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Motivation

In quantum topology the properties of knots are studied.

• One of the central questions is to decide whether two knots
are equivalent or not.

• For this purpose knot invariants are studied.

• Example: the colored Jones polynomial JK,n(q) of a knot K;
it is a

q-holonomicq-holonomic

sequence of Laurent polynomials
(Garoufalidis+Lê 2005).

• The Kashaev invariant 〈K〉n of a knot K is defined as

〈K〉n = JK,n(

e2πi/ne2πi/n

).

−→ Twisting q-holonomic sequences by complex roots of unity
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Definition: q-Holonomic Sequence

Notation:

• K: field of characteristic zero

• q: indeterminate, transcendental over K

A univariate sequence
(
fn(q)

)
n∈N is called q-holonomic

if it satisfies a nontrivial linear recurrence with coefficients
that are polynomials in q and qn:

d∑
j=0

cj(q, q
n)fn+j(q) = 0 (n ∈ N)

where d is a nonnegative integer and cj(u, v) ∈ K[u, v] are
bivariate polynomials for j = 0, . . . , d with cd(u, v) 6= 0.

(Zeilberger 1990)
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Closure Properties for q-Holonomic Sequences

Let fn(q) and gn(q) be two q-holonomic sequences.
Then:

1. The sum fn(q) + gn(q) is q-holonomic.

2. The product fn(q) · gn(q) is q-holonomic.

3. The sequence fan+b(q) with a, b ∈ N0 is q-holonomic.

(Chyzak 1998), (Koepf+Rajkovic+Marinkovic 2007)

These closure properties can be executed algorithmically,
on the level of recurrence equations.

Software:

• qGeneratingFunctions for Mathematica (Kauers+K. 2009)

• qFPS for Maple (Koepf+Sprenger 2010)
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Multivariate q-Holonomy, ∂-Finiteness

A generalization of q-holonomy to a multivariate setting was
introduced by (Sabbah 1990).

A different generalization of univariate q-holonomic sequences to
several variables was given by ∂-finite functions (Chyzak 2000).
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Definition: ∂-Finite Sequence (in the q-Setting)

A multivariate sequence fn(q

q

) is ∂-finite if for every variable
n = n1, . . . , nr it satisfies a linear recurrence of the form

dk∑
j=0

ck,j(q

q

,qn1

qn1
a1

, . . . , qnr

qnr
ar

)fn+jek(q) = 0

for k = 1, . . . , r, where

• the dk’s are nonnegative integers,

• the ck,j ’s are multivariate polynomials in K[u,v] with ck,dk 6= 0,

• and ek denotes the k-th unit vector of length r.

• The indeterminates q = q1, . . . , qs with 1 ≤ s ≤ r are
transcendental over K

• and the indices a1, . . . , ar are between 1 and s.
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Closure Properties for ∂-Finite Sequences

Like q-holonomic sequences, the class of ∂-finite sequences is
closed under

• addition,

• multiplication,

• integer-linear substitution.

Again, these closure properties can be executed algorithmically,
on the level of recurrence equations.

Software:

• Mgfun for Maple (Chyzak 1998)

• HolonomicFunctions for Mathematica (K. 2009)

7 / 23



Twisting by Roots of Unity

We’re now going to establish two new closure properties:

1. Twisting by roots of unity:
For complex numbers ω = ω1, . . . , ωs ∈ C, we call
fn(ω1q1, . . . , ωsqs) the twist of the sequence fn(q) by ω;
we will show that ∂-finiteness is preserved under twisting by
complex roots of unity.

2. Taking n-th roots of q:
For rational numbers α1, . . . , αs ∈ Q, we consider the
sequence fn(q

α1
1 , . . . , qαs

s ); ∂-finiteness is also preserved
under this substitution.

Convention: For sake of simplicity, we will assume from now on
that the ground field K contains all roots of unity.
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Operator Notation
Write recurrences as operators, using the following notation:
let the operators L and M act on a sequence fn(q) by

Lfn(q) = fn+1(q),

Mfn(q) = qnfn(q),

and which satisfy the q-commutation relation LM = qML.

Analogously in the multivariate setting (1 ≤ k ≤ r):

Lkfn(q) = fn+ek(q),

Mkfn(q) = qnk
ak
fn(q),

with

LkMk = qakMkLk,

LjMk =MkLj for j 6= k.
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Left Ideals: Dimension and Rank

We denote by O the Ore algebra K(q,M)〈L〉.

Given a multivariate sequence fn(q), the set

AnnO(f) = {P ∈ O | Pf = 0},

the annihilator of f , is a left ideal in O.

Using this terminology:

1. A multivariate sequence fn(q) is ∂-finite with respect to O if
AnnO(f) is a zero-dimensional left ideal in O.

2. The dimension dimKO/I is called the rank of the ideal I.
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Theorem 1

Theorem
Let fn(q) = fn1,...,nr(q1, . . . , qs) be a multivariate ∂-finite
sequence, and let ωj ∈ C be an mj-th root of unity (1 ≤ j ≤ s).
Then the twisted sequence gn(q) = fn(ω1q1, . . . , ωsqs) is ∂-finite
as well.
Moreover, let I be a zero-dimensional left ideal of rank R such
that If = 0. From a generating set of I, a Gröbner basis of a
zero-dimensional left ideal J with Jg = 0 can be obtained and its
rank is at most R ·ma1 · · ·mar .

Corollary

Let fn(q) be a q-holonomic sequence that satisfies a recurrence of
order d. Then for any root of unity ω ∈ C of order m the
sequence fn(ωq) is q-holonomic as well and satisfies a recurrence
of order at most m · d.
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Idea of the Proof (Univariate Setting)

Naive approach: substitute q → ωq in the recurrence.

Example: (q2n + qn+1 − 1)fn+1(q)− q2fn(q) = 0 leads to

(ω2nq2n + ωn+1qn+1 − 1)fn+1(ωq)− ω2q2fn(ωq) = 0.

Idea: Let m be the order of ω; find a recurrence for fn(q) in which
all powers of M = qn are divisible by m.

Strategy:

• Rewrite Mam+b into NaM b

where b < m and N =Mm is a new variable.

• Eliminate M .

• This can be done by pure linear algebra
(no Gröbner basis calculation is necessary)!
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Algorithm (Input)

Input:

• O = K(q,M)〈L〉 = K(q1, . . . , qs,M1, . . . ,Mr)〈L1, . . . , Lr〉
• a monomial order ≺ for O

• a finite set F ⊂ O such that F is a left Gröbner basis w.r.t. ≺
and the left ideal O〈F 〉 is zero-dimensional

• for 1 ≤ j ≤ s:
mj ∈ N, ωj ∈ C with ω

mj

j = 1 and ω`j 6= 1 for all ` < mj

Notation:

• let U denote the set of monomials under the stairs of F ,

• write m(k) for mak .
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Algorithm
G = ∅, V = ∅, T = {1}
while T 6= ∅

T0 = min≺ T , T = T \ {T0}
A = c0T0 +

∑|V |
j=1 cjVj

A′ = A reduced with F
clear denominators of A′

substitute Ma
k →M

a mod m(k)
k N

ba/m(k)c
k in A′

write A′ as
∑|U |

i=1

∑m(1)−1
j1=0 · · ·

∑m(r)−1
jr=0 di,jM

j1
1 · · ·M

jr
r Ui

equate all di,j to zero
solve this linear system for c0, . . . , c|V | over K(q,N)
if a solution exists then

substitute the solution into A
G = G ∪ {A}
T = T ∪ {T0Lk : 1 ≤ k ≤ r}
T = T \ {Tj : 1 ≤ j ≤ |T | ∧ ∃k lm≺(Gk) | Tj}

else
V = V ∪ {T0} 14 / 23



Algorithm (Final Steps)

...
substitute Nk →M

m(k)
k and qj → ωjqj in G

return G
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Example
Recall the definition for the q-binomial coefficient[

n

k

]
q

:=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
.

Let fn(q) be the central q-binomial coefficient
[
2n
n

]
q
.

It satisfies the recurrence

(1− qn+1)fn+1(q) = (1 + qn+1 − q2n+1 − q3n+2)fn(q)

which translates to the operator

(qM − 1)L− q2M3 − qM2 + qM + 1.

The twisted sequence fn(−q) is annihilated by the operator(
q4M2 − 1

)
L2 +

((
q7 − q6

)
M4 − q + 1

)
L−

q7M6 −
(
q6 − q5 + q4

)
M4 +

(
q4 − q3 + q2

)
M2 + q.
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Computation with HolonomicFunctions

qbin = Annihilator[QBinomial[2n, n, q], QS[M, q^n]]{
(qM − 1)SM,q + (−q2M3 − qM2 + qM + 1)

}

DFiniteQSubstitute[qbin, {q, 2}]{
(q4M2 − 1)S2

M,q + (q7M4 − q6M4 − q + 1)SM,q +

(−q7M6− q6M4+ q5M4− q4M4+ q4M2− q3M2+ q2M2+ q)
}
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Example 2

The q-Pochhammer symbol (q; q)n :=
∏n
k=1(1− qk) satisfies the

simple recurrence

(q; q)n+1 = (1− qn+1)(q; q)n.

We want to study the twisted sequence (ωq;ωq)n for ω being a
third root of unity. Therefore we have to compute a recurrence for
(q; q)n in which all exponents of M = qn are divisible by 3:

(q; q)n+3 −
(
q2 + q + 1

)
(q; q)n+2 +(

q3 + q2 + q
)
(q; q)n+1 +

(
q3n+6 − q3

)
(q; q)n = 0.

Substituting q → ωq delivers a recurrence for the twist (ωq;ωq)n.
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Computation with HolonomicFunctions

qp = Annihilator[QPochhammer[q, q, n], QS[M, q^n]]{
SM,q + (qM − 1)

}

DFiniteQSubstitute[qp, {q, 3}, Return -> Backsubstitution]{
S3
M,q + (−q2 − q − 1)S2

M,q + (q3 + q2 + q)SM,q + (q6M3 − q3)
}
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Theorem 2

Theorem
Let fn(q) = fn1,...,nr(q1, . . . , qs) be a multivariate ∂-finite
sequence, and let α1, . . . , αs ∈ Q. Then the sequence
gn(q) = fn(q

α1
1 , . . . , qαs

s ) is ∂-finite as well.
Moreover, let I be a zero-dimensional left ideal of rank R such
that If = 0. From a generating set of I, a Gröbner basis of a
zero-dimensional left ideal J with Jg = 0 can be obtained and its
rank is at most R ·m1 · · ·ms ·ma1 · · ·mar , where mj ∈ N denotes
the denominator of αj .

Corollary

Let fn(q) be a q-holonomic sequence that satisfies a recurrence of
order d. Then for α ∈ Q the sequence fn(q

α) is q-holonomic as
well and satisfies a recurrence of order at most m2 · d, where
m ∈ N is the denominator of α.
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Idea of the Proof

Write αj = `j/mj for all 1 ≤ j ≤ s.

Idea: Find recurrences in I in which all powers of qj are divisble by
mj , as well as all powers of Mk for which ak = j.

Then the substitutions qj → q
αj

j can be safely performed, i.e., the
resulting recurrences will have polynomial coefficients in q1, . . . , qs
and M1, . . . ,Mr.

21 / 23



Example 3
The substitution q → √q is performed on the q-Pochhammer
symbol (q; q)n.

Theorem 2 predicts that the resulting recurrence is of order at
most 4. As an intermediate result, the operator

L4 − (q2 + 1)L3 − (q8M2 + q6M2 − q4 − q2)L
− q10M4 + q8M2 + q6M2 − q4

is found in O〈L+ qM − 1〉, the annihilator of (q; q)n.

The final result for fn =
(√
q;
√
q
)
n

is the recurrence

fn+4 − (q + 1)fn+3 − (qn+4 + qn+3 − q2 − q)fn+1

+
(
−q2n+5 + qn+4 + qn+3 − q2

)
fn = 0.
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Computation with HolonomicFunctions

qp = Annihilator[QPochhammer[q, q, n], QS[M, q^n]]{
SM,q + (qM − 1)

}

DFiniteQSubstitute[qp, {q, 1, 2}]{
S4
M,q − (q + 1)S3

M,q + (−q4M − q3M + q2 + q)SM,q +

(−q5M2 + q4M + q3M − q2)
}

23 / 23


