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Motivation

In quantum topology the properties of knots are studied.
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Motivation

In quantum topology the properties of knots are studied.

e One of the central questions is to decide whether two knots
are equivalent or not.

e For this purpose knot invariants are studied.

e Example: the colored Jones polynomial Jx ,,(¢q) of a knot K;
it is a g-holonomic sequence of Laurent polynomials
(Garoufalidis+L& 2005).

e The Kashaev invariant (K),, of a knot K is defined as

<K>n — JK,n(€2m/n)-
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Definition: g-Holonomic Sequence

Notation:
e KK: field of characteristic zero

e ¢: indeterminate, transcendental over K

A univariate sequence (fn(Q))nelN is called q-holonomic
if it satisfies a nontrivial linear recurrence with coefficients
that are polynomials in ¢ and ¢™:

d
> i@, farj(@) =0  (n€N)

J=0

where d is a nonnegative integer and ¢;(u,v) € Klu,v] are
bivariate polynomials for j = 0,...,d with cg(u,v) # 0.

(Zeilberger 1990)
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Closure Properties for g-Holonomic Sequences

Let f,.(q) and g, (q) be two g-holonomic sequences.
Then:

1. The sum f,(q) + gn(q) is g-holonomic.

2. The product f,(q) - gn(q) is g-holonomic.

3. The sequence fun1b(q) with a,b € Ny is g-holonomic.
(Chyzak 1998), (Koepf+Rajkovic-+Marinkovic 2007)
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Closure Properties for g-Holonomic Sequences

Let f,.(q) and g, (q) be two g-holonomic sequences.
Then:

1. The sum f,(q) + gn(q) is g-holonomic.

2. The product f,(q) - gn(q) is g-holonomic.

3. The sequence fun1b(q) with a,b € Ny is g-holonomic.
(Chyzak 1998), (Koepf+Rajkovic-+Marinkovic 2007)

These closure properties can be executed algorithmically,
on the level of recurrence equations.

Software:
e gGeneratingFunctions for Mathematica (Kauers+K. 2009)
e gFPS for Maple (Koepf+Sprenger 2010)
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Multivariate ¢g-Holonomy, O-Finiteness

A generalization of g-holonomy to a multivariate setting was
introduced by (Sabbah 1990).

A different generalization of univariate g-holonomic sequences to

several variables was given by O-finite functions (Chyzak 2000).
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Definition: O-Finite Sequence (in the ¢-Setting)

A multivariate sequence fy(q) is O-finite if for every variable
n=nq,...,n, it satisfies a linear recurrence of the form

d
Z Ck,j(quqn17 R an)fn—l-jek (q) =0
7=0

fork=1,...,r, where
e the di's are nonnegative integers,
e the ¢y ;'s are multivariate polynomials in K[u, v] with ¢ 4, # 0,

e and e denotes the k-th unit vector of length r.
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Definition: O-Finite Sequence (in the ¢-Setting)

A multivariate sequence fyn(q) is O-finite if for every variable
n=nq,...,n, it satisfies a linear recurrence of the form

di
Z ck,j (ququll? ceey Qg:)fn-l-jek (Q) =0
7=0

fork=1,...,r, where
e the di's are nonnegative integers,
e the ¢y ;'s are multivariate polynomials in K[u, v] with ¢ 4, # 0,
e and e denotes the k-th unit vector of length r.

e The indeterminates q = q1,...,qs with 1 < s < r are
transcendental over K

e and the indices aq,...,a, are between 1 and s.

6

23



Closure Properties for 0-Finite Sequences

Like g-holonomic sequences, the class of O-finite sequences is
closed under

e addition,
e multiplication,

e integer-linear substitution.

Again, these closure properties can be executed algorithmically,
on the level of recurrence equations.

Software:
e Mgfun for Maple (Chyzak 1998)
e HolonomicFunctions for Mathematica (K. 2009)
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Twisting by Roots of Unity

We're now going to establish two new closure properties:

1. Twisting by roots of unity:
For complex numbers w = wq,...,ws € C, we call
fo(wiqi, ..., wsqs) the twist of the sequence fn(q) by w;
we will show that O-finiteness is preserved under twisting by
complex roots of unity.
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fo(wiqi, ..., wsqs) the twist of the sequence fn(q) by w;
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complex roots of unity.

2. Taking n-th roots of q:
For rational numbers a4, ...,as € Q, we consider the

sequence fn(qy!,...,q%*); O-finiteness is also preserved
under this substitution.



Twisting by Roots of Unity

We're now going to establish two new closure properties:

1. Twisting by roots of unity:
For complex numbers w = wq,...,ws € C, we call
fo(wiqi, ..., wsqs) the twist of the sequence fn(q) by w;
we will show that O-finiteness is preserved under twisting by
complex roots of unity.

2. Taking n-th roots of q:
For rational numbers a4, ...,as € Q, we consider the

sequence fn(qy!,...,q%*); O-finiteness is also preserved
under this substitution.

Convention: For sake of simplicity, we will assume from now on
that the ground field KK contains all roots of unity.



Operator Notation

Write recurrences as operators, using the following notation:

let the operators L and M act on a sequence f,(q) by

Lfn(q) = far1(a),
an(q) = qnfn(Q)a

and which satisfy the g-commutation relation LM = qM L.

23



Operator Notation

Write recurrences as operators, using the following notation:
let the operators L and M act on a sequence f,(q) by

Lfn(q) = far1(a),
an(q) = qnfn(Q)a

and which satisfy the g-commutation relation LM = qM L.

Analogously in the multivariate setting (1 < k <r):

Lifn(d) = fote,(q),
My fo(q) = qg:fn(Q)a
with
LMy, = qa, My Ly,
Lij = MkL] fOI’j 7'5 k.



Left Ideals: Dimension and Rank

We denote by O the Ore algebra K(q, M)(L).

Given a multivariate sequence fy(q), the set
Amp(f) ={P €O | Pf =0},

the annihilator of f, is a left ideal in O.

10/23



Left Ideals: Dimension and Rank

We denote by O the Ore algebra K(q, M)(L).

Given a multivariate sequence fy(q), the set
Amp(f) ={P €O | Pf =0},
the annihilator of f, is a left ideal in O.

Using this terminology:

1. A multivariate sequence fn(q) is O-finite with respect to O if
Anngp(f) is a zero-dimensional left ideal in O.

10/23



Left Ideals: Dimension and Rank

We denote by O the Ore algebra K(q, M)(L).

Given a multivariate sequence fy(q), the set
Amp(f) ={P €O | Pf =0},
the annihilator of f, is a left ideal in O.

Using this terminology:

1. A multivariate sequence fn(q) is O-finite with respect to O if
Anngp(f) is a zero-dimensional left ideal in O.

2. The dimension dimk O/ is called the rank of the ideal I.
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Theorem 1

Theorem
Let fu(d) = fui,..n.(q1,-..,qs) be a multivariate O-finite
sequence, and let wj € C be an m;-th root of unity (1 < j <s).
Then the twisted sequence gn(q) = fa(w1q1,-..,wsqs) is O-finite
as well.

Moreover, let I be a zero-dimensional left ideal of rank R such
that If = 0. From a generating set of I, a Grobner basis of a
zero-dimensional left ideal J with Jg = 0 can be obtained and its
rank is at most R - myg, ---mg

Corollary

Let f,(q) be a q-holonomic sequence that satisfies a recurrence of
order d. Then for any root of unity w € C of order m the
sequence f,(wq) is g-holonomic as well and satisfies a recurrence
of order at most m - d.
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Idea of the Proof (Univariate Setting)

Naive approach: substitute ¢ — wq in the recurrence.
Example: (¢*" + ¢"™ — 1) f,41(q) — ¢*f(q) = 0 leads to

(W *" + " g — 1) fr1(wq) — wq? fr(wg) = 0.
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Idea: Let m be the order of w; find a recurrence for f,,(q) in which
all powers of M = ¢™ are divisible by m.
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Idea of the Proof (Univariate Setting)

Naive approach: substitute ¢ — wq in the recurrence.
Example: (¢*" + ¢""! — 1) f11(q) — ¢*fu(q) = 0 leads to
(W' + W — 1) g (wq) — wPq? fulwg) = 0.

Idea: Let m be the order of w; find a recurrence for f,,(q) in which
all powers of M = ¢™ are divisible by m.

Strategy:
o Rewrite M**b into N*M°
where b < m and N = M™ is a new variable.
e Eliminate M.

e This can be done by pure linear algebra
(no Grobner basis calculation is necessary)!
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Algorithm (Input)

Input:
e O=K(q,M)(L)=K(q1,...,9s, M1,...,M){(L1,...,Ly)
e a monomial order < for ©

e a finite set F' C O such that F is a left Grébner basis w.r.t. <
and the left ideal o (F) is zero-dimensional

o for1 <j<s:
mje]N,wje(Dwitthj:1andw§7é1forallﬁ<mj

Notation:
e let U denote the set of monomials under the stairs of I,

e write m(k) for mg, .
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Algorithm
G=0, V=0 T={1}
while T # ()
TO = min< T T=T \ {To}
A_COTO+ZJ |1CJ Vj
A’ = A reduced with F'
clear denominators of A’
substitute M — Ma mod m(k )Nta/m(k)J in A/

write A’ as ZIUI (_1())_1 e Z] (_()] d”]\fj1 - MU
equate all d; ; to zero
solve this linear system for co, ..., ¢y over K(q, N)
if a solution exists then
substitute the solution into A
G =GU{A}
T:TU{ToLkil Skg?“}
T:T\{Tj 1 <5 <|T| A Jglm<(Gy) | Tj}
else
V=Vu {TQ} 14/23



Algorithm (Final Steps)

substitute Ni — M,Zn(k) and ¢; = wjgq; in G
return GG
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Example
Recall the definition for the g-binomial coefficient

[n] _ Q=g —g" Y. (1 g
kl, 1-q)(1—¢*---(1-g~)

Let f(q) be the central g-binomial coefficient [2:](].
It satisfies the recurrence

(1= ¢"™) fag1(q) = (L+¢" T = @ — ) f(q)

which translates to the operator

(M — 1)L — ¢*M3 — gM? + gM + 1.
The twisted sequence f,,(—q) is annihilated by the operator

(q4M2—1)L2+((q7—q6)M4—q+1)L—

q7M6_(qG_q5+q4)M4+(q4_q3+q2)M2+q-

16
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Computation with HolonomicFunctions

gbin = Annihilator[QBinomial[2n, n, ql, QS[M, gq"nl]

{(gM — 1)Saq + (—¢*M? — gM? + gM + 1)}

DFiniteQSubstitute[qbin, {q, 2}]

{(@"M? = )8, + (@"M* = ¢"M* — g+ 1) Sy +
(_q7M6_q6M4+q5M4_q4M4+q4M2_q3M2+q2M2+q)}
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Example 2

The g-Pochhammer symbol (g; q), := [[r—, (1 — ¢*) satisfies the
simple recurrence

"

(@ @Qnt1=(1—¢q @ Qn-

We want to study the twisted sequence (wq;wq), for w being a
third root of unity. Therefore we have to compute a recurrence for
(q; @) in which all exponents of M = ¢" are divisible by 3:

(@ Dnts — (P +a+1) (¢@)nr2 +
(@ + @+ q) (@ @)ns1 + ("0 = ¢%) (¢;0)n = 0.

Substituting ¢ — wq delivers a recurrence for the twist (wgq; wq)y.
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Computation with HolonomicFunctions

gp = Annihilator [QPochhammer[q, q, n], QS[M, gq"n]l]

{SMﬂ qﬂf“l)}

DFiniteQSubstitute[qp, {q, 3}, Return -> Backsubstitution]

{S¥g+ (—* —a—1)S} 4 + (& + ¢ + Q) S + (°M° — ¢%)}
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Theorem 2

Theorem
Let fo(d) = foi,..n.(q1,...,qs) be a multivariate O-finite
sequence, and let o, ...,as € Q. Then the sequence

gn(Q) = fal(q]", ..., q%°) is O-finite as well.

Moreover, let I be a zero-dimensional left ideal of rank R such
that I f = 0. From a generating set of I, a Grobner basis of a
zero-dimensional left ideal J with Jg = 0 can be obtained and its
rank is at most R-my ---mg-mg, - - mg,, where m; € N denotes
the denominator of ;.

Corollary

Let fn(q) be a g-holonomic sequence that satisfies a recurrence of
order d. Then for o € Q the sequence f,(q“) is g-holonomic as
well and satisfies a recurrence of order at most m? - d, where

m € N is the denominator of «.
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Idea of the Proof

Write oij = £;/m; forall 1 < j <'s.

Idea: Find recurrences in I in which all powers of g; are divisble by
m;j, as well as all powers of Mj, for which a; = j.

Then the substitutions ¢; — q?j can be safely performed, i.e., the

resulting recurrences will have polynomial coefficients in ¢1, ..., qs
and My, ..., M,.
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Example 3

The substitution ¢ — ,/q is performed on the g-Pochhammer
symbol (g; q)n-

Theorem 2 predicts that the resulting recurrence is of order at
most 4. As an intermediate result, the operator

L' — (@ + D)L= (M + M — ¢* — )L
—OMA 4+ BME M2 —
is found in o (L + ¢M — 1), the annihilator of (¢;q)n.

The final result for f, = (\/Q, \/Q)n is the recurrence

fn+4 - (q + 1)fn+3 - (qn+4 + q"+3 - q2 - q)fnJrl
+ (_q2n+5 + qn+4 + qn+3 _ q2) fn =0.



Computation with HolonomicFunctions

gp = Annihilator [QPochhammer[q, q, n], QS[M, gq°nl]

{Ehfq qﬂ{“l)}

DFiniteQSubstitutelqp, {q, 1, 2}]

{SMq (g+1)Sy, + + (—¢*"M — @M + ¢* + q)Suq +
(—°M* +¢"M + M — ¢*)}
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