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Abstract

We identify tessellation-filtering ReLU neural net-
works that, when composed with another ReLU
network, keep its non-redundant tessellation un-
changed or reduce it. The additional network com-
plexity modifies the shape of the decision surface
without increasing the number of linear regions.
We provide a mathematical understanding of the re-
lated additional expressiveness by means of a novel
measure of shape complexity by counting devia-
tions from convexity which results in a Boolean
algebraic characterization of this special class. A
local representation theorem gives rise to novel ap-
proaches for pruning and decision surface analysis.

1 Introduction

We present a novel approach to analyze and quantify the
shape complexity of the decision surface of a deep model
based on Rectified Linear Units. To this end, we introduce a
special class of functions that reflects the non-convexity char-
acteristics of the decision surface in an extended neighbor-
hood of a point in a Boolean-algebraic way, thus providing
a rich mathematical structure for analysis and computation.
As main result we provide a Representation Theorem that
decomposes the network into a shape complexity part, rep-
resented by our special class, and an underlying hyperplane
tessellation. For sake of comprehensibility we use an instruc-
tive example that resembles the construction of a Cantor set
in fractal geometry.

The Rectified Linear Unit (ReLU), o(z) := max(z,0),
z € R, is currently the most commonly used non-linear acti-
vation function in deep learning models [Glorot er al., 2011;
Szandata, 2021]. It is motivated by the neocortex [Hahnloser
et al., 2000] and many of the most widely used neural net-
work models such as VGG [Simonyan and Zisserman, 2015],
GoogLeNet [Szegedy et al., 2015] or ResNet [He et al., 2016]
are based on the ReLU activation function. ReLU networks
do also play a prominent role in theoretical analysis, par-
ticularly in the context of understanding complexity and ex-
pressiveness of deep neural networks [Montifar et al., 2014,
Raghu et al., 2017; Arora et al., 2018; Montiifar et al., 2021].
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Since a deep ReLU neural network (ReLU DNN) represents
a piecewise linear function it can be partitioned into affine
functions over polyhedral regions, also called linear regions
in the literature. The transition from one linear region to an-
other one changes the slopes in the input-output function as
well as it changes the activation pattern of firing neurons. A
larger number of linear regions therefore indicates greater ex-
pressiveness of the underlying DNN architecture. Previous
research on understanding ReLU DNNs has focused on an-
alyzing the number of linear regions by searching for lower
and upper bounds for a given network architecture in terms of
number of network layers and number of neurons [Montidfar
et al., 2014; Serra er al., 2018]. Tt is argued that, in gen-
eral, the number of linear regions grows polynomially with
the number of neurons but can grow exponentially with the
number of layers, underpinning the intuition that deep neural
networks have greater expressiveness than shallow architec-
tures. However there remains a gap in explaining the theoret-
ical bounds found by specifically constructed ReLU DNNs
and the number of linear regions observed in practice [Hanin
and Rolnick, 2019]. From a topological perspective the con-
cept of Betti numbers has been investigated [Bianchini and
Scarselli, 2014] to characterize the connectivity properties
of the induced decision function. For a subset S C R"
there are n Betti numbers [Peterson, 19691, b,(S) € N,
0 < k < n—1, where by(.5) denotes the number of connected
components and by (.S) the number of k-dimensional holes
in S. Since geometric bodies with different Betti numbers
cannot transformed into each other by means of bicontinuous
mappings, Betti numbers provide a consistent notion of com-
plexity of geometric regions, respectively decision surfaces
in high-dimensional spaces. For instance, a disc in R? has no
holes, therefore, we have b; (disc) = 0 while by (circle) = 1,
and b; equals 1 for a 2D-sphere in R3, while b; = 2 for
a torus. It can be shown that the sum of Betti numbers can
grow exponentially in the number of neurons of a deep net-
work while it is limited by polynomial growth for shallow
networks [Bianchini and Scarselli, 2014].

To start the discussion we introduce two illustrative exam-
ples with decision surfaces without any holes, i.e., with van-
ishing Betti numbers, but showing different effects when be-
ing modeled by means of ReLU DNNSs.

Example 1. For our first example we start with the func-
tion A(z) = max{—-3z + 1,0,3z — 2} on [0,1] and its
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Figure 1: Ragged decision surfaces (k = 2, 3) from Example 1.
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Figure 2: Illustration of in- and out-notches as two types of devia-
tions from convexity.

recursively nested composition A*tD) (z) = A(A®)(z)),
AW (z) = A(z), defining decision surfaces (here a 1-
dimensional decision curve) as upper border of the regions

Ry, == {(z,y) € [0,1]° |y < (AW (2) + 1)/2}. (D)
See Figure 1 for an illustration.

Example 2. Our second example is the function that checks
whether all elements of a finite list of non-negative values
(Z1,...,2p) € [0,00)™ are strictly positive or not.

Despite vanishing Betti numbers, this example shows a
complex decision surface approximating a fractal geometry
for growing recursion depth, which can be realized in vari-
ous ways: for example, as a deep network that is constructed
from the recursion, but also as a shallow network by model-
ing each of the zigzag components separately in a first layer
and then combining them in a second layer. This also shows
that ReLU DNN representations are not unique. Though the
second example can be fully characterized by n half-space
decisions, its realization by means of a ReLU DNN, e.g.,
min{xy,x9} = (x1 + 2 — |r1 — x2|)/2 induces a tessel-
lation with an exponential number of linear regions. The ex-
amples demonstrate (1) that Betti numbers are a too coarse
concept of complexity to represent the expressive power of
neural networks, and (2) that there is a gap between expres-
siveness in terms number of linear regions on the one hand
and expressiveness in terms of which decision surfaces can be
represented. In this context, shape complexity beyond Betti
numbers has received too little attention in the literature until
now. To bridge this gap, after fixing notation and providing
preliminaries from discrete mathematics in Section 2, we will
introduce in Section 3 the central notion of notches to char-
acterize deviations from convexity. As illustrated in Figure 2,
we distinguish between in-notches and out-notches. We start
in Section 3 with introducing a measure of shape complexity
for quantifying non-convexity structures of a decision surface
by exploiting invariant geometric properties between a hyper-
plane tessellation and its representation in the hypercube of
activation patterns. In this context a special class of functions
come into play which distinguishes by its shape complexity
properties, see Section 4. This special class leads to a Lo-
cal Representation Theorem, which is discussed in terms of

relevance and future research, see Section 5.

2 Preliminaries

The ReLU activation function ¢ is defined on vectors x =

(x1,...,2,) € R™ through entry-wise operation, i.e.,
o(x) := (max{zy,0},...,max{x,,0}). The architecture
A = (Wi, b;)i=1,....1 of a deep neural network (DNN) is

specified by a sequence of matrix-vector pairs (W;, b;) with
W; € R"*"i-1 and b; € R™. The number ng denotes the di-
mension of the input space, while n; is called the width of the

i-th layer. L is the depth of the network and N = 25:1 n;
the total number of neural units. Together with the ReL.U
activation function o the architecture A = (W;, b;);=1... 1.
defines an input-output function N7, : R" — R™~ resulting
from the composition of layers

Nip(zo) =00 fro...o00 fi(xg) 2)

with f;(x) := W,z + b;. For sake of simplicity we focus
on binary classification problems. One way to define such
a classifier is by means of n;, = 2. The maximal value
in the final output (ar 1(x0), ar 2(x0)) indicates the class.
If ap1(xo) > ar2(xo) the point xg is classified to be-
long to the class C, otherwise not. Note that this classifi-
cation rule can be equivalently represented by an (L + 1)-
layered network with nyq = 1 by setting apy1(xg) =
max{ay 2(x0) — ar1(x0),0}. Because of @ > b if and
only if max{b — a,0} = 0, the points classified to belong
to the class C can be represented as 0-preimage, N ~1(0), of
the function A': R™ — Ry. We are interested in the geom-
etry of O-preimages of ReLU DNNs and say that two ReLU
neural networks are equivalent if their O-preimages coincide.

2.1 Activation Space and Tessellations

Given some data point zy we obtain the neural activation
pattern a(xg) = (N1(z0))T, ..., (Ni(z0))T) € RY. An
entry in the activation pattern is either 0 or positive, re-
ferred to as non-active (non-firing) or active (firing) sta-
tus, respectively. The binary activation states, active or
not, are represented by a vector mar(zg) in the hypercube
Hy = {0,1}V. Wecall my : = = 7wa(z) € Hy
the activation pattern mapping w.rt N. The activation re-
gion R(man(xo)) = {x € R™ | wp(x) = mar(zo)} of
points  with the same activation pattern mar(zg) € Hy re-
sults as solution from a finite number of affine inequalities,
therefore yielding a (convex) polyhedron [Hein et al., 2018;
Shepeleva et al., 2020]. Let denote by Tess[N] the resulting
tessellation induced by the ReLU DNN V.

The collection of all half-spaces that describe such poly-
hedral cells as intersections induces another tessellation. We
call it its h-tessellation Tess,[A] and its activation pattern
mapping 7k (2¢), defined accordingly. Note that a cell in
Tess|N] is a finite union of cells in Tessy, [N].

According to our setup of the classification problem, we
distinguish between ’0’- and > (’-activations patterns, re-
spectively, depending on whether an activation pattern results
from a point in A’~%(0) or its complement. We denote by
Ao = {nn(z) | * € N71(0)} the set of O-activation pat-
terns, and we define A~ := {my(x) | x € R\ N710)};



we write A% := {7l (2) | € N71(0)}, resp., AL, if the
activation patterns refer to the h-tessellation.

We call an activation region in-cell if it is contained in the
O-preimage of \V, i.e., its associated activation pattern 7 is an
element of Ay. Otherwise we call an activation region out-
cell.

A tessellation Tess,[A] can be redundant in the sense
that the removal of some of its half-spaces does not change
the decision surface. We write eff Tessy, [A/] if all redundant
half-spaces have been removed, and call it the effective h-
tessellation of N.

If only a single entry differs when comparing two activa-
tion patterns w4 and 7p, the corresponding polyhedral acti-
vation regions R,, and R, touch each other by sharing a
common polyhedral face. This way we can introduce notions
of connectedness and other topological concepts.

We say that two activation patterns 7 4 and 7 p are adjacent
if their Hamming distance equals 1, i.e., dg(m4,75) = 1. A
path between w4 and 7 is a sequence of adjacent activation
patterns connecting w4 with mp. The shortest path length
is given by the Hamming distance d = dgy(ma,np). For
M C Hpy, we write T4 ~s wp if there is a connecting path
in M between w4 € M and mp € M. Accordingly a set C' of
activation patterns is connected if there is a path connecting
any pair of points in the set C' such that all activation patterns
along the path are also in C. A connected component is a
maximally connected set. In contrast to Euclidean spaces the
shortest path in a Hamming space is not unique.

2.2 Convexity in Hamming Space

The convexity of a set C' in Euclidean geometry is charac-
terized by the property that any line segment connecting two
points in the set is also contained in the set C'. As a line seg-
ment is the shortest path in Euclidean geometry we generalize
this concept to the Hamming space as follows.

Definition 1 (Convex Sets (Hulls) of Activation Patterns).
A set C C {0, 1}™ of activation patterns is convex if and only
if it contains all shortest Hamming paths connecting any two
points in C. The convex hull conv g [C] of activation patterns
C C {0,1}™ is the smallest convex set containing C.

The following lemma allows us to reformulate geometric
problems in h-tessellations in terms of combinatorial prob-
lems in the hypercube #,,, = {0,1}"™. A k-dimensional face
of ‘H.,,, consists of all points that agree on a collection of m—k
coordinates, thereby forming a hypercube of dimension k.

Lemma 1 (Equivalence of Convexity Notions). A convex
arrangement of activation regions of an h-tessellation with m
half-spaces in Euclidean space corresponds to a convex set
of activation patterns in Hamming space, i.e., a face of the
hypercube H,, = {0,1}™, and vice versa.

3 Notches and Shape Complexity

Instead of counting holes by means of Betti numbers [Bian-
chini and Scarselli, 2014], we are counting notches, i.e., de-
viations from convexity, in terms of minimal convex arrange-
ments of activation regions in an h-tessellations that cover the
regions of non-convexity. Due to Lemma 1 we can equiva-
lently formulate this notion of a notch in the Hamming space
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Figure 3: In this arrangement of activation regions of an h-
tessellation there are two possible configurations of out-notches:
first, {01,02} and {o2,03} (as shown), and, second, {o1} and
{02,03}. The red paths indicate corresponding shortest paths be-
tween activation patterns of in-cells visiting the out-notches.

of activation patterns. An out-notch can be characterized as
convex region v, of out-cells (resp. activation patterns of out-
cells) for which there is a shortest path between activation
patterns of in-cells visiting v,. See Figure 3 for an illustra-
tion. Analogously, we define an in-notch to be a convex re-
gion v, of in-cells for which there is a shortest path between
activation patterns of out-cells visiting v, .

Definition 2 (Notches in Hamming Space). Consider an h-
tessellation of non-trivial cells generated by m many half-
spaces with cells being either in- or out-cells. A notch to the
set M C {0, 1}"™ within the hypercube H s := convy[M] is
afacev C Hyr\ M that is adjacent to some 71,79 € M with
non-empty overlap with their convex hull convgr[{m, T},
ie, dg(v,m) =1, dg(v,m2) = 1 and convy[{m,m2}] N
v # 0. In case of M C Al we call the notch an out-notch,
and if M C Hpy \ A(’)‘ we call it an in-notch.

The cardinality of a minimal configuration of notches such

that no further notch can be constructed gives the Out-Notch-
Number (resp. In-Notch-Number). For convenience we de-
note Hys := convy[M], (n*) :={mw € M | 7 ~p; 7*}, and
How = convy [(7*)].
Definition 3 (Notch Number). Given an h-tessellation
ReLU DNN N : R™ — R, we define the Notch Number w.r.t.
the set M, © nr[M], to be the minimal exhaustive number of
notches to M within H . We write ©%; in case of M = A}
and ©%, if M = Hﬁto \ AP, Further, we define the local ver-
sions, Local Out-Notch Number, resp. Local In-Notch Num-
ber, at the data point xg, resp. its associated activation pat-
tern ™ := mw(xg) by setting

OR(wo) = On[(m)],

O (o) = On[Hr \ (77)]. 3)
3.1 ReLU Representation w.r.t. In-Notches
We can construct a ReLU DNN N* by starting with an ex-
haustive list of in-notches {v4, .. ., VéLf} to R™\ f71(0) and
checking the condition

3k : g € v, <= N*(x0) = 0.



This can be achieved by setting

B Ny
e. k

N (o) = %1:1111 Zlmax{&'i(aco),O} , “4)
j=

where IV} denotes the number of faces of notch vy, and
@y (wg) = o7, d(zo, F}\) denotes the distance between z and
the hyperplane contalmng the k-th face F} of in-notch v}

with the sign o] € {—1,1} defined such that @ (zo) < 0
if xg € v},

3.2 Reconstruction of h-Tessellation

Due to tropical algebra [Zhang et al., 2018; Alfarra et al.,
2020; Trimmel et al., 2021], a ReLU DNN N can always be
represented in the form of

N(@) = mipc{ai(a)} —mbx{b; (@)} ©)

with affine functions a; and b;. Now, let us transform (5)
to obtain the form of (4) by means of max]_;{a;(x)} +

min?_;{—b;(z)} = minj_; {max]_,{a;(z) — b;(z)}}. By

setting
hi j(2) := max{a;(z) - b;(z),0} ©)

we obtain an h-tessellation that contains the effective h-
tessellation.

3.3 Global Shape Complexity
Note that the sum of Out- and In-Notch Numbers,

On = O} + Oy, @)

reflects the minimal cardinality of a partition of the input
space into (convex) polytopes that allows to correctly rep-
resent the decision problem whether a point belongs to the
O-preimage of f or not. As a consequence, © s proves to
be a property of the decision surface itself which is invariant
to the complexity of architectures of ReLU DNNs A realiz-
ing the same decision problem. In particular, ©  remains
unchanged if the network architecture is differently encoded
say by changing the orientations of the half-spaces, or even
by relabeling the classes, i.e., interchanging 0 with > 0 (en-
coded by 1). In the latter, we obtain a new function f with
F7H0) = f~1(> 0) and, accordingly, f~1(> 0) = f~1(0),
which leads to a change of in- to out-notches and vice versa,
so that in the end © r remains unchanged.

Therefore, it is justified to write synonymously © f = O .
This motivates us to consider © »r as a measure for the shape
complexity of the decision surface of a ReLU DNN A/,

For 2o € N71(0) and 7* = 7(x9) = (af,...,a},) €
H,n, we consider the mapping Tr«: Hpn —  Hum,
(A1, Q) = Tre(aq,. .., ) given by

’ ®)
The mapping 7T,~ preserves Hamming distances,

dp (Tr(m1), T (m2)) = dp(m,m), and the convex-
ity property, i.e., M is convex if and only if T« (M) is

convex. Therefore, ©; also remains invariant w.r.t T«-
mappings. This means that, without loss of generality, we
may assume that the origin 7o = (0,...,0) € Ah.

Summarizing these findings give the following theorem.
Theorem 1 (Invariance of Shape Complexity). Given a
piecewise linear function f: R™ — Rg and let Ay be the
class of ReLU DNNs N realizing the decision problem rep-
resented by f, i.e., to be able to distinguish between the sets
f710) and f~1(> 0). Then, © xr for some N' € Ay satisfies:

(1) Oy is invariant w.r.t. architectures N € Ay;

(2) ©n is invariant w.r.t. T ~-mappings in the activation
space.

4 Tessellation-Filtering ReLU Networks

Fix n,m € N and consider an r-class ReLU neural network
V: R" = Rf’, given by

V(zy, ... an) =V, V), 9)

where Vi, ..., V,, are ReLU DNNs acting on the same do-
main, i.e., V;: R — Ry. We are interested in the construc-
tion of a ReLU DNN &/ : [0, 00)™ — [0, 00) such that for any
choice of body-ReLU DNN (9) the effective tessellation re-
sulting from its concatenation U/ o )V does not have other cells
(resp., hyperplanes) than already contained in the effective
tessellation effTessy, [V] = |, eff Tess [Vi], i.e

eff Tessp, [U o V] C effTessy, [V]. (10)

Condition (10) enforces that the 0-preimage of ¢/ does not in-
troduce an additional intersection with any of the half-spaces
of Tessp,[V]. This can only be the case if

,Ym) € UTH(0)
,Ym) € UTH(0).

This means that 2/(~1)(0) is enforced to be the union of sets
of the form

yi>0 and (yla"'7yiv~~~
— VR0 (G

Fy x . .. x Fj x ... x Fy, (11

where Fj is either {0} or [0,00), j € {1,...,m}. All to-
gether we obtain the form

u-voy = J F, (12)
pewc{o,1}m

where Fy, = F{*) x ... x F{?) and ¢ € ¥ C {0,1}™ and
0} ¥ =0

F(w { 2 bl 13

{ [0, 00) P = 1. (13)

Note that F7, in (12) characterizes the in-notches of a ReLU
DNN U satisfying (10). By specifying the collection ¥ of in-
notches by means of (13) and utilizing (4), this allows us to
construct

U gy Ym) = i 1-— i) Yi ¢ - 14
w(YLs- - Um) glelg{;( w)y} (14)

Let us denote by tessINV,, the set of tessellation-filtering
ReLU DNNs (14) on [0,00)™. Since a coordinate-wise



lower-relation ¢* < ¢ implies > .~ (1—¢;)y; < > v (1—
;%) y;, it suffices to consider only the maximal elements
1 € W to evaluate (14). Further note that if ¢;, = 1 for all
1) € U} the convex hull of (Uy)(~1)(0) has dimension lower
than m — 1. To avoid redundancy, therefore we require that
U to satisfy max{¢;|¢ € ¥} = 1foralli =1,...,m. In
graph theory two sets of vertices are called independent if no
two vertices in the set are adjacent. For details see [Kahn and
Park, 2022]. Let Z,,, denote the collection of maximally inde-
pendent sets in the corresponding discrete hypercube. Then,
considering only maximal vertices such that the maximum
yields the upper vertex (1,...,1) means that ¥ € Z,,. This
establishes a one-to-one correspondence between tessINV,.
and Z,,. Due to [Kahn and Park, 2022], |Z,,| is asymptoti-
cally 2m 22"/4, which quantifies the diversity, hence expres-
siveness, of the special subclass of tessellation-filtering ReLU
DNNSs in m variables.

As U consists of maximal elements, as a byproduct we get
a characterization of the In-Notch Number of its induced de-
cision surface in Theorem 2.

Theorem 2 (In-Notch Number of I/ € tessINV,,,). Let ¥ €
I, and Uy € tessINV,,, then

O, =Y.

s)

A tessellation-filtering ReLLU DNN has the special property
that its global In-Notch Number equals its Local In-Notch
Number, which turns out to be characteristic.

Theorem 3 (tessINV,,, Characterization). For a ReLU DNN
N : [0,00)™ — [0,00), m € N, we have N is tessellation-
filtering if and only if ©,(0) = ©;.

Proof. (11) implies that for all in-notches v of a tessellation-
filtering A we have

convg[r U{0}] € N10).

But O, can only be greater than ©4/(0) if there are in-
notches not satisfying (16). O

(16)

Decomposing now the ReLU DNN in a top and a body
network, i.e., N' = N” o N/, and applying the tropical
Tess;, reconstruction (6) on N/, we obtain a local repre-
sentation of V" at x9 € N~1(0), which allows us to cap-
ture non-convexity characteristics of the decision surface. To
simplify notation, we write 7"/ := 71'/}([/,, m = mwnv and
Z:={r"(x) | N"(z) = 0}.

Let us partition Z = E U G via

E = {veZ]|convy[r"(x),v] C Z},

G = Z\E. (17)

Applying (8), T (5, induces the tessellation-filtering ReL.U
DNN Uy given by

Uy (v) = 0 = v € Trny,)(B). (18)

Note that equation (18) also holds on the Hamming ball
By« (7" (x)) that does not contain activation patterns from
G. (18) can be applied to A by restricting x to the activation
region R := {z | n’(z) = 7" (x0)}, giving Theorem 4.

By
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Figure 4: Ball By~ centered at the marked cell for Example 1 for
k = 3. The ball covers non-convexity regions according to the
structure of (12), which allows the application of lattice-based com-
putations (20) in order to compute the local shape complexity as
outlined. The red dotted lines mark the effective h-tessellation. The
white cells (out-notches) have d* = 0, while the cells on the bottom
(like the black marked) have highest d* = 3, indicating lower shape
complexity. See Figure 5 for plotted shape complexities.

Theorem 4 (Local Representation Theorem). Given the

ReLU DNN N = N" o N" and o € N1(0), then there

is a Uy € tessINV,, (m is the number of half-spaces in
Tessp (N')) satisfying

N(z) =0 <= Uy 0 Tr(gy) (m(x)) =0 (19)

for 7 given by the h-tessellation {h;o N | h; € Tess;,(N"")}
and x € RN By-(n(x0)),

d* = min{dg (v, 7(x9))| convy[m(xo),v] L Z}.  (20)

Note that Theorem 4 generalizes the setting of fixing all
activation values for a point g, giving a polyhedron [Hein et
al., 2018]. A single cell does not have any (topological) in-
formation about the decision surface geometry. Therefore, we
enlarge the view by fixing only the activation values for the
body part N, resulting in a respectively complex region that
cannot be handled easily anymore, see, e.g., [Montdfar et al.,
2021]. Figure 4 shows such an extended ball. Our theorem
opens up a way to make this enlarged environment manage-
able for shape analysis. Note that already in a second layer
we, in general, loose convexity as invariant property between
polyhedral arrangements in the input space and the activation
space. So, the h-tessellation is necessary if we want to re-
cover convexity properties, which in our view is crucial to
be able to characterize shape complexity adequately. Theo-
rem 4 decomposes the network in to purely shape complex-
ity part, represented by Uy, and an underlying h-tessellation.
This way, replacing Uy by Uy, with less shape complexity
smooths the surface, thus acting as pruning operator.

But, from a practical view, computing the h-tessellation for
the whole network is infeasible and the restriction to a rea-
sonable number of top layers is unavoidable. The choice of
the top 2 or 3 layers already provides insights regarding the
shape complexity. But future research is needed to analyze
these aspects in more detail.



Algorithm 1 Local Uy Approximation

1: Initialization. Set £ = (), G = 0, compute my = 7(x0) and
T, due to (8); i = 1; Compute the h-tessellation by means of
(6) utilizing tropical algebra [Trimmel ef al., 2021].

2: Choose z; € Dy and compute T; = Ty, (7(;)).

3: Check whether convy[0,7;] € N~1(0) by means of
checking whether there is a y; € D; such that (g;;1) =
T, (m(y;)) satisfies (g;;0) < Tj; if yes, then add (g;;0) to
G; choose the next candidate from Dy and repeat step 2;

4: If no y; found then check whether 7} is a maximal element
of E by iterating e € E via

4.1: M, = max}_,(T; — €)g, me = minp_, (T; — €);

4.2: replace {e € E| M, > 1,m, > 0} by T} in F;

4.3: if M, — m, =2foralle € E, then T; is independent to
) and, therefore, add T; to E ;

4.4: goto step 4.1 until all points from Dy have been checked.
5: Take the elements of £ to define ¥ (see (14)).

6: Due to (20), compute the maximal Hamming distance
d* = mingec{dn(g,0)}.

5 Algorithm and Examples

Theorem 4 gives rise to the following algorithm to iden-
tify a locally approximating Uy in a neighborhood B at x.
We show here the part for the top part and write A/ instead
of N/, to simplify notation. We outline an approximating
algorithm that checks condition (17) by randomly selected
points in a neighborhood B at zo by means of a sample
Dy ={x1,...,2x,} € N71(0) N B for class 0 and sample
Dy ={y1,...,yx, } SN (> 0)NB forclass 1. This way,
Algorithm 1 guarantees a lower bound for the local decision
surface complexity. After applying the initialization step of
computing the h-tessellation, the time complexity of this al-
gorithm is O((Ky + K1)?). Analogously to step 4, we can
proceed for G to extract an independent set G C G of min-
imal elements in G. By this we obtain ©4(zo) = |E| and

O (z0) = |G|, which are invariant to the architecture of \.
Note that also the resulting region in the input space given by
R = U,cp,. (n(0)) R(TK’) remains invariant to the archlte.:c—
ture of /. This motivates us to define a shape complexity
measure that is invariant of the architecture of A by setting

_ Bl +16]
S(wo) == T[R]’

where Vol[R] can be approximated by [, (p;”
p? = sup{\ > 0|du(m(zo + o Ae;), m(xp))

See Figure 5 for plotted S-curves for Example 1. The top
curve, y = 1, shows the highest S values triggered by the out-
notched with §* = 0. The curves match with our intuition that
more rugged regions show higher S values. In general, for
Example 1 we obtain S((z,y)) = O(2*) with k recursions
and (z,y) € [0,1]%. Note that Example 2 can be modeled
by a min, which is a tessellation-filtering ReLU DNN with
U ={>,.ejli€{l,...,n}} consisting of n independent
maximal elements and there is only one out-notch given by
>_; €. Therefore, we get S(z) = O(n) for z € [0, 1]".

ey

"4+ pi!) with
< 0*}, 0 €

0.2 0.4 0.6 0.8 1.0

Figure 5: Local Shape Complexity S due to (21) for Example 1 for
k = 2 and the lines y = 1, resp. y = 1/3and y = 0.

6 Conclusion

Our main focus was on revealing invariant properties between
tessellations induced by ReLU DNNs and their Hamming
cube counterpart, and exploiting them for the purpose of ge-
ometrical analysis of decision surfaces. Several insights and
research questions for the future follow from this approach:
(i) the special subclass of tessellation-filtering ReLU DNNs
is distinguished by special properties, for example in connec-
tion with shape geometry. It is quite rich, yet mathematically
well-manageable due to its relationship to Boolean algebra;
this connection, as e.g. the role of ideals for shape analy-
sis, will be topic of future research; (ii) so does the Local
Representation Theorem as one of our main results of this
paper; (iii) as a byproduct we obtain tools to construct illus-
trative examples showing that the number of linear regions,
often seen as the measure for expressiveness, is highly de-
pendent on the architecture and can be misleading; (iv) the
derivation of an architecture-independent measure for local
shape complexity is a first step towards exploiting this ap-
proach for decision surface analysis. Our shape complexity
measure captures local topological properties of the decision
surface. Putting in oversimplified terms, it counts the num-
ber of non-convex dents. That is, our complexity measure is
related to local ‘smoothness’ properties of neural networks,
which are well known to relate to generalization. The gener-
ality of our topological characterization will pave the way to-
wards obtaining mathematical insight and evidence for practi-
cally relevant questions such as adversarial vulnerability and
also generalization capabilities.
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