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Part I: HolonomicFunctions

� The Mathematica package HolonomicFunctions provides:

1. Algorithms for multivariate holonomic functions/sequences
• computation of annihilating ideals
• closure properties (addition, multiplication, substitutions)
• summation and integration (via creative telescoping)

2. Computations in Ore algebras
• noncommutative polynomial arithmetic with mixed

difference-differential operators
• Gröbner bases (Buchberger, FGLM, modules)

3. Solving coupled linear systems of differential-difference
equations

� HolonomicFunctions is freely available at

http://www.risc.jku.at/research/combinat/software/

HolonomicFunctions/

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/


Ore algebras
� Let A be a ring and let σ : A→ A be an endomorphism of A.
� Let δ : A→ A be a σ-derivation, i.e.,

∀ a, b ∈ A : δ(a + b) = δ(a) + δ(b), δ(ab) = σ(a)δ(b) + δ(a)b.

� An Ore extension A[∂;σ, δ] of A is the noncommutative ring of
polynomials in ∂ with coefficients in A subject to

∀ a ∈ A : ∂ · a = σ(a) · ∂ + δ(a).

 The multiplication corresponds to composition of operators.

� Examples:

• K[x ][∂;σ, δ] with σ = id and δ = d
dx : ring of linear ordinary

differential operators with polynomial coefficients

• K(n)[∂;σ, δ] with σ(n) = n + 1 and δ = 0: linear recurrence
operators with rational function coefficients



Holonomic functions

� A function f is called holonomic if it satisfies “sufficiently many”
linear differential/(q-)difference/mixed equations.

� The annihilator of f consists of the (usually infinite) set of such
equations satisfied by f (it has the structure of a left ideal):

AnnD(f ) = {P ∈ D : P(f ) = 0}.

 Its (finite) left Gröbner basis yields a data structure for
encoding holonomic functions.

� Example: a holonomic function identity:∫ ∞
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 The HolonomicFunctions package can assist in proving it.



Functionality: Ore operators

� Built-in operators in the HolonomicFunctions package:

• partial derivatives Dx = d
dx , Dy = d

dy , etc.

• Euler operator θx = xDx

• forward/backward shifts (“time-delay operators”): Sn, S−1n

• difference operator ∆n = Sn − 1

• q-shift operator Sq,x f (x) = f (qx)

� Example: Weyl algebra in two variables:
> OreAlgebra[x, y, Der[x], Der[y]]

K[x , y ][Dx ; 1,Dx ][Dy ; 1,Dy ]

� Example: mixed multivariate rational Ore algebra:
> OreAlgebra[Der[x], Euler[z], S[n], QS[M,q^m]]

K(k ,M, n, q, x , z)[Dx ; 1,Dx ][θz ; 1, θz ][Sn; Sn, 0][SM,q; SM,q, 0]



Functionality: Ore polynomials
� Elements in an Ore algebra are called Ore polynomials.

D = F[∂1;σ1, δ1] · · · [∂s ;σs , δs ]

� An Ore polynomial P ∈ D is a (finite) sum of the form∑
i1≥0
· · ·
∑
is≥0

ci1,...,is∂
i1
1 · · · ∂

is
s , ci1,...,is ∈ F.

� Data structure for Ore polynomials and pretty printing
� Arithmetic with Ore polynomials in HolonomicFunctions:
> p = ToOrePolynomial[S[n]^2 - ((2n+2)/x)**S[n] + 1]
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Functionality: Gröbner bases

� Gröbner bases in Ore algebras

• Buchberger’s algorithm works in the Ore setting almost
exactly as in commutative polynomial rings.

• Various term orders, e.g., lexicographic, graded-lexicographic,
graded-reverse-lexicographic, grlex with weights, elimination
order, order defined by a matrix.

• FGLM algorithm

� Example: Gröbner basis for the annihilator of f (x , y) = sin(xy):

> OreGroebnerBasis[{Der[x]^2 + y^2, Der[y]^2 + x^2},

OreAlgebra[Der[x], Der[y]]]{
−xDx + yDy ,D

2
y + x2

}



Functionality: module Gröbner bases

� Let D be an Ore algebra and M be a left module over D.

� If M is finitely generated, then there exists a finite set
{m1, . . . ,mr} every m ∈ M can be represented as

m =
r∑

i=1

dimi , di ∈ D.

� Gröbner bases for ideals can be easily extended to modules by

• using indicator variables: either m1, . . . ,mr or p, p2, . . . , pr ,

• using an appropriate term order: position over term or
term over position.



Special Features

� Possibility to define own Ore operators:

> OreSigma[T] = σ; OreDelta[T] = δ;
> ToOrePolynomial[T^2 ** a]

σ(σ(a))T 2 + (δ(σ(a)) + σ(δ(a)))T + δ(δ(a))

� Work with arbitrary coefficient domains, e.g., containing
trigonometric functions or special functions:

> p1 = x^n ** p + Gamma[n] ** S[n]
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)
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Special Features

� Redefine procedures for adding, multiplying, and normalizing
coefficients of Ore polynomials:

• By default, coefficients are kept in expanded form
(problematic for rational functions!).

• This information is stored in each OreAlgebra object.

• Use Factor[#1+#2]& and #1*#2& for factored form.

• More advanced application of this feature: automatic
simplification in general coefficient domains:

• by using Mathematica commands like Simplify,
• by performing some reduction (e.g., s2 + c2 − 1),
• by applying some replacement rules.

• The latter is realized in the OreAlgebraWithRelations

command of the OreAlgebraicAnalysis package.



Special Features

> A = OreAlgebraWithRelations[Der[x],

{D[f[x], {x, k_}] :> a*D[f[x], {x, k-1}]}];

K(x)[Dx ; 1,Dx ]

> ToOrePolynomial[Der[x]^2 ** f[x]]

f [x ]D2
x + 2f ′[x ]Dx + f ′′[x ]

> ToOrePolynomial[Der[x]^2 ** f[x], A]

f [x ]D2
x + 2a f [x ]Dx + a2f [x ]



Part II: OreAlgebraicAnalysis

� Starting point: HolonomicFunctions provides:

1. A rather general implementation of Ore algebras

2. Gröbner bases for ideals over such Ore algebras
 Gröbner bases for modules over such Ore algebras

� Gröbner bases techniques can then be used to compute left
kernels (syzygy modules), left factorizations, left inverses, . . .
 We can perform constructive homological algebra computations

⇒ Study linear systems over Ore algebras via algebraic analysis

 OreAlgebraicAnalysis: dedicated mathematica package
freely available with a list of examples at

http://www.unilim.fr/pages_perso/thomas.cluzeau

http://www.unilim.fr/pages_perso/thomas.cluzeau


Problems in control theory

� Given a linear system of functional equations, typical questions in
control theory are:

1. Is the system controllable or does-it admit autonomous
elements? → Compute autonomous elements

2. Is the system parametrizable? → Compute a parametrization

3. Is the system flat? → Compute flat outputs

� Algebraic analysis approach: unified mathematical framework to
systematically answer to these questions

� Main tools for computations: constructive homological algebra,
non-commutative Gröbner bases



The left D-module M
� D Ore algebra of functional operators, R ∈ Dq×p and a left
D-module F (the functional space).

� Consider the linear system (behavior)

kerF (R.) = {η ∈ Fp | R η = 0}.

� To kerF (R.) we associate the left D-module:

M = D1×p/(D1×q R)

given by the finite presentation

D1×q .R−→ D1×p π−→ M −→ 0,
λ = (λ1, . . . , λq) 7−→ λR.

Remark (Malgrange’62):

kerF (R.) ∼= homD(M,F) := {f : M → F , f is left D-linear}.



Module theory

� Classification of finitely generated left D-modules

� M free if ∃ r ∈ Z+ such that M ∼= Dr

� M stably free if ∃ r , s ∈ Z+ such that M ⊕ Ds ∼= Dr

� M projective if ∃ r ∈ Z+ and a D-module P s.t. M ⊕ P ∼= Dr

� M reflexive if ε : M −→ homD(homD(M,D),D) is an
isomorphism, where ε(m)(f ) = f (m), ∀ m ∈ M, f ∈ homD(M,D)

� M torsion-free if t(M) = {m ∈ M | ∃ 0 6= d ∈ D : d m = 0} = 0

� M torsion if t(M) = M

� This classification can be effectively checked via the computation
of extiD(.,D)’s (constructive homological algebra)

� Existing implementations in maple, singular/plural,
cocoa, gap4/homalg, . . .



Dictionary system / module properties

� Linear system kerF (R.) := {η := (η1 . . . ηp)T ∈ Fp | R η = 0}

1. Autonomous element: linear comb. of the ηi satisfying a
D-linear relation (controllable system if no autonomous elmt)

2. Parametrizable system: ∃Q ∈ Dp×m s.t. kerF (R.) = Q Fm

3. Flat system: there exists a parametrization Q ∈ Dp×m which
admits a left inverse T ∈ Dm×p, i.e, T Q = Ip

� Associated left D-module M = D1×p/(D1×q R)

1. kerF (R.) controllable iff M torsion-free
(Autonomous elements ↔ Torsion elements)

2. kerF (R.) parametrizable iff ∃Q ∈ Dp×m s.t. M ∼= D1×p Q
(iff M torsion-free and Q parametrization, kerF (R.) = Q Fm)

3. kerF (R.) flat iff M free
(Flat outputs ↔ Elements of the bases of M)



Content of the package

� D Ore algebra handled by the package HolonomicFunctions

� Main functions:

1. Functions for the study of matrices with entries in D
(LeftKernel, LeftFactorize, LeftInverse,. . . )

2. Functions for the study of systems/modules over D
(AutonomousElements, Parametrization, IsTorsion,. . . )

3. Functions for homological algebra over D
(FreeResolution, Ext1, Ext,. . . )

4. Functions for morphisms and decomposition problems over D
(Morphisms, IdempotentMorphisms, Decomposition,. . . )



Concluding remarks

� OreAlgebraicAnalysis includes the main procedures
implemented in the maple packages OreModules
(Chyzak-Q.-Robertz) and OreMorphisms (C.-Q.)

� Advantages of OreAlgebraicAnalysis:

1. Study larger classes of linear functions systems since
HolonomicFunctions handles more Ore algebras than
Ore−algebra

2. Internal design of mathematica allows us to consider classes
of systems which could not easily be considered in maple:

• Generic linearizations of nonlinear functional systems defined
by explicit equations

• Systems containing transcendental functions (trigonometric
functions, special functions, . . . )



OreAlgebraicAnalysis is freely available with a library of
examples at

http://www.unilim.fr/pages_perso/thomas.cluzeau

Reference: Effective algebraic analysis approach to linear systems
over Ore algebras, in collaboration with C. Koutschan, A. Quadrat
and M. Tõnso, To appear, 2016.

Thank you for your attention!

http://www.unilim.fr/pages_perso/thomas.cluzeau

