A \).

• Define the cofactors \(\Gamma_{i,j} := \begin{cases} (-1)^{j-i+1} \text{Pf } A(i, j) & \text{if } i < j, \\ (-1)^{i-j} \text{Pf } A(j, i) & \text{if } j < i, \\ 0 & \text{if } i = j. \end{cases} \)

Then there exists a Laplace-type expansion for the Pfaffian of \(A \):

\[
\delta_{j,k} \text{Pf } A = \sum_{i=1}^{2n} a_{j,i} \Gamma_{k,i} = \sum_{i=1}^{2n} a_{i,j} \Gamma_{i,k}.
\]

Setting \(j = k = 2n \) leads to

\[
\text{Pf } A = \sum_{i=1}^{2n} a_{2n,i} \Gamma_{2n,i} = \sum_{i=1}^{2n} a_{i,2n} \Gamma_{i,2n}.
\]
Pfaffian Evaluation: Proof by Induction

Problem: Prove that $Pf A_{2n} = Pf(a_{i,j})_{1 \leq i,j \leq 2n} = b_n$ for all $n \in \mathbb{N}$.
Problem: Prove that $\text{Pf } A_{2n} = \text{Pf}(a_{i,j})_{1 \leq i,j \leq 2n} = b_n$ for all $n \in \mathbb{N}$.

Base case: verify that $a_{1,2} = b_1$.

Induction hypothesis: assume that $\text{Pf } A_{2n-2} = b_{n-1} \neq 0$.

Induction step: the assumption implies that the linear system
\[
\begin{pmatrix}
 a_{1,1} & \cdots & a_{2n-2,1} \\
 a_{2n-1,1} & \cdots & a_{2n-1,2n-2} \\
 \vdots & \ddots & \vdots \\
 a_{1,2n-2} & \cdots & a_{2n-2,2n-2} \\
 a_{2n-1,2n-2} & \cdots & a_{2n-1,2n-1} \\
 0 & \cdots & 0 \\
\end{pmatrix}
\begin{pmatrix}
 c_{2n,1} \\
 \vdots \\
 c_{2n,2n-2} \\
 c_{2n-1,2n-2} \\
 c_{2n-1,2n-1} \\
 0 \\
\end{pmatrix}
=
\begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1 \\
\end{pmatrix}
\]
has a unique solution, namely $c_{2n,i} = \frac{\Gamma_i}{\Gamma_{2n-1}}$. Now use $c_{2n,i}$ in the expansion formula for the Pfaffian of A_{2n}:

\[
\text{Pf } A_{2n} = (-1)^{n(n-1)/2} \sum_{i=1}^{2n} b_{n-1} c_{2n,i} a_{i,2n}.
\]

Showing that the sum evaluates to b_n completes the induction step.
Problem: Prove that \(\text{Pf} A_{2n} = \text{Pf}(a_{i,j})_{1 \leq i,j \leq 2n} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,2} = b_1 \).

Induction hypothesis: assume that \(\text{Pf} A_{2n-2} = b_{n-1} \neq 0 \).
Problem: Prove that \(\text{Pf} \ A_{2n} = \text{Pf}(a_{i,j})_{1 \leq i,j \leq 2n} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,2} = b_1 \).

Induction hypothesis: assume that \(\text{Pf} \ A_{2n-2} = b_{n-1} \neq 0 \).

Induction step: the assumption implies that the linear system

\[
\begin{pmatrix}
a_{1,1} & \cdots & a_{2n-2,1} & a_{2n-1,1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{1,2n-2} & \cdots & a_{2n-2,2n-2} & a_{2n-1,2n-2} \\
0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{2n,1} \\
\vdots \\
c_{2n,2n-2} \\
c_{2n,2n-1}
\end{pmatrix}
= \begin{pmatrix} 0 \\
\vdots \\
0 \\
1 \end{pmatrix}
\]

Now use \(c_{2n,i} \) in the expansion formula for the Pfaffian of \(A_{2n} \):

\[
\text{Pf} \ A_{2n} = 2^{n-1} \sum_{i=1}^{b_n-1} c_{2n,i} a_{i,2n} = b_n
\]

Showing that the sum evaluates to \(b_n \) completes the induction step.
Problem: Prove that \(\text{Pf } A_{2n} = \text{Pf}(a_{i,j})_{1 \leq i,j \leq 2n} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,2} = b_1 \).

Induction hypothesis: assume that \(\text{Pf } A_{2n-2} = b_{n-1} \neq 0 \).

Induction step: the assumption implies that the linear system

\[
\begin{pmatrix}
 a_{1,1} & \cdots & a_{2n-2,1} & a_{2n-1,1} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{1,2n-2} & \cdots & a_{2n-2,2n-2} & a_{2n-1,2n-2} \\
 0 & \cdots & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
 c_{2n,1} \\
 \vdots \\
 c_{2n,2n-2} \\
 c_{2n,2n-1} \\
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1 \\
\end{pmatrix}
\]

has a unique solution, namely \(c_{2n,i} = \Gamma_{i,2n}/\Gamma_{2n-1,2n} = \Gamma_{i,2n}/b_{n-1} \).
Pfaffian Evaluation: Proof by Induction

Problem: Prove that \(\text{Pf} A_{2n} = \text{Pf}(a_{i,j})_{1\leq i,j\leq 2n} = b_n \) for all \(n \in \mathbb{N} \).

Base case: verify that \(a_{1,2} = b_1 \).

Induction hypothesis: assume that \(\text{Pf} A_{2n-2} = b_{n-1} \neq 0 \).

Induction step: the assumption implies that the linear system

\[
\begin{pmatrix}
a_{1,1} & \cdots & a_{2n-2,1} & a_{2n-1,1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{1,2n-2} & \cdots & a_{2n-2,2n-2} & a_{2n-1,2n-2} \\
0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_{2n,1} \\
\vdots \\
c_{2n,2n-2} \\
c_{2n,2n-1}
\end{pmatrix} =
\begin{pmatrix}
0 \\
\vdots \\
0 \\
1
\end{pmatrix}
\]

has a unique solution, namely \(c_{2n,i} = \Gamma_{i,2n}/\Gamma_{2n-1,2n} = \Gamma_{i,2n}/b_{n-1} \).

Now use \(c_{2n,i} \) in the expansion formula for the Pfaffian of \(A_{2n} \):

\[
\text{Pf} A_{2n} = \sum_{i=1}^{2n-1} b_{n-1} c_{2n,i} a_{i,2n}.
\]

Showing that the sum evaluates to \(b_n \) completes the induction step.
Now the holonomic ansatz can be formulated for Pfaffians:

1. Compute many values of \(c_{2n,i} \) (e.g. for \(1 \leq i \leq 2n \leq 100 \)).
2. Guess linear recurrences for \(c_{2n,i} \) from that data.
3. Prove the following identities using holonomic closure properties and creative telescoping*:

\[
c_{2n,2n-1} = 1 \quad (n \geq 1), \\
\sum_{i=1}^{2n-1} c_{2n,i}a_{i,j} = 0 \quad (1 \leq j < 2n), \\
\sum_{i=1}^{2n-1} c_{2n,i}a_{i,2n} = \frac{b_n}{b_{n-1}} \quad (n \geq 1).
\]

*implementations are available in F. Chyzak's Maple package Mgfun and C.K.'s Mathematica package HolonomicFunctions; here we will use the latter one.
A Worked Example

Consider the Pfaffian $\text{Pf} \left((j - i)M_{i+j-3} \right)_{1 \leq i,j \leq 2n}$ where

$$M_n = \sum_{k=0}^{[n/2]} \frac{1}{k+1} \binom{n}{2k} \binom{2k}{k}$$

denotes the n-th Motzkin number: 1, 2, 4, 9, 21, 51, 127, 323, . . .

Clearly, $a_{i,j} = (j - i)M_{i+j-3}$ is a holonomic sequence:

$$(i - j - 2)a_{i,j} = (i - j)a_{i-1,j+1}$$

$$(i - j + 1)(i - j + 2)(i + j - 1)a_{i,j} =$$

$$(i - j)(i - j + 2)(2i + 2j - 5)a_{i,j-1} +$$

$$3(i - j)(i - j + 1)(i + j - 4)a_{i,j-2}$$
Guessed Recurrences for \(c_{2n,i}\)

\[
(i - 1)(2n - 3)(4n - 7)c_{2n,i} = \\
-(2n + i - 4)(8in - 8i - 8n^2 + 6n + 3)c_{2(n-1),i-1} + \\
(i - 1)(16in - 16i + 8n^2 - 34n + 27)c_{2(n-1),i} + \\
24i(i - 1)(n - 1)c_{2(n-1),i+1} - (2n - 3)(4n - 7)(2n - i)c_{2n,i-1}
\]

\[
(n - 2)(2n - 5)(4n - 11)(4n - 7)(2n - i - 2)(2n - i - 1)c_{2n,i} = \\
(2n - 5)(4n - 11)(8i^2n^2 - 24i^2n + 17i^2 - 16in^2 + 48in - \\
33i - 16n^4 + 108n^3 - 258n^2 + 258n - 92)c_{2(n-1),i} - \\
(n - 1)(4n - 7)(2n + i - 5)(32in^2 - 122in + \\
117i - 32n^3 + 168n^2 - 280n + 144)c_{2(n-2),i} + \\
6i(4i + 1)(n - 2)(n - 1)(2n - 3)(4n - 7)c_{2(n-2),i+1} + \\
36i(i + 1)(n - 2)(n - 1)(2n - 3)(4n - 7)c_{2(n-2),i+2}
\]

\[
18n(i - 3)(i - 2)(i - 1)c_{2n,i} = \\
(2n + i - 4)(10i^2n - 24in^2 - 63in + i + 16n^3 + 76n^2 + 97n - 3)c_{2n,i-3} + \\
2(i - 3)n(7i^2 - 12in - 46i + 33n + 73)c_{2n,i-2} - \\
3(i - 3)(i - 2)n(14i - 12n - 39)c_{2n,i-1} - \\
(2n - 1)(4n - 3)(2n - i + 4)(2n - i + 3)c_{2(n+1),i-3}
\]
Guessed Recurrences for $c_{2n,i}$

The support of these recurrences looks as follows:

The annihilating ideal they generate has rank 4.
Identity (P1)

\[c_{2n,2n-1} = 1 \quad (n \geq 1), \]

(P1)

Apply the holonomic closure property “integer-linear substitution”:

\[
DFiniteSubstitute[c2ni, \{i \rightarrow 2 \ n - 1\}]
\]
Identity (P1)

\[c_{2n,2n-1} = 1 \quad (n \geq 1), \quad (P1) \]

Apply the holonomic closure property “integer-linear substitution”:

\[\text{DFiniteSubstitute}[c_{2ni}, \{i -> 2n - 1\}] \]

The result is a recurrence of order 4 for \(c_{2n,2n-1} \):

\[
648(n + 2)(n + 3)(2n + 3)(2n + 5)(4n + 9) \\
(1003520n^7 + 6117888n^6 + 12424768n^5 + 9388056n^4 \\
+ 318598n^3 - 2766651n^2 - 1249360n - 163269)c_{2(n+4),2(n+4)-1} \\
- 9(n + 2)(2n + 3)(2247884800n^{10} + \ldots)c_{2(n+3),2(n+3)-1} \\
+ 2(4n + 7)(6470696960n^{11} + \ldots)c_{2(n+2),2(n+2)-1} \\
-(4n + 3)(4n + 7)(1485209600n^{10} + \ldots)c_{2(n+1),2(n+1)-1} \\
+ 2(4n + 1)(4n + 3)(4n + 7)(4n - 1)^2(1003520n^7 + \ldots)c_{2n,2n-1} = 0
\]

which has \(S_n - 1 \) as a right factor and initial values 1, 1, 1, 1, 1.
Identity (P2)

\[\sum_{i=1}^{2n-1} c_{2n,i} a_{i,j} = 0 \quad (1 \leq j < 2n), \quad (P2) \]

Apply closure property “times” and use creative telescoping:

\[
\text{smnd} = \text{DFiniteTimes}[c_{2n,i}, a_{i,j}]
\]

\[
\text{FindCreativeTelescoping}[\text{smnd}, S[i] - 1]
\]
Identity (P2)

\[\sum_{i=1}^{2n-1} c_{2n,i} a_{i,j} = 0 \quad (1 \leq j < 2n), \quad \text{(P2)} \]

Apply closure property “times” and use creative telescoping:

\[
\text{smnd} = \text{DFiniteTimes}[c_{2ni}, a_{ij}]
\]
\[
\text{FindCreativeTelescoping}[ext{smnd}, S[i] - 1]
\]

The result is a system of recurrences which is satisfied by the sum

\[
j(4n - 3)(j + 2n)s_{n+1,j} - n(4n + 1)(-j + 2n - 1)s_{n,j+1} - j(4n + 1)(j - n)s_{n,j} = 0,
\]
\[
(j - 2n + 2)(j + 2n)s_{n,j+2} - (j+1)(2j+1)s_{n,j+1} - 3j(j+1)s_{n,j} = 0,
\]

and whose initial values are all equal to 0.
Identity (P3)

\[\sum_{i=1}^{2n-1} c_{2n,i} a_{i,2n} = \frac{b_n}{b_{n-1}} \quad (n \geq 1). \] (P3)

This is done by closure property “times” and creative telescoping.
Identity (P3)

\[
\sum_{i=1}^{2n-1} c_{2n,i}a_{i,2n} = \frac{b_n}{b_{n-1}} \quad (n \geq 1). \tag{P3}
\]

This is done by closure property “times” and creative telescoping.

The result is a recurrence for the ratio \(r_n := \det A_n / \det A_{n-1} \):

\[
2(4n - 11)(4n - 7)(4n - 5)(7n - 13)r_n
- (4n - 11)(350n^3 - 1413n^2 + 1798n - 714)r_{n-1}
+ 9(n - 2)(2n - 3)(4n - 7)(7n - 6)r_{n-2} = 0
\]

with initial values \(r_1 = 1 \) and \(r_2 = 5 \).
Identity (P3)

\[
\sum_{i=1}^{2n-1} c_{2n,i}a_{i,2n} = \frac{b_n}{b_{n-1}} \quad (n \geq 1).
\]

This is done by closure property “times” and creative telescoping.

The result is a recurrence for the ratio \(r_n := \det A_n / \det A_{n-1} \):

\[
2(4n - 11)(4n - 7)(4n - 5)(7n - 13)r_n
- (4n - 11)(350n^3 - 1413n^2 + 1798n - 714)r_{n-1}
+ 9(n - 2)(2n - 3)(4n - 7)(7n - 6)r_{n-2} = 0
\]

with initial values \(r_1 = 1 \) and \(r_2 = 5 \).

Its closed-form solution is \(r_n = 4n - 3 \) and therefore

\[
Pf \left((j - i)M_{i+j-3} \right)_{1 \leq i,j \leq 2n} = \prod_{k=1}^{n} (4k - 3).
\]
Theorem 2. Let $M_n = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{2k} \binom{2k}{k}$ denote the n-th Motzkin number. Then for $n \in \mathbb{N}$ we have

$$\text{Pf} \left((j - i) M_{i+j-3} \right)_{1 \leq i, j \leq 2n} = \prod_{k=0}^{n-1} (4k + 1).$$

Theorem 3. Let $D_n = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k}$ denote the n-th central Delannoy number. Then for $n \in \mathbb{N}$ we have

$$\text{Pf} \left((j - i) D_{i+j-3} \right)_{1 \leq i, j \leq 2n} = 2^{n+1}(n+1)! (2n - 1) \prod_{k=1}^{n-1} (4k - 1).$$

Theorem 4. Let $N_n(x)$ denote the n-th Narayana polynomial defined by $N_0(x) = 1$ and $N_n(x) = \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k} \binom{n}{k-1} x^k$, $n \geq 1$. Then for $n \in \mathbb{N}$ we have

$$\text{Pf} \left((j - i) N_{i+j-2}(x) \right)_{1 \leq i, j \leq 2n} = x^{n^2} \prod_{k=0}^{n-1} (4k + 1).$$