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Abstract. Designing mechanical devices, called linkages, that draw a given
plane curve has been a topic that interested engineers and mathematicians
for hundreds of years, and recently also computer scientists. Already in 1876,
Kempe proposed a procedure for solving the problem in full generality, but his
constructions tend to be extremely complicated. We provide a novel algorithm
that produces much simpler linkages, but works only for parametric curves.
Our approach is to transform the problem into a factorization task over some
noncommutative algebra. We show how to compute such a factorization, and
how to use it to construct a linkage tracing a given curve.

1. Introduction

Kempe’s Universality Theorem [14], stating that any plane algebraic curve can
be drawn by a mechanical linkage with only rotational joints, surprised his con-
temporaries: his work represented a major breakthrough in a topic investigated by
mathematicians of the 19th century. In the middle of the last century, it appeared
in textbooks, for example, the ones by Lebesgue [20] and Blaschke and Müller [2].
Recently, there was a revived interest in the problem among mathematicians and
computer scientists as we outline in the following. We would also like to mention [22]
for a historical overview and further references.

In modern terms, the procedure proposed by Kempe is a parsing algorithm. It
takes the defining polynomial of a plane curve as input and realizes arithmetic op-
erations via certain elementary linkages. In this work, we approach the question
from a different perspective. Instead of a polynomial, we start with a rational
parametrization of a curve. From this, we obtain a parametrized family of elements
of the group SE2 of direct isometries of the plane, namely a motion, whose action
on a point traces the given curve. In order to realize such a motion by a linkage, we
decompose it into a series of revolutions. By encoding motions via polynomials over
a noncommutative algebra, we reduce this task to a factorization problem. Even-
tually, we design a linkage whose rotational joints move according to the previously
obtained revolutions, yielding a device drawing the desired curve.

Requiring a rational parametrization, it is clear that our approach is less general
than Kempe’s, and its subsequent generalizations [1, 12, 13, 15], because it cannot
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be applied to planar curves of positive genus. However, the parametric setup has
advantages in design processes: in the language of robotics/kinematics, we are not
just prescribing the position of the end effector but also its orientation, in a similar
way as in [25]; moreover, when one has to interpolate prescribed poses of the end
effector, we can specify a tracing order and have control over its speed.

Linkages obtained via Kempe’s procedure do not, in general, trace only the curve
they are designed for. More precisely, the curve is only drawn by a component
of the configuration space (also called workspace), that is, the set of all positions
reachable by the linkage. This is due to the fact that already the elementary linkages
may admit degenerate configurations, allowing the device to flip into an unwanted
component. Several solutions to this problem have been suggested [1, 6, 12, 13, 15].
The linkages produced by our method present the same issue, however, this can be
treated using the techniques presented in [1, 6]; see Remark 7.7.

Generation of linkages drawing an arbitrary curve may involve many links and
joints. This was already observed by Kempe [14]: “. . . this method would not be
practically useful on account of the complexity of the link work employed . . .”. The
problem of finding upper bounds for the number of joints needed to trace a given
planar curve of degree d was first addressed in [7, 8]; see [6, Section 3.2.3]. Their
upper bound O(d4) was later improved by Abbott and Barton to O(d2), who in [1]
showed that this bound is optimal. In this paper, we provide an algorithm that ap-
plies to rational planar curves: given a rational parametrization with denominator
of degree d and without real roots, our algorithm produces a linkage with 3d + 2
links and 9

2d+ 1 joints (Proposition 7.10; we are grateful to Hans-Peter Schröcker
for discussions leading to this result). If we apply our technique to the parametriza-
tion of an ellipse, we obtain a linkage with 8 links and 10 joints; in Section 2, we
illustrate our approach and the main ideas of our paper via this example. In con-
trast, an unoptimized linkage returned by Kempe’s procedure has 158 links and 235
joints; we are grateful to Alexander Kobel, who gave a full implementation [16] of
Kempe’s procedure, for assisting us in the computation of these numbers.

In Section 3, we develop a mathematical model for linkages with only rotational
joints. In particular, we define their configuration space in terms of isometries send-
ing a fixed initial configuration to a reachable one. This differs from the commonly
used models [5, 12, 13, 15, 24] which, instead, define configurations in terms of the
positions of links and joints.

In Section 4, we recall that one can embed SE2 as an open subset of a real projec-
tive space; see [11]. This allows us to introduce a noncommutative algebra K whose
multiplication corresponds to the group operation in SE2, hence mimicking the role
played by dual quaternions with respect to SE3. A polynomial with coefficients in K
therefore describes a family of direct isometries, which we call a rational motion.
Consequently, we refer to such polynomials as motion polynomials; they are the
two-dimensional analog of the motion polynomials introduced in [10], and they are
the key for turning our geometric problem into an algebraic one. In fact, we show
that a linear motion polynomial represents a motion constrained by a revolute or
prismatic joint. Hence a factorization of a motion polynomial into linear factors
yields a decomposition of the corresponding rational motion into simple ones.

In Section 5, we give necessary and sufficient criteria for the existence of a fac-
torization of a motion polynomial. Not every motion polynomial admits such a



PLANAR LINKAGES FOLLOWING A PRESCRIBED MOTION 3

factorization. However, the correspondence between motion polynomials and ratio-
nal motions is not one-to-one: for every rational motion, there is a whole equivalence
class of motion polynomials. Moreover, the motions we are dealing with are spe-
cial, since they admit bounded orbits. Once we restrict to such bounded rational
motions, we can prove that the equivalence class of every bounded rational motion
contains a motion polynomial admitting a factorization into linear polynomials of
revolute type. We provide an algorithm for computing the smallest factorizable
polynomial in an equivalence class and one of its factorizations; see Theorem 5.15.
In this context, we would like to refer to the preprint [21], where this result is used
to prove factorizability of motion polynomials giving rational motions in SE3.

At the beginning of Section 7, we construct from a factorization a linkage, in
the form of an open chain, such that the given rational motion can be realized
as the relative motion of the last link of the chain with respect to the first one.
Open chains have high mobility, so we have to constrain our linkage such that it
performs only the motion we are interested in. The technique we employ, called
flip procedure, is introduced in Section 6. In the remaining part of Section 7, we
exploit the properties of flips and propose our main algorithm; see Theorem 7.6.

In Section 8, we address the problem of self-collisions. For arbitrary linkages, this
is a challenging problem [5, Section 9.3]. Here, for the first time in the paper, we take
into account how linkages are physically realized. We show that self-collisions can
be efficiently detected for linkages obtained by our algorithm when links are realized
by bars. If, instead, we allow links of different shapes, we describe a construction
showing that it is possible to realize these linkages without collisions. This addresses
the open problems raised in [6, Open Problem 3.2] and [23, Section 2.3].

A popular formulation of Kempe’s Theorem states that “There is a linkage that
signs your name”. Inspired by this, in Section 9, we give an example of a linkage
drawing a calligraphic letter.

All algorithms described in the paper have been implemented by the second-
named author in the computer algebra system Mathematica. The source code, an
expository notebook, and animations for the main examples are available for free
as electronic supplementary material [17].

This paper is the outcome of the joint work of the Symbolic Computation group
at RICAM (Linz): the problem of constructing linkages following a planar rational
motion was proposed in our research seminar and after some time became its main
topic. Each participant contributed to the final result according to his/her own
background and skills (algebraic geometry, combinatorics, kinematics, etc).

2. A first example

We want to illustrate the main ideas and techniques with an example. Consider
the ellipse (x+1)2+4y2 = 1 in the plane, which admits the rational parametrization

ϕ(t) =

(
−2

t2 + 1
,

t

t2 + 1

)
.

Our goal is to construct a planar linkage with rotational joints drawing the curve
parametrized by ϕ that admits only one degree of freedom. This means that there
is a specific link (on which we put the pen) that performs a motion along the ellipse
as the linkage moves. By construction, the motion of this link is the composition of
several rotations. We encode motions by univariate polynomials with coefficients
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in the algebra K = C[η]/(η2, ıη+ηı), where ı denotes the imaginary unit. Elements
of K are of the form z + ηw with z, w ∈ C, and they are multiplied as follows:

(z + ηw) · (z′ + ηw′) = (z z′) + η (zw′ + z′w).

In our case, a translational motion along the ellipse is represented by the polynomial

P (t) = (t2 + 1) + η (ıt− 2).

This means that the orbit of any point under this motion is a translate of the
ellipse. To construct a linkage that realizes this motion, we want to factor P into
linear polynomials, which correspond to revolute motions. However, one can check
that this is not at all possible! On the other hand, as pointed out in Remark 4.8,
we will see that for any R ∈ R[t], the motion polynomial RP ∈ K[t] describes the
same motion as P . In the example, we can take R = t2 + 1 so that RP admits a
factorization into linear polynomials (see Theorem 5.15):

R(t) · P (t) =
(
t+ ı− η ı

)
·
(
t− ı+ 1

2η ı
)
·
(
t− ı+ 3

2η ı
)
· (t+ ı).

Such a factorization is computed by the algorithm FactorMotionPolynomial (see
the end of Section 5). It allows us to construct a linkage, in the form of an open
chain (left part of Figure 1), whose links move according to the rotations represented
by the linear factors (this is algorithm ConstructWeakLinkage at the beginning of
Section 7). Since such a linkage has a high degree of freedom, we need to constrain
its mobility by adding more links and joints (right part of Figure 1). This is achieved
by an iteration of the so-called flip procedure, described in Sections 6 and 7.

Figure 1. An open chain and its extension to a linkage of mobility
one, realizing the translational motion given by P (t).

However, if we just want to draw the ellipse, we need not realize exactly the
translational motion P (t): it is enough to find a motion for which the orbit of one
point is the ellipse. As pointed out in Remark 4.9, multiplying with a polynomial
C ∈ C[t] from the left does not change the orbit of the origin. In our case, we
find that the polynomial CP with C(t) = t − ı factors completely as follows (see
Proposition 7.10):

C(t) · P (t) =
(
t− ı− 1

2η ı
)
·
(
t− ı+ 1

2η ı
)
·
(
t+ ı+ η ı

)
.

This factorization gives rise to a slightly simpler construction, see Figure 2. Further
details concerning this example will be provided in Examples 4.12, 5.16, and 7.11.
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Figure 2. The linkage that draws an ellipse. The same linkage
is shown in different positions: t = 2 (white), t = 1

2 (light gray),
t = 0 (dark gray), and t = −1 (black).

3. Linkages

In this section, we define a mathematical model for kinematic objects known as
linkages. A linkage is a device constituted by rigid bodies, called links, connected
by joints, which restrict the relative position of two neighboring links. In this paper
we focus on planar linkages with revolute joints, namely linkages for which all links
move in parallel planes and whose joints allow only rotations around a point. In our
model we will not be concerned with the shape of the links — the only exception
will be Section 8 — and we will suppose that joints are the only constraints for
the motion of the links. Thus we can represent a linkage by a graph whose vertices
correspond to links, and where two vertices are connected by an edge if and only if
the corresponding links are connected by a joint (for an example, see Figure 3). But
the graph does not encode how the joints constrain the motion of the links, since it
does not specify their (initial) position. So we have to add this extra information.

Definition 3.1. A linkage with revolute joints is a connected undirected graph
G = (V,E), together with a map ρ : E −→ R2, such that G does not have self-
loops, i.e., all edges connect different vertices. The elements of V are called links,
while the elements of E are called joints. We call two links neighboring if they are
connected by a joint. For a joint e ∈ E, the point ρ(e) is called the center of rotation
of e. In the following, we will always assume that V is of the form {1, . . . , n} and
that elements of E are given by unordered pairs {i, j} of elements i, j ∈ V .

Remark 3.2. An implementation of a linkage, where links are realized by line
segments between the joints, also looks like a graph. Note that this graph is not
the same as the one in Definition 3.1, rather it is its dual. The lengths of the links
are then given implicitly by distances between initial positions of joints.
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Figure 3. A picture of a linkage (on the left) and the correspond-
ing link graph (on the right).

Next we explain how we describe configurations of a linkage, namely, the posi-
tions of all its links at a given moment. There are essentially two ways to indicate
the position of a link: we can give either its absolute position with respect to some
frame of reference, or its relative position with respect to some other link. Both
these notions will be encoded by means of isometries.

Notation. We denote by SE2 the group of direct isometries of R2, i.e., maps that
preserve distances and orientation (of the standard basis of R2):

SE2 :=
{
σ : R2 −→ R2 : σ is an isometry, detσ = 1

}
.

For each link i there is a unique isometry σi ∈ SE2 taking it from its initial
position to a current one; we say that σi is the absolute position of the link i.
The relative position of a link i with respect to some other link j is defined to
be σi,j = σi ◦ σ−1j ; hence we have the relation σi,j = σi,k ◦ σk,j . If i and j are
neighboring links, then σi,j is a rotation around the point p = ρ(i, j), which is the
initial position of the joint {i, j}. This follows directly, since σi(p) = σj(p). All this
motivates the following definition of “virtual” relative positions; the name indicates
that they do not take into account the constraints imposed by the linkage.

Definition 3.3. Let L = (G, ρ) be a linkage, and let i, j ∈ V be links connected
by a joint e ∈ E. The set of virtual relative positions VRP(i, j) of the link i with
respect to the link j is the subgroup of SE2 of rotations around the point ρ(e).
Notice that VRP(i, j) = VRP(j, i).

We define a configuration of a linkage L as a collection of virtual relative positions
of links satisfying the following conditions: if (i, h1), (h1, h2), . . . , (hs, i) is a directed
cycle in G, namely a sequence of pairs of links connected by a joint, starting and
ending at the same link, then the composition σi,h1 ◦ · · · ◦ σhs,i — which gives
the relative position of i with respect to itself — should be the identity. Loosely
speaking, a configuration consists of the angles at all joints (counted twice), together
with the (redundant) information ρ(e) for all e ∈ E.
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Definition 3.4. The set of configurations of a linkage L is defined to be

Conf(L) :=

{
(σk,l) ∈

∏
{i,j}∈E

VRP(i, j)×VRP(j, i) : for every directed cycle

(i, h1), (h1, h2), . . . , (hs, i) in G, we have σi,h1
◦ · · · ◦ σhs,i = id

}
,

where
∏

denotes the Cartesian product so that (σk,l) is a tuple of size 2|E|.

This definition of configuration space is the main difference between our model
and the ones appearing in the literature [5, 12, 13, 15, 24].

Remark 3.5. The cycle conditions imposed in the definition of Conf(L) have
the following consequence: suppose that i, j ∈ V are two neighboring links; then
(i, j), (j, i) is a directed cycle from i to i. Therefore, if Σ = (σk,l) is a configuration
of L, the cycle condition imposes that σi,j ◦ σj,i = id, implying that σi,j = σ−1j,i .
Hence for every linkage L = (G, ρ), the projection∏

{i,j}∈E

VRP(i, j)×VRP(j, i) −→
∏

{i,j}∈E
i<j

VRP(i, j)

is a bijection when restricted to Conf(L) (and an isomorphism if we consider the
projective structure on Conf(L) we will define soon), and similarly for every pro-
jection that forgets exactly one among each pair (i, j) and (j, i). Still, we chose the
above definition for Conf(L) because it does not fix an orientation of the edges,
allowing us to deal with arbitrary directed paths (see Definition 3.7).

Notice that for every pair of neighboring links i and j, the subgroup VRP(i, j)
can be set-theoretically identified with the real projective line P1

R. Under this identi-
fication, every cycle condition imposed in Definition 3.4 becomes a closed condition
in the Zariski topology, since it is given by multihomogeneous polynomials. In this
way Conf(L) acquires the structure of a projective subvariety of

(
P1
R
)
2|E|.

Definition 3.6. We define the mobility of a linkage L to be the dimension of the
configuration space Conf(L) as a projective subvariety of

(
P1
R
)
2|E|.

So far we only took into account the relative position of two neighboring links.
For our purposes, namely to construct a linkage that follows a prescribed motion,
we need to take one link (the “base”) as fixed, and consider the relative positions
of all the other links with respect to the base.

Definition 3.7. Let L = (G, ρ) be a linkage. Let Σ ∈ Conf(L) and let i, j ∈ V be
links. Let (i, h1), (h1, h2), . . . , (hs, j) be a directed path in G from i to j — which
exists, since by Definition 3.1 the graph G is connected. Then we define the relative
position of j with respect to i in the configuration Σ = (σk,l) as

RP(i, j,Σ) := σi,h1
◦ · · · ◦ σhs,j ∈ SE2.

Notice that, because of the cycle condition, this definition is independent of the
chosen path. We define the set of relative positions of j with respect to i to be

RP(i, j) :=
{

RP(i, j,Σ) : Σ ∈ Conf(L)
}
⊆ SE2.
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4. Motion polynomials

As mentioned in Section 1, our goal is to reduce the main problem to an algebraic
one. We first introduce an algebraic setting for manipulating isometries, consisting
in a noncommutative R-algebra K whose multiplication corresponds to the group
operation in SE2. This is an instance of a general construction associating a Clifford
algebra to each group of isometries SEn; see for example [26, Section 9.2]. Then we
define the main object of our work, motion polynomials, as polynomials over K.

Following [11], one can embed SE2 in the real projective space P3
R with coordi-

nates x1, x2, y1, y2, as the open subset

(4.1) U := P3
R \
{

(x1 : x2 : y1 : y2) : x21 + x22 = 0
}
.

Hence U is the complement of the projective line x1 = x2 = 0. The (right) action
of an element (x1 : x2 : y1 : y2) ∈ U on a point (x, y) ∈ R2 is given by:

(4.2)
(
x
y

)
7→ 1

x21 + x22

[(
x21 − x22 −2x1x2
2x1x2 x21 − x22

)(
x
y

)
+

(
x1y1 − x2y2
x1y2 + x2y1

)]
.

Moreover, the group operation in SE2 becomes a bilinear map:

(4.3)

(x1 : x2 : y1 : y2) · (x′1 : x′2 : y′1 : y′2) =
(
x1x
′
1 − x2x′2 : x1x

′
2 + x2x

′
1 :

x1y
′
1 + x2y

′
2 + y1x

′
1 − y2x′2 :

x1y
′
2 − x2y′1 + y1x

′
2 + y2x

′
1

)
,

where (x1 : x2 : y1 : y2) and (x′1 : x′2 : y′1 : y′2) represent two direct isometries
σ, σ′ ∈ SE2, respectively.

For an easier handling of the multiplication in this embedding of SE2, we in-
troduce the following notation: we write a representative (x1 : x2 : y1 : y2) of an
element of SE2 as a pair (z, w) ∈ C2, where z = x1 + ı x2 and w = y1 + ı y2 (here ı
is the imaginary unit). Then Equation (4.3) can be rewritten concisely as

(4.4) (z, w) · (z′, w′) =
(
z z′, z w′ + z′ w

)
where z, z′, w and w′ are multiplied as complex numbers, and the bar (·) is complex
conjugation. We can go further, by writing a pair (z, w) in the form z + η w, and
by postulating that η satisfies the two relations:

z η = η z for all z ∈ C and η2 = 0.

Then the multiplication we obtain is exactly the one described in Equation (4.4):

(z + η w) · (z′ + η w′) = z z′ + η
(
z w′ + z′ w

)
.

Definition 4.1. We define the R-algebra

K := C[η]/(η2, ı η + η ı).

Based on the previous discussions, we can identify elements of K with elements
of SE2. In this way the projective space P3

R in which we embed SE2 can be thought
as the projectivization P(K) of K, considered as an R-vector space.

Notice that the algebra K is constructed in such a way that its multiplication is
a lift of the group operation of SE2: this means that if two isometries σ1, σ2 ∈ SE2

are represented by k1, k2 ∈ K, then σ2 ◦ σ1 is represented by k1 · k2 (remember we
have a right action). More precisely, one can prove that K is isomorphic to the even
subalgebra C̀ +(0, 2, 1) of the Clifford algebra C̀ (0, 2, 1) of SE2; see [26, Section 9.2].
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Remark 4.2. Looking at the construction of the algebra K, we notice that the
condition x21 +x22 6= 0 for points in P3

R representing isometries in SE2 becomes z 6= 0
when we consider elements of K. Moreover, the identity isometry is represented
in P3

R by the point (1 : 0 : 0 : 0), hence by any purely real element of K, namely
elements of the form z + η w with z ∈ R and w = 0. From this we see that, given
k = z+η w ∈ K representing an isometry σ ∈ SE2, then k′ = z−η w represents σ−1,
since the product k k′ equals |z|2, which is purely real.

The following lemma characterizes simple subgroups of SE2 in a geometric fash-
ion: it shows that both translational and revolute motions, i.e., families of transla-
tions resp. rotations, correspond to lines in P3

R.

Lemma 4.3. Let ` ⊆ P3
R be a projective line passing through the point (1 : 0 : 0 : 0),

and define `U = ` ∩ U and X = ` \ U , where U is defined in Equation 4.1. Then:
(i) if X has cardinality 1, then `U corresponds to a subgroup of SE2 that

consists of all translations along a fixed common direction;
(ii) if X is empty, then `U corresponds to a subgroup of SE2 that consists of

all rotations around a fixed common point.

Proof. We analyze the two cases separately.
Ad (i): By hypothesis we have that (1 : 0 : 0 : 0) ∈ ` and (0 : 0 : a : b) ∈ X ⊂ ` for
some a, b ∈ R, not both zero. Hence the line ` admits the parametrization:

(λ : 0 : aµ : bµ), for (λ : µ) ∈ P1
R.

Plugging this parametrization into Equation (4.2), we see that the elements of `U
are translations by the vector µ/λ (a, b).
Ad (ii): Again by hypothesis we have that (1 : 0 : 0 : 0) ∈ `; moreover there exists
a point in ` which is of the form (0 : a : b : c). Since X is assumed to be empty, we
have a 6= 0, and hence the line ` admits the parametrization:

(λ : aµ : bµ : cµ), for (λ : µ) ∈ P1
R.

We use Equation (4.2) to compute the fixed points of an arbitrary element of `.
A direct calculation reveals that we always get the point (−c/2a, b/2a), which is
independent of λ and µ. Thus every point of `U represents a rotation around it. �

The description of revolutions around a point given by Lemma 4.3 enables us to
compute effectively the configuration curve of a linkage, as shown in Example 4.4.

Example 4.4. Let us consider the linkage L whose graph is depicted in Figure 4.
The linkage L is given by 4 links and 4 joints, and the map ρ is determined by:

ρ(1, 3) = u1 = (0,−3/2) ,
ρ(3, 4) = u3 = (−3/4, 9/2) ,
ρ(2, 4) = u4 = (−1, 13/2) ,
ρ(1, 2) = u2 = (−1/4, 1/2) .

We compute the configuration set of L and its dimension as a projective variety.
Since we have 4 joints, it will be a projective subvariety of

(
P1
R
)
4 (here, rather than

Conf(L), we are considering one of its projections, but as noticed in Remark 3.5
we get an isomorphic object). Lemma 4.3 ensures that the 4 subgroups of SE2 of
rotations around the points ui —which constitute the subgroups of virtual positions
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1

3 4

2

u1

u3

u4

u2

Figure 4. Graph of a linkage constituted by 4 links and 4 joints,
a so-called closed 4R-linkage. The edges are labeled by points ui
in R2 that are the images of the edges under the map ρ.

between two neighboring links as in Definition 3.3 — correspond to 4 lines `i ⊆ P3
R

with parametrizations:

center ui parametrization of line `i
(0,−3/2) (λ1 : µ1 : −3µ1 : 0)

(−3/4, 9/2) (λ3 : 2µ3 : 18µ3 : 3µ3)
(−1, 13/2) (λ4 : µ4 : 13µ4 : 2µ4)
(−1/4, 1/2) (λ2 : 2µ2 : 2µ2 : µ2)

where (λi : µi) ∈ P1
R for all i ∈ {1, . . . , 4}. Recall from Definition 3.4 that, in

this case, a configuration for L is a 4-tuple (σ1,2, σ2,3, σ3,4, σ4,1) of direct isome-
tries that satisfies the cycle condition σ1,2 ◦ σ2,3 ◦ σ3,4 ◦ σ4,1 = id. Each of the
isometries σk,l gives a point on one projective line `i, and in our projective model
of SE2 composition corresponds to multiplication according to Equation (4.3). Un-
der these identifications, the composition σ1,2 ◦ σ2,3 ◦ σ3,4 ◦ σ4,1 corresponds to
a point (F1 : F2 : F3 : F4) ∈ P3

R, where all Fi are polynomials in the variables
(λ1 : µ1), . . . , (λ4 : µ4). Noticing that the identity element of SE2 is represented by
the point (1 : 0 : 0 : 0) ∈ P3

R, one realizes that the cycle condition is equivalent to

rk

(
F1 F2 F3 F4

1 0 0 0

)
= 1.

Hence, as a subvariety of
(
P1
R
)
4, the configuration set Conf(L) is the zero set of

the polynomials F2, F3, F4. A computer algebra computation shows that this is a
one-dimensional variety with two components.

We introduce now one of the main concepts of this paper, namely motion polyno-
mials. Intuitively, a motion can be described as a curve in the space of direct isome-
tries. In our case, we want such a curve to be defined by a rational parametrization.

Definition 4.5. Let X1, X2, Y1, Y2 ∈ R[t] be polynomials such that X2
1 + X2

2 is
not identically zero; denote by V (X1, X2, Y1, Y2) the set of their common zeros
in R. The map φ : R \ V (X1, X2, Y1, Y2) −→ P3

R defined by X1, X2, Y1, Y2 is called
a rational motion. We will use the notation φ : R 99K P3

R to mean that φ is not
defined everywhere on R. Thinking of SE2 as an open subset of P3

R, the condition
on X2

1 +X2
2 ensures that for all but finitely many t ∈ R we have φ(t) ∈ SE2.

Definition 4.6. Let φ be a rational motion given by (X1, X2, Y1, Y2). The polyno-
mial P (t) = Z(t) + ηW (t) ∈ K[t], where Z = X1 + ıX2 and W = Y1 + ıY2, is called
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a motion polynomial encoding the motion φ. The polynomials Z andW are respec-
tively called the primal and secondary part of P , denoted by pp(P ) resp. sp(P ).

Next we want to connect motion polynomials with rational plane curves. For this
purpose it is helpful to rephrase the action of SE2 on R2 shown in Equation (4.2) in
the following way: we identify a point (x, y) ∈ R2 with the element u = x+ ıy ∈ C;
if σ ∈ SE2 is represented by an element z + η w ∈ K, then σ sends u to

(4.5)
uz2 + zw

|z|2
.

Using this formulation of the (right) action, it is easy to prove the following result.

Proposition 4.7. Let ϕ : R −→ R2 be a rational parametrization of a real curve,
which means that ϕ is of the form

ϕ(t) =

(
f(t)

h(t)
,
g(t)

h(t)

)
for some real polynomials f, g and h. Then the orbit of the origin under the motion
given by the motion polynomial P = h+ η (f + ıg) is exactly the image of ϕ.

Let P1 and P2 be two motion polynomials. Because of the algebraic properties
of K, the polynomial P = P1P2 defines a motion that is the composition of the mo-
tions determined by P2 and P1. More precisely, for every t ∈ R, the isometry P (t)
is the composition of the isometries P2(t) and P1(t). This shows how important
the factorization of a motion polynomial is in our framework: it provides a decom-
position of a motion into simpler ones.

We saw in Lemma 4.3 that rational motions whose image is a line in P3
R are

translational motions or revolutions. Hence linear motion polynomials encode this
kind of motions. It follows that, if we are able to factor a motion polynomial into
linear ones, then we can decompose a rational motion into revolutions and trans-
lational motions. Later we will consider a suitable subclass of motion polynomials,
so that only the first situation occurs.

Remark 4.8. Let φ : R 99K P3
R be a rational motion and let P (t) ∈ K[t] be the

corresponding motion polynomial, so P = Z + ηW with Z,W ∈ C[t]. Notice that,
although Z and W have coefficients in C, the polynomial P determines a real curve
in P3

R, namely a curve described by real equations. Hence, if R ∈ R[t] is a nonzero
real polynomial, one can check that RP ∈ K[t] provides the same curve in P3

R as P .

Remark 4.9. Let again φ : R 99K P3
R be a rational motion and let P (t) ∈ K[t] be

the corresponding motion polynomial. For any C ∈ C[t] the orbits of the origin
under the motions given by P and CP are the same since C represents a revolution
around the origin — recall that CP acts on R2 by first applying C and then P .

Example 4.10. The rational motion given by the polynomial t + η is a vertical
translational motion. Indeed, its image in P3

R is parametrized by (λ : 0 : µ : 0), so
that we are in case (i) of Lemma 4.3. In contrast, the motion polynomial P (t) =
t + ı gives a revolution around the origin (0, 0). This is an instance of case (ii) of
Lemma 4.3, using the parametrization (λ : µ : 0 : 0).

Example 4.11. Consider the following product of two linear motion polynomials:

(t+ ı)︸ ︷︷ ︸
rotation around

a point

· (t− ı+ η)︸ ︷︷ ︸
rotation in the opposite

sense, around another point

= (t2 + 1) + η (t− ı).︸ ︷︷ ︸
this is a translation, since

there is no imaginary part in t2+1
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For a fixed t we get a translation by the vector 1
t2+1 (t,−1). As t changes, this vector

describes a circle, hence we get a translational motion along a circle (see Figure 5).

t=±∞

t=1

t=0

t=−1

Figure 5. The trace of the point (0, 0) under the circular transla-
tion given by the motion polynomial (t2 + 1) + η (t− ı) is depicted
via a dashed line. The action of the motion on the black triangle
highlights the fact that we have a purely translational motion.

In Example 4.11 we saw that the factorization of a motion polynomial into linear
polynomials provides a decomposition of the described motion into revolutions.
However, Example 4.12 shows that this is not always possible.

Example 4.12. Let us consider an elliptic translational motion:

P (t) = (t2 + 1) + η (at− bı), a, b ∈ R.
We try to factor P into two linear polynomials P1, P2 ∈ K[t]. First notice that the
primal parts of P1 and P2 should be factors of (t2 + 1), so they have to be of the
form t± ı. Thus we have only two possibilities:{

pp(P1) = t+ ı
pp(P2) = t− ı

{
pp(P1) = t− ı
pp(P2) = t+ ı

By a direct computation one can prove that none of those two choices gives a
factorization if a 6= b, thus P cannot be factored into linear polynomials.

On the other hand, we show now that if we multiply P by a real polynomial R
we can achieve a factorization. Recall that, by Remark 4.8, the polynomials P
and RP describe the same motion. In this case we take R = t2 + 1. Hence we need
four linear polynomials P1, . . . , P4 to factorize RP , and again pp(Pi) = t ± ı. We
make the following ansatz:

(4.6) P1 = (t− ı) + η w1,
P2 = (t+ ı) + η w2,

P3 = (t+ ı) + η w3,
P4 = (t− ı) + η w4.

Imposing P1 · · ·P4 = RP gives a linear system in the wi, namely:

(4.7)
{
w1 + w2 + w3 + w4 = a,
w1 + w2 − w3 − w4 = b.

Each solution of the system (4.7) gives rise to a factorization of the polynomial RP .
If, instead, we take the following ansatz:

P1 = (t+ ı) + η w1,
P2 = (t− ı) + η w2,

P3 = (t+ ı) + η w3,
P4 = (t− ı) + η w4.

one can check that the corresponding linear system does not admit any solution.
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In the next section, we consider the factorization problem in a more systematic
way. We will see that, once we restrict to a certain class of motion polynomials, all
situations can be treated as we did in Example 4.12: in general a motion polyno-
mial P cannot be factored into linear polynomials in K[t], but it is possible to find
a real polynomial R such that RP can be factored.

We end this section by defining precisely what we mean by saying that a linkage
realizes a given rational motion. Recall from Definition 3.7 that, given two links i
and j of a linkage L, we can define the set RP(i, j) of relative positions of the link j
with respect to the link i, and this is a subset of SE2. Furthermore, recall that the
set Conf(L) of configurations of L has the structure of a real projective variety. We
are going to use some concepts and results coming from real algebraic geometry:

(i) every projective space PnR is a real affine variety, namely there exists an
embedding ξ : PnR ↪→ Rk for some k ∈ N, and ξ

(
PnR
)
is the zero set of a

collection of real polynomials; see for example [3, Theorem 3.4.4];
(ii) a subset X ⊆ Rk is called semialgebraic if it can be described as the set

of points satisfying a disjunction of conjunctions of polynomial equalities
and inequalities; see for example [3, Definition 2.1.4];

(iii) a subset X ⊆ PnR is called semialgebraic if its image under any embedding
ξ : PnR ↪→ Rk as in (i) is a semialgebraic set in the sense of (ii).

Lemma 4.13. Let L be a linkage and let i, j be links of L. Then, under the
projective embedding of SE2, the set RP(i, j) becomes a semialgebraic subset of SE2.

Proof. Let (i, h1), . . . , (hs, j) be any directed path from i to j. Consider the map
F : Conf(L) −→ SE2 sending a configuration Σ = (σk,l) to σi,h1

◦· · ·◦σhs,j . One can
check that RP(i, j) coincides with F (Conf(L)). Moreover, if we write the map F
in terms of the projective coordinates of Conf(L) and SE2, then F is given by real
polynomials. Hence, because of a general result in real algebraic geometry (see for
example [3, Theorem 1.4.2]), the set RP(i, j) is semialgebraic. �

In the following definition, and later in this paper, the word “component” will
always stand for “irreducible component” with respect to the Zariski topology.

Definition 4.14. Let L be a linkage and let φ : R 99K P3
R be a rational motion.

We say that

(i) L weakly realizes the motion φ if there exist links i and j of L such that
image(φ) ⊆ RP(i, j).

(ii) L strongly realizes the motion φ if there exist links i and j of L such that
image(φ) ⊆ RP(i, j) and image(φ) is a component of RP(i, j), where (·)
denotes the Zariski closure in RP(i, j).

Remark 4.15. Notice that in case (ii) of Definition 4.14 we allow the given variety
of relative positions to have several components, and we ask that only one of them
coincides with the Zariski closure of the image of the given rational motion, which is
irreducible by construction. This situation occurs in the example given on the right
of Figure 6, since the variety of relative positions between base and end effector has
two components (see Lemma 6.6).
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Figure 6. Two linkages that both realize the motion given by(
t+ ı− 3η

)
·
(
t+ 2ı+ η(18 + 3ı)

)
, discussed in Example 4.4. The

depicted position is reached at t = −2. The linkage on the left has
two degrees of freedom and thus weakly realizes the given motion
as the relative position between base (in black) and end effector
(in white). The linkage on the right has mobility one and provides
a strong realization of this motion.

5. Factorization of motion polynomials

Motivated by the considerations from the previous section, we now address
the problem of factorizing a motion polynomial P = Z + ηW ∈ K[t] into lin-
ear factors. The main results are Theorem 5.15 and the corresponding algorithm
FactorMotionPolynomial. To achieve them, we have to go through some techni-
calities, which however will not be needed in the rest of the paper.

We restrict our attention to monic polynomials, i.e., to polynomials P whose
leading coefficient is 1, which implies that degW < degZ. Our goal is to write a
monic P ∈ K[t] in the form P = P1 · · ·Pn, where n = degP and degPi = 1 for all i.
If P = Z + ηW and Pi = Zi + ηWi, then Z = Z1 · · ·Zn. Hence the primal part of
each Pi has to be one of the linear factors of Z ∈ C[t]. We start by a few definitions
and results characterizing monic motion polynomials that split into linear factors.

Definition 5.1. Let z = (z1, . . . , zn) ∈ Cn. We define the following polynomials:

Qi(z) := (t− z1) · · · (t− zi−1)(t− zi+1) · · · (t− zn) for i ∈ {1, . . . , n}.

Hence we have that degQi(z) = n− 1 for all i.

Remark 5.2. Let Z ∈ C[t] and let z = (z1, . . . , zn) be a fixed permutation of the
roots of Z. Then the polynomials Qi(z) have a non-trivial gcd if and only if the
polynomial Z admits a pair of complex-conjugate roots α and α (this includes the
case of multiple real roots).

Lemma 5.3. Let P = Z + ηW ∈ K[t] be a monic motion polynomial, and let
z = (z1, . . . , zn) be a fixed permutation of the roots of Z over C. Then P admits a
factorization P = P1 · · ·Pn, where Pi(t) = (t− zi) + η wi with wi ∈ C, if and only
if W lies in

〈
Q1(z), . . . , Qn(z)

〉
C, i.e., in the C-linear span of Q1(z), . . . , Qn(z).
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Proof. Suppose that P ∈ K[t] admits a factorization into linear factors:

P (t) =

n∏
i=1

(t− zi + ηwi) =

n∏
i=1

(t− zi) + η

n∑
k=1

( k−1∏
j=1

(t− zj)
)( n∏

j=k+1

(t− zj)
)

︸ ︷︷ ︸
= Qk(z)

wk.

Such a factorization exists if and only if we can choose w1, . . . , wn ∈ C such that∑n
k=1 wkQk(z) matches the prescribed η-part of P (t) = Z(t) + ηW (t), namely if

and only if W ∈
〈
Q1(z), . . . , Qn(z)

〉
C. �

Lemma 5.4. Let P ∈ K[t] be a monic motion polynomial and suppose that Z =
pp(P ) has no pair of complex-conjugate roots. Then for every permutation z =
(z1, . . . , zn) of the roots of Z, the polynomial P admits a factorization P = P1 · · ·Pn
with pp(Pi) = t− zi for all i.

Proof. We fix a permutation z of the roots of Z, and we denote Qk = Qk(z) for
all k. From Lemma 5.3, we know that P = Z + ηW admits a factorization if and
only if W ∈

〈
Q1, . . . , Qn

〉
C. Clearly, this is always possible (for arbitrary W ) if the

following matrix Mn ∈ Cn×n is non-singular:

Mn =


〈t0〉Q1 · · · 〈t0〉Qn
〈t1〉Q1 · · · 〈t1〉Qn

...
...

〈tn−1〉Q1 · · · 〈tn−1〉Qn

 .

Here 〈ti〉Qk denotes the coefficient of ti in the polynomial Qk. Notice that the
matrix entries are, up to sign, elementary symmetric polynomials in the zi and zi.
We now exhibit that the determinant of Mn is nonzero under the assumptions on
the roots of Z. Indeed, we find that

(5.1) det(Mn) =
∏

1≤i<j≤n

(
zi − zj

)
,

which follows, as a special case, from Lemma 3 in [18] (by substituting Ak = −zk,
Bk = −zk−1, and by extracting the coefficient of

∏n
i=1X

i−1
i ). A similar deter-

minant evaluation is given in [19] where the zi appear without conjugation. Since
det(Mn) is very much reminiscent of the Vandermonde determinant, it is no surprise
that (5.1) can also be proved in an analogous fashion. �

Corollary 5.5. Let z = (z1, . . . , zn) ∈ Cn such that gcd
(
Q1(z), . . . , Qn(z)

)
= 1.

Then 〈
Q1(z), . . . , Qn(z)

〉
C =

{
W ∈ C[t] : deg(W ) < n

}
.

Proof. The gcd condition implies that z has no pair of complex-conjugate roots, as
noticed in Remark 5.2. Then the claim follows from Lemma 5.3 and Lemma 5.4. �

Since the gcd of the polynomials Qi(z) introduced in Definition 5.1 plays an
important role for the factorization of motion polynomials, we make some effort to
describe it precisely (Lemma 5.6, Corollary 5.7, Proposition 5.10); for this purpose
the combinatorial notion of matching will be introduced. At the same time we
aim at a nicer characterization of those secondary parts in Lemma 5.3 that en-
sure the existence of a factorization (Proposition 5.12). To simplify the proofs of
Propositions 5.10 and 5.12, we formulate the somewhat technical Lemma 5.9.
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Lemma 5.6. Let α, β ∈ C with α 6= β 6= α, and let z = (z1, . . . , zn) ∈ Cn and z̃ =
(z1, . . . , zj−1, β, zj , . . . , zn) ∈ Cn+1 for some j ∈ {1, . . . , n+ 1}. Then the multiplic-
ities of the roots α and α in gcd

(
Q1(z), . . . , Qn(z)

)
and in gcd

(
Q1(z̃), . . . , Qn+1(z̃)

)
are the same.

Proof. First observe that Qk(z) and Q`(z̃) have the same multiplicities of α and α,
where ` = k if k < j and ` = k+1 if k ≥ j. On the other hand, the polynomial Qj(z̃)
has no such counterpart among the Qk(z), but its multiplicities of α and α are
greater than or equal to those in its (one or two) neighbors Qj−1(z̃) and Qj+1(z̃).
The claim follows. �

Corollary 5.7. Let x ∈ Cm and y ∈ Cn with xi 6= yj 6= xi for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n. If z ∈ Cm+n is an arbitrary interlacement of x and y, i.e.,
there are 1 ≤ i1 ≤ · · · ≤ im ≤ m + n and 1 ≤ j1 ≤ · · · ≤ jn ≤ m + n with
{i1, . . . , im} ∩ {j1, . . . , jn} = ∅ such that zik = xk, 1 ≤ k ≤ m, and zjk = yk,
1 ≤ k ≤ n, then

gcd
(
Q1(z), . . . , Qm+n(z)

)
= gcd

(
Q1(x), . . . , Qm(x)

)
· gcd

(
Q1(y), . . . , Qn(y)

)
.

Proof. This is a direct consequence of Lemma 5.6. �

Definition 5.8. Let z = (z1, . . . , zn) ∈ Cn. A set

M ⊆
{

(i, j) : 1 ≤ i < j ≤ n and zi = zj
}

is called a matching of z if for all (i1, j1), (i2, j2) ∈M we have i1 6= i2 and j1 6= j2.
(Note that for each z ∈ Cn there is a bipartite graph with at most 2n− 2 vertices
such that the matchings in that graph and the matchings of z are in bijection.)

Lemma 5.9. Let z = (z1, . . . , zn) ∈ Cn, let G = gcd
(
Q1(z), . . . , Qn(z)

)
, and let

g = degG. For a matching M of z define H(M) :=
∏

(i,j)∈M (t − zj). Then the
following statements hold:

(i) For any matching M of z we have H(M) | G.
(ii) There is a matching M of z such that H(M) = G.
(iii) There are indices 1 ≤ i1 ≤ · · · ≤ in−g ≤ n such that, setting z̃ =(

zi1 , . . . , zin−g

)
, we have Qk(z̃) = Qik(z)/G for all 1 ≤ k ≤ n − g and

gcd
(
Q1(z̃), . . . , Qn−g(z̃)

)
= 1.

Proof. For (i) we show that H(M) divides Qk(z) for any matching M of z and for
any k ∈ {1, . . . , n}. Indeed, by rewriting

H(M) =
∏

(i,j)∈M

(t− zj) =

( ∏
(i,j)∈M
j>k

(t− zj)
)( ∏

(i,j)∈M
j≤k

(t− zi)
)

the claim follows, since Qk(z) has precisely the roots z1, . . . , zk−1, zk+1, . . . , zn.
For (ii) and (iii) note that the statements trivially hold for G = 1, so we assume

now that G 6= 1. Using Corollary 5.7 the proof is reduced to the case where
z ∈ {α, α}n for some α ∈ C. If α ∈ R then we have Q1(z) = · · · = Qn(z) =
(t − α)n−1 = G and we can choose M := {(1, 2), (2, 3), . . . , (n − 1, n)} and ik = k
for 1 ≤ k < n. Hence from now on we assume α 6= α.

Both assertions (ii) and (iii) are proved in parallel by an inductive argument
on the degree of G, so in the following we show how to reduce the given scenario
to one with smaller g. The main difficulty here is to pick an index j such that
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deleting zj from z yields a gcd of smaller degree. We distinguish three cases and
assume w.l.o.g. that zn = α (case A) resp. z1 = α (cases B and C).

Case A: There exists an index j such that #α(zj , . . . , zn) ≤ #α(zj , . . . , zn),
where #α denotes the number of occurrences of α. In this situation we set z̃ =

(z1, . . . , zn−1) and G̃ = gcd
(
Q1(z̃), . . . , Qn−1(z̃)

)
. By the induction hypothesis

there exists a matching M̃ for z̃ such that H(M̃) = G̃. Because of the assumption
on the number of α’s and α’s, there must be an index i ∈ {j, . . . , n−1} with zi = α

that does not occur as the first entry of any pair in M̃ . Hence M := M̃ ∪ {(i, n)}
is a matching for z and we have H(M) = (t − α)H(M̃). Since by (i) we have
H(M) | G, we obtain (t− α)G̃ | G. Next observe that Qk(z̃) = Qk(z)/(t− zn) for
all 1 ≤ k < n and hence

G̃ = gcd
(
Q1(z̃), . . . , Qn−1(z̃)

)
=

1

t− α
gcd
(
Q1(z), . . . , Qn−1(z)

)
.

From the definition ofG it follows thatG | (t−α)G̃, and thusG = (t−α)G̃ = H(M).
Case B: There exists an index j such #α(z1, . . . , zj) ≤ #α(z1, . . . , zj). The

reasoning in this case is completely analogous to case A, setting z̃ = (z2, . . . , zn).
Case C: Neither case A nor case B applies, which means that for all indices j we

have #α(z1, . . . , zj) > #α(z1, . . . , zj) and #α(zj , . . . , zn) > #α(zj , . . . , zn). Note
that in this situation we automatically have z1 = zn, which w.l.o.g. we assumed to
be α. Now there exists no entry in z whose removal would yield a gcd of degree
degG − 1. We circumvent this problem by setting z̃ = (z1, . . . , zj−1, zj+2, . . . , zn)
where j is the largest index such that zj = α; in particular j < n. The rest
is analogous to the previous reasoning. As before, we may assume that there
exists a matching M̃ of z̃ with H(M̃) = G̃ = gcd

(
Q1(z̃), . . . , Qn−2(z̃)

)
. Since

#α(z1, . . . , zj) > #α(z1, . . . , zj) there exists an index i < j with zi = α such that
i does not appear as the first entry of any pair in M̃ . In order to extend M̃ to
a matching for z we need some relabeling; for this purpose we define τ(a) = a if
a < j and τ(a) = a+ 2 otherwise. Then

M :=
{(
τ(a), τ(b)

)
| (a, b) ∈ M̃

}
∪
{

(i, j), (j, j + 1)
}

is a matching for z and H(M) = (t − α)(t − α)H(M̃); hence (t − α)(t − α)G̃ | G.
A simple calculation shows that Qk(z̃) = Qk(z)/

(
(t−α)(t−α)

)
for k < j and that

Qk(z̃) = Qk+2(z)/
(
(t− α)(t− α)

)
for k ≥ j. Thus we get

G̃ =
1

(t− α)(t− α)
gcd
(
Q1(z), . . . , Qj−1(z), Qj+2(z), . . . , Qn(z)

)
.

Again, this implies G = (t− α)(t− α)G̃ = H(M), which concludes the proof. �

Proposition 5.10. Let z = (z1, . . . , zn) ∈ Cn and let M be a matching of z of
maximal size, and let Q1(z), . . . , Qn(z) be as in Definition 5.1. Then we have

G := gcd
(
Q1(z), . . . , Qn(z)

)
=

∏
(i,j)∈M

(t− zj)

(where the gcd is assumed to be a monic polynomial).

Proof. In Lemma 5.9 part (i) it was shown that the product on the right-hand side,
which we denoted by H(M), divides G for any matchingM . For the other direction
we have to argue that the maximality ofM implies that G | H(M), or equivalently,
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that G - H(M) implies that M is not maximal. From Lemma 5.9 part (ii) it
follows that there exists a matching M ′ of z such that H(M ′) = G. Note that
|M ′| = deg(G). Thus, if G - H(M), which means that deg(H(M)) < deg(G), then
M is not maximal because |M | < |M ′|. �

Example 5.11. Let Z = (t − α)r(t − α)r+1 for some α ∈ C \ R. In the following
table we consider different permutations z ∈ {α, α}2r+1 of the roots of Z; to each
permutation we give the gcd G = gcd

(
Q1(z), . . . , Qn(z)

)
and a matching M of

maximal size that witnesses G:

permutation G M

(α, . . . , α, α, . . . , α) (t− α)r {(1, r + 1), (2, r + 2), . . . , (r, 2r)}
(α, . . . , α, α, . . . , α) (t− α)r {(1, r + 2), (2, r + 3), . . . , (r, 2r + 1)}
(α, α, α, α, . . . , α, α) (t− α)r(t− α)r {(1, 2), (2, 3), . . . , (2r, 2r + 1)}

The cases displayed above are the extreme ones: indeed, it is easy to see that
r ≤ deg(G) ≤ 2r. Moreover, for any G = (t − α)i(t − α)j with 0 ≤ i, j ≤ r
and i + j ≥ r there exists a permutation z that produces exactly this gcd G.
These considerations lead to interesting combinatorial questions — e.g., how many
permutations of a given set of roots are there that produce a prescribed gcd —
which, however, are irrelevant for our purposes.

Proposition 5.12. Let z = (z1, . . . , zn) ∈ Cn and W ∈ C[t] with degW < n.
Then

W ∈
〈
Q1(z), . . . , Qn(z)

〉
C ⇐⇒ W ∈

(
Q1(z), . . . , Qn(z)

)
· C[t],

where
(
Q1(z), . . . , Qn(z)

)
· C[t] is the ideal of C[t] generated by Q1(z), . . . , Qn(z).

Proof. The claim is equivalent to the following statement:

(5.2)
〈
Q1(z), . . . , Qn(z)

〉
C =

(
Q1(z), . . . , Qn(z)

)
· C[t] ∩ C[t]<n,

where C[t]<n denotes the set of complex polynomials of degree less than n. Note
that the containment “⊆” is trivial. Let G = gcd (Q1(z), . . . , Qn(z)). If G = 1,
then by Corollary 5.5 we have

〈
Q1(z), . . . , Qn(z)

〉
C = C[t]<n, which implies Equa-

tion (5.2). On the other hand, if G is non-trivial, Equation (5.2) is equivalent to

(5.3)
〈
Q̃1, . . . , Q̃n

〉
C =

(
Q̃1, . . . , Q̃n

)
· C[t] ∩ C[t]<n−g,

where Q̃i = Qi(z)/G and g = degG. By Lemma 5.9 part (iii), there exists z̃ =

(zi1 , . . . , zin−g ) such that gcd
(
Q1(z̃), . . . , Qn−g(z̃)

)
= 1, and Qk(z̃) = Q̃ik for all k.

Hence, by Corollary 5.5 we have
〈
Q1(z̃), . . . , Qn−g(z̃)

〉
C = C[t]<n−g. This implies

Equation (5.3), since
〈
Q1(z̃), . . . , Qn−g(z̃)

〉
C ⊆

〈
Q̃1, . . . , Q̃n

〉
C. �

Recall that our goal is to decompose a given motion into a sequence of revolu-
tions, by factorizing a corresponding motion polynomial. For this purpose we have
to restrict the domain of motion polynomials we are working with: for example,
there is no hope to write a motion whose orbits are unbounded as the composition
of revolutions, since the orbits of revolutions are always bounded. In particular, if
we consider a rational bounded curve, then it can be given by a parametrization
ϕ = (f/h, g/h) for some real polynomials f, g and h with deg h ≥ max{deg f, deg g}.
The boundedness of the curve implies that h has no real roots. The limit of ϕ(t)
for t→∞ gives a point in R2, which can be translated to the origin. Then we even
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have deg h > max{deg f, deg g}. If we further assume that h is monic, then also
the motion polynomial P = h+η (f + ıg) is monic, and by Proposition 4.7 it traces
the image of ϕ. This motivates the following definition.

Definition 5.13. Let P = Z+ηW be a motion polynomial in K[t]. We say that P
is bounded if it is monic and if Z does not have real roots. Notice that the motion φ
given by a bounded motion polynomial is a map defined for all t ∈ R; hence for
such a motion we can use the notation φ : R −→ P3

R instead of φ : R 99K P3
R.

Remark 5.14. A bounded linear motion polynomial P represents a revolution
around a point: if P (t) = t − k, then t − k ∈ K represents a rotation around a
point Q that depends only on k. This follows from Lemma 4.3.

We are now ready to state and prove the main result of this section:

Theorem 5.15. Let P ∈ K[t] be a bounded motion polynomial. Then there exists
a real polynomial R ∈ R[t] such that RP can be factored into linear polynomials.

If P = Z + ηW and R̃ = gcd(Z,Z), then the smallest such real polynomial is
R = R̃/ gcd(R̃,WW ).

Proof. If P is of the form P = SP̃ with S ∈ R[t]\R and P̃ ∈ K[t], then we can apply
the theorem to P̃ obtaining R ∈ R[t] such that RP̃ factors; thus also RSP̃ = RP
factors. Hence we may assume that P does not have non-constant real factors.

Using Lemma 5.3 and Proposition 5.12, the proof is reduced to showing that
there exists a permutation of the n roots of RZ (counted with multiplicities) such
that the corresponding G = gcd(Q1, . . . , Qn) divides RW . To this end write

Z =

h∏
i=1

(
(t− αi)ri(t− αi)si

)
, ri ≥ si ≥ 0, ri > 0,

where αi ∈ C are pairwise conjugate-distinct, i.e., αi 6= αj and αi 6= αj for i 6= j.
Note that in the special case s1 = · · · = sh = 0 we get R = 1, in agreement with
the fact that in this case already P itself factors by Lemma 5.4. On the other hand,
we have always deg(R) ≤ deg(P ), and equality is attained when ri = si for all i
and gcd(Z,W ) = 1.

Define Ri := (t− αi)(t− αi) and write R̃ =
∏h
i=1R

si
i . Next let ui and vi be the

multiplicities of αi and αi in W , i.e.,

W = W̃ ·
h∏
i=1

(
(t− αi)ui(t− αi)vi

)

for some polynomial W̃ ∈ C[t] such that gcd(W̃ ,R1 · · ·Rh) = 1. By introducing
the quantity mi := min{si, ui + vi}, the polynomial R can be written as

R =
R̃

gcd(R̃,WW )
=

h∏
i=1

Rsi−mi
i ,
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and hence

RZ =

h∏
i=1

(
(t− αi)ri+si−mi(t− αi)2si−mi

)
,

RW = W̃ ·
h∏
i=1

(
(t− αi)ui+si−mi(t− αi)vi+si−mi

)
.

To construct an admissible permutation, the roots αi, αi are arranged as follows:(
αi, . . . , αi︸ ︷︷ ︸
si−min{si,vi}

, αi, . . . , αi︸ ︷︷ ︸
ri+si−mi

, αi, . . . , αi︸ ︷︷ ︸
si−min{si,ui}

)
.

The assumption on P ensures that if si > 0 then ui = 0 or vi = 0; indeed, if si, ui, vi
were all strictly positive, then Ri would be a common real factor of Z and W .
Then mi = min{si, ui} + min{si, vi}, and hence the previous multiplicities agree
with those in RZ.

The final permutation is obtained as an arbitrary interlacement of all arrange-
ments for 1 ≤ i ≤ h. Proposition 5.10 then implies that

G =

h∏
i=1

(
(t− αi)si−min{si,vi}(t− αi)si−min{si,ui}

)
.

Since si−min{si, vi} ≤ ui+si−mi and si−min{si, ui} ≤ vi+si−mi, we conclude
that G divides RW . �

Algorithm 1 FactorMotionPolynomial

Input: P = Z + ηW ∈ K[t] a bounded motion polynomial such that Z and W
have no common factor in R[t] \ R.

Output: a polynomial R ∈ R[t] and a tuple (k1, . . . , kn) of elements of K such that
(t− k1) · · · (t− kn) = R(t) · P (t).

1: Factor Z(t) over C, obtaining Z =
∏h
i=1(t− αi)ri(t− αi)si with ri ≥ si ≥ 0.

2: Initialize q = empty (the empty tuple).
3: For i = 1, . . . , h Do
4: Set ui = maxj

(
(t− αi)j |W

)
and vi = maxj

(
(t− αi)j |W

)
.

5: Set mi = min{si, ui + vi}
6: Set ω =

(
αi, . . . , αi︸ ︷︷ ︸
si−min{si,vi}

, αi, . . . , αi︸ ︷︷ ︸
ri+si−mi

, αi, . . . , αi︸ ︷︷ ︸
si−min{si,ui}

)
.

7: Set q = concatenate(q, ω).
8: End For
9: Set R =

∏h
i=1

(
(t− αi)(t− αi)

)si−mi .
10: Set n = length(q).
11: Set Qj =

∏j−1
l=1 (t− ql)

∏n
l=j+1(t− ql) for all j ∈ {1, . . . , n}.

12: Compute {wj}nj=1 such that RW =
∑n
j=1 wjQj using linear algebra.

13: Set kj = qj − η wj for all j ∈ {1, . . . , n}.
14: Return

(
R, (k1, . . . , kn)

)
.

The proof of Theorem 5.15 immediately gives rise to a factorization algorithm
for motion polynomials, called FactorMotionPolynomial. It produces one single
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factorization for a given polynomial P , although there could be many for the follow-
ing reasons: first, there may be several admissible permutations of the roots of RZ,
and second, the choice of the coefficients {wj} in Step 12 may not be unique, since
the polynomials {Qj} need not be C-linearly independent.

Example 5.16. We can review Example 4.12 in the light of Theorem 5.15 and
the algorithm FactorMotionPolynomial. We consider a particular instance of the
collection of motion polynomials

P (t) = (t2 + 1) + η (at− bı),
namely we choose a = ı and b = 2ı, obtaining the motion we presented in Section 2.
If we run FactorMotionPolynomial with P as input, we obtain R = t2 + 1, and if
we fix the permutation (ı,−ı,−ı, ı) of the roots of pp(RP ), as in (4.6), we obtain
a two-dimensional family of factorizations into linear factors, i.e., the solutions of
the linear system (4.7), out of which we choose the factorization used in Section 2.

6. The flip procedure

The procedure described in this section is crucial for the construction of linkages
with mobility one. It is inspired by similar techniques — involving the interchange
of factors in a factorization of a quadratic motion polynomial — used in [9] and [10].

Lemma 6.1. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2). Then there exists a
unique pair (k3, k4) ∈ K2 such that:

(i) pp(k3) = pp(k2) and pp(k4) = pp(k1);
(ii) (t− k1)(t− k2) = (t− k3)(t− k4) as polynomials in K[t].

Proof. Let us suppose that ki = zi + η wi for i ∈ {1, 2}. We make the ansatz
k3 = z2 + η w3 and k4 = z1 + η w4, where w3 and w4 are elements of C to be
determined. Then condition (ii) is equivalent to the linear system(

1 1
z1 z2

)(
w3

w4

)
=

(
w1 + w2

z1w2 + z2w1

)
,

which has a unique solution, since by hypothesis the determinant of the matrix is
different from zero. �

Definition 6.2. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2). Then we define
Flip(k1, k2) := (k3, k4), where (k3, k4) ∈ K2 is the pair from Lemma 6.1.

Definition 6.3. Let k = z+ η w ∈ K with z ∈ C \R. Then k represents a rotation
around a point that we denote by χ(k). Using Equation (4.5) one obtains that

χ(k) =
w

z − z
.

Definition 6.4. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2) and pp(k1),pp(k2) ∈
C \ R. We define the flip linkage of k1, k2 via the algorithm FlipLinkage below.
The graph of this flip linkage is shown in Figure 4.

Lemma 6.5. Let k1, k2 ∈ K with pp(k1) 6= pp(k2). Let (k3, k4) = Flip(k1, k2).
Then ∣∣χ(k1)− χ(k2)

∣∣ =
∣∣χ(k3)− χ(k4)

∣∣.
If, in addition, z1, z2 6∈ R and χ(k1) 6= χ(k2), then the following holds:∣∣χ(k1)− χ(k2)

∣∣ 6= ∣∣χ(k1)− χ(k3)
∣∣.
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Algorithm 2 FlipLinkage

Input: k1, k2 ∈ K such that pp(k1) 6= pp(k2) and pp(k1),pp(k2) ∈ C \ R.
Output: (G, ρ) a flip linkage.

1: Define V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (1, 4)} and set G = (V,E).
2: Define (k3, k4) = Flip(k1, k2).
3: Define ui = χ(ki) for all i ∈ {1, . . . , 4}.
4: Define

ρ(1, 3) =
(
<(u1),=(u1)

)
ρ(2, 1) =

(
<(u2),=(u2)

)
ρ(3, 4) =

(
<(u3),=(u3)

)
ρ(4, 2) =

(
<(u4),=(u4)

)
5: Return (G, ρ).

Proof. Let k1 = z1 +η w1 and k2 = z2 +η w2. Then the condition (t−k1)(t−k2) =
(t− k3)(t− k4) implies that k3 = z2 + η w3 and k4 = z1 + η w4 with

w3 =
(z2 − z2)w1 + (z1 − z2)w2

z1 − z2
and w4 =

(z1 − z2)w1 + (z1 − z1)w2

z1 − z2
.

A direct calculation shows that∣∣χ(k3)− χ(k4)
∣∣ =

∣∣∣∣ w3

z2 − z2
− w4

z1 − z1

∣∣∣∣ =

∣∣∣∣ w1

z1 − z1
− w2

z2 − z2

∣∣∣∣ =
∣∣χ(k1)− χ(k2)

∣∣
as claimed. The second claim is also obtained via a direct computation. �

Lemma 6.5 implies that the linkages produced by the algorithm FlipLinkage
have the shape of a (possibly degenerated) antiparallelogram, as in the right part
of Figure 6. We introduce the notion of flip mobility to exclude some degenerated
cases, namely the ones where the antiparallelogram is in fact a square.

Notation. Let k1 = z1 + η w1 and k2 = z2 + η w2 be two elements of K. We say
that the condition FM(k1, k2) (which stands for flip mobility) holds if and only if

z1, z2 6∈ R, z1 6= z2, z1 6= z2, χ(k1) 6= χ(k2).

Lemma 6.6. Let k1, k2 ∈ K such that FM(k1, k2) holds. Then the linkage L
obtained by FlipLinkage(k1, k2) has mobility one and the configuration curve has
two components C1 and C2. Moreover, the natural maps C1 −→ VRP(i, j) and
C2 −→ VRP(i, j) are isomorphisms for every two neighboring links i and j.

Proof. Since the linkages obtained via FlipLinkage are constituted by four bars,
this is a well-known result; see for example [4, Table on p. 426]. One can also prove
the statement using the notions we introduced in Section 3 as follows. We set L =
FlipLinkage(k1, k2), and denote (k3, k4) = Flip(k1, k2). Recalling Definition 3.6,
our goal is to prove that Conf(L) is a one-dimensional variety. One notices that

Conf(L) ∼=
{

(λ1 : µ1), . . . , (λ4 : µ4) : f12(λ1, µ1, λ2, µ2) = f34(λ3, µ3, λ4, µ4)
}
,

where
f12 : P1

R × P1
R −→ P(K)

(λ1 : µ1), (λ1 : µ1) 7→ (λ1 − µ1 k1)(λ2 − µ2k2)

and analogously for f34. The images of f12 and f34 are two smooth quadrics whose
intersection, equal to Conf(L), is a curve with two components. Using this it is
possible to prove the claim. �
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Remark 6.7. Results in Example 4.4 are particular instances of Lemma 6.6. One
can in fact check that in that case L = FlipLinkage(k1, k2), where k1 = ı − η · 3
and k2 = −2ı− η (2 + ı).

7. Construction of linkages

In this section, we show how to construct a linkage with mobility one that traces
an algebraic curve described by a rational parametrization. Based on the results
of Section 5, we first describe an algorithm which takes a bounded motion polyno-
mial P and constructs a linkage weakly realizing P (see Definition 4.14).

Algorithm 3 ConstructWeakLinkage

Input: P ∈ K[t] a bounded motion polynomial.
Output: (G, ρ) a linkage weakly realizing P .

1: Compute S ∈ R[t] of maximal degree, monic, such that S divides P .
2: Compute

(
R, (k1, . . . , kn)

)
= FactorMotionPolynomial(P/S).

3: Set ui = χ(ki) = wi

zi−zi , where ki = zi + η wi, for every i ∈ {1, . . . , n}.
4: Set V = {1, . . . , n+ 1} and E = {(1, 2), (2, 3), . . . , (n, n+ 1)}.
5: Set G = (V,E).
6: Set ρ(i, i+ 1) =

(
<(ui),=(ui)

)
∈ R2 for every i ∈ {1, . . . , n}.

7: Return (G, ρ).

Proposition 7.1. Algorithm ConstructWeakLinkage is correct.

Proof. The linkage L constructed by the algorithm ConstructWeakLinkage is an
open chain, so its configuration space is isomorphic to

(
P1
C
)
n−1, where n− 1 is the

number of joints of L. Let φ : R −→ P3
C be the motion corresponding to RP . We

consider links 1 and n, and we prove that image(φ) ⊆ RP(1, n), namely that L
weakly realizes RP according to Definition 4.14. In our situation we have that

RP(1, n) =
{
σ1,2 ◦ σ2,3 ◦ · · · ◦ σn−1,n : σi,i+1 ∈ P1

C
}
.

Now we fix an arbitrary t ∈ R and we take σi,i+1 to be the isometry given by t− ki
for all i ∈ {1, . . . , n− 1}. Then φ(t) ∈ RP(1, n), so the claim is proven. �

Suppose we are given a rational parametrization of a bounded curve. As we saw
in Proposition 4.7, starting from it we can construct a bounded polynomial P such
that the curve is the orbit of the origin in R2 under the motion described by P . Then
the algorithm ConstructWeakLinkage returns a linkage L that weakly realizes P .
However, this is rather unsatisfactory, since the configuration space of L is, in
general, a variety of high dimension. Our goal is to obtain a linkage with mobility
one, providing a strong realization of P . The main idea is to “rigidify” L, which by
construction is an open chain, by introducing additional links and joints, forming
antiparallelograms. At the level of graphs, this corresponds to extending the linear
graph of L to a 2×n ladder graph (see Figure 7). To do so, we pick a linear motion
polynomial t− l, which will constitute the first “step” of the ladder, and then apply
the flip procedure iteratively to complete the ladder. In the following, we investigate
how l ∈ K has to be chosen so that the resulting linkage has mobility one.
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Definition 7.2. Let k = (k1, . . . , km) be a tuple in Km, and let l ∈ K. Define

l1 := l, (k̃i, li+1) := Flip(li, ki) for all i ∈ {1, . . . ,m}.

Then we say that the condition IFM
(
l,k
)
(which stands for iterated flip mobility)

holds if and only if FM(li, ki) holds for all i ∈ {1, . . . ,m}.

In order to prove that the algorithm we propose works, we have to show that
it is always possible to find an element l ∈ K such that the iterated flip mobility
condition holds. For this we use a property of flip linkages.

Definition 7.3. Given an element k = z + η w ∈ K with z 6= 0, we define inv(k)
to be the element z− η w ∈ K. Recalling Remark 4.2, we have that k represents an
isometry σ, and inv(k) its inverse σ−1. Moreover, if z 6∈ R, then t − k represents
an isometry for every t ∈ R, and t− inv(k) the inverse isometry.

Lemma 7.4. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2) and pp(k2) 6∈ R. Let
(k3, k4) = Flip(k1, k2). Then we have that(

inv(k3), k1
)

= Flip
(
k4, inv(k2)

)
.

Proof. Notice that the fact that pp(k2) 6∈ R implies that the element (t − k2)
represents an isometry for all t ∈ R. From Definition 7.3 one has that the inverse
isometry is represented by

(
t− inv(k2)

)
. The two situations are depicted below:

• t−k2 // •

•

t−k1

OO

t−k3
// •

t−k4

OO • •
t−inv(k2)oo

•

t−k1

OO

•
t−inv(k3)
oo

t−k4

OO

(k3, k4) = Flip(k1, k2)
(
inv(k3), k1

)
= Flip

(
k4, inv(k2)

)
A direct computation shows the desired result. �

Lemma 7.5. Let k = (k1, . . . , km) be a tuple in Km such that pp(ki) 6∈ R for all
i ∈ {1, . . . ,m}. Then there exists l ∈ K with pp(l) 6∈ R such that IFM

(
l,k
)
holds.

Proof. Following the notation of Definition 7.2 we have that pp(li) = pp(l) for all
i ∈ {1, . . . ,m}. Hence, in order to ensure that IFM

(
l,k
)
holds, we need to choose l

such that pp(l) 6= pp(ki) and pp(l) 6= pp(ki) for all i ∈ {1, . . . ,m}. From now on,
we fix such a value for pp(l). The other situations we should keep away from are
the ones where χ(li) = χ(ki). Since pp(li) is now fixed, the condition χ(li) = χ(ki)
becomes a linear equation for sp(li), which always admits a unique solution ŵi ∈ C.
Let us define l̂i = pp(l) + η ŵi. Using Lemma 7.4 repeatedly (namely i − 1 times)
starting from the pair

(
l̂i, inv(ki−1)

)
, we obtain an element hi ∈ K such that

χ(li) 6= χ(ki) ⇐⇒ l 6= hi.

Summing up, for every fixed value of pp(l) different from all
{

pp(ki)
}m
i=1

and all{
pp(ki)

}m
i=1

, there are finitely many values for sp(l) that should be avoided for
IFM

(
l,k
)
to hold. Thus we can always find l ∈ K with the claimed properties. �

We are ready to present the algorithm ConstructStrongLinkage. Figure 7
shows the labeled graph produced by the algorithm.
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Algorithm 4 ConstructStrongLinkage

Input: P ∈ K[t] a bounded motion polynomial.
Output: (G, ρ) a linkage strongly realizing the motion induced by P .

1: Compute S ∈ R[t] of maximal degree, monic, such that S divides P .
2: Compute

(
R,k = (k1, . . . , kn)

)
= FactorMotionPolynomial(P/S).

3: Choose l ∈ K such that IFM
(
l,k
)
holds.

4: Set l1 = l and (k̃i, li+1) = Flip(li, ki) for all i ∈ {1, . . . , n}.
5: Set

ui = χ(ki)

ũi = χ(k̃i)
vj = χ(lj)

 for every i ∈ {1, . . . , n}
for every j ∈ {1, . . . , n+ 1}

6: Set V = {1, . . . , 2n+ 2}.
7: Set E =

{
(i, i+1), (n+1+i, n+2+i), (j, n+1+j) for all i ∈ {1, . . . , n} and j ∈

{1, . . . , n+ 1}
}
.

8: Set G = (V,E).
9: Set

ρ(i, i+ 1) =
(
<(ui),=(ui)

)
ρ(n+ 1 + i, n+ 2 + i) =

(
<(ũi),=(ũi)

)
ρ(j, n+ 1 + j) =

(
<(vj),=(vj)

)
 for every i ∈ {1, . . . , n}

for every j ∈ {1, . . . , n+ 1}

10: Return (G, ρ).

1

n+2 n+3

2 3

n+4

n+1

2n+2

u1

v1

ũ1

v2

u2

ũ2

v3 vn+1

· · ·

· · ·

Figure 7. The labeled graph of the linkage returned by the algo-
rithm ConstructStrongLinkage.

Theorem 7.6. Let P be a bounded polynomial in K[t] and let φ : R −→ P3
R be the

rational motion induced by P . Let us denote by L the linkage obtained by applying
ConstructStrongLinkage to P . Then L strongly realizes the motion φ.

Proof. Let K be the configuration space of L = (G, ρ). As in the statement of
Lemma 6.6, we are going to prove that for any two neighboring edges i and j of G,
every irreducible component of K is isomorphic to RP(i, j). This will prove that K
has dimension one, which means that L has mobility one.

Recall from Definition 3.4 that K is the collection of configurations Σ = (σk,l)
satisfying the equations imposed by the directed cycles of G. First of all, notice
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that one can consider only those equations imposed by directed cycles of the form:

h • // • h+ 1

��
(n+ 1) + h •

OO

• (n+ 1) + (h+ 1)oo

In fact, all other equations belong to the ideal generated by these ones. We intro-
duce the following notation: for h ∈ {1, . . . , n}, denote by sq(h) the set{(
h, h+1

)
,
(
h+1, (n+1)+(h+1)

)
,
(
(n+1)+(h+1), (n+1)+h

)
,
(
(n+1)+h, h

)}
.

We define πsq(h) to be the projection

πsq(h) : K −→
∏

(r,s)∈sq(h)

VRP(r, s) .

Then the image of πsq(h) is contained in the configuration space Ch of a flip linkage,
which by Lemma 6.6 has two components, so Ch = C1

h ∪ C2
h.

For every sequence b ∈ {1, 2}n, we set

Kb := π−1sq(1)

(
C
b(1)
1

)
∩ · · · ∩ π−1sq(n)

(
Cb(n)n

)
.

By construction we have K =
⋃
b∈{1,2}n Kb. We are going to prove that for every

sequence b and for any two neighboring links i and j in G, we have Kb
∼= VRP(i, j).

For the sake of simplicity, we start by proving this result when the graph G
consists only of two squares (i.e. n = 2):

1

4 5

2 3

6

In this case we only have two flip linkages with configuration spaces C1 and C2.
Let us fix b ∈ {1, 2}2, and consider the diagram:

(7.1)

C
b(1)
1

∼=
π2,5

$$

C
b(2)
2

∼=
π2,5

zz
VRP(2, 5)

The maps π2,5 are isomorphisms, because of Lemma 6.6. We consider the set{
(x, y) : x ∈ Cb(1)1 , y ∈ Cb(2)2 and π2,5(x) = π2,5(y)

}
,

which is nothing but the pullback of Diagram (7.1). One can check that this set
equals Kb since, as we observed before, the elements of K are only subject to the
equations coming from the cycles in C1 and C2. Since isomorphisms are stable
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under pullbacks, we obtain the following commutative diagram of isomorphisms:

Kb

∼=

πsq(2)

%%
∼=

πsq(1)

yy
C
b(1)
1

∼=
π2,5

$$

C
b(2)
2

∼=
π2,5

zz
VRP(2, 5)

The composition π2,5 ◦ πsq(1) equals the projection π2,5 : Kb −→ VRP(2, 5), and
the same holds for every projection πi,j : Kb −→ VRP(i, j), where i and j are
neighboring links. So each of these maps is an isomorphism, proving our claim.

If now G is constituted by more than two squares, then Kb is obtained via an
iteration of several pullbacks, and eventually we get a diagram of isomorphisms.
Thus the claim holds also in this case. Since K is covered by finitely many varieties
of dimension one, it has dimension one. Moreover, each of the varieties Kb is an
irreducible component of K.

We are left to prove that L realizes the motion φ induced by P . Similarly as we
did in the proof of Proposition 7.1, one can show that image(φ) ⊆ RP(1, n+ 1).
Since K is one-dimensional, also RP(1, n+ 1) is so; since image(φ) is one-dimen-
sional, image(φ) is a component of RP(1, n+ 1). This concludes the proof. �

Remark 7.7. As we mentioned in Section 1, the linkages constructed via our
algorithms present the same issues as the ones produced by Kempe’s procedure,
namely the devices do not realize only the motion they are designed for, but also
other ones. This is due to the fact that the elementary linkages produced by
the flip procedure, commonly known as antiparallelograms, admit configuration
spaces with more than one component (see Lemma 6.6). On the other hand, since
antiparallelograms are among the linkages used also by Kempe’s procedure, the
techniques developed in [1] and [6, Section 3.2.2] can be applied also in our case to
prevent this unwanted behavior.

Remark 7.8. Let φ be a rational motion given by Z + ηW ∈ K[t]. Our algorithm
allows one to construct a linkage that generates φ, using a motor that rotates at
constant speed. For this purpose one needs two neighboring links whose relative
position is a revolution with constant speed; such a motion is represented by a
motion polynomial of the form t ± ı + η w. If ı or −ı is already a root of Z, then
any linkage returned by ConstructStrongLinkage has the desired property. If not,
then the linear polynomial l in step 3 of this algorithm has to be chosen accordingly.

We now investigate how many links and joints the linkages created by our al-
gorithm have. We consider the tasks of strongly realizing a given rational motion,
and of drawing a given parametrized curve.

Proposition 7.9. Let φ be a rational motion given by a motion polynomial P of
degree d. Then there exists a linkage with at most 4d+ 2 links and 6d+ 1 strongly
realizing φ.

Proof. Apply ConstructStrongLinkage to P , and notice that the real polyno-
mial R produced by FactorMotionPolynomial has degree at most d. �
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Proposition 7.10. Let ϕ : R −→ R2 be the parametrization of a real bounded
planar curve. Without loss of generality, suppose that

ϕ(t) =

(
f(t)

h(t)
,
g(t)

h(t)

)
with f, g, h ∈ R[t], and h monic, and d := deg h > max{deg f, deg g}. There exists
a linkage with at most 3d+ 2 links and 9

2 d+ 1 joints drawing the curve given by ϕ.

Proof. As discussed before Definition 5.13, the motion polynomial P = h+η (f+ıg)
is bounded, and by Proposition 4.7 the orbit of the origin in R2 under the motion
determined by P is the image of ϕ. We could apply ConstructStrongLinkage
to P , but we obtain a smaller linkage by applying this algorithm to P ′ = CP ,
where C ∈ C[t] is any polynomial such that CC = h and gcd(C,C) = 1; such a C
exists because h has no real roots. In fact, as discussed in Remark 4.9, the orbit
of the origin under the motion given by P ′ is also the image of ϕ. Moreover, by
Theorem 5.15, a motion polynomial Z + ηW is factorizable if the corresponding
real polynomial R equals 1. This is the case if and only if gcd(Z,Z) | WW ; it
is easy to check that this condition holds for P ′. Finally, the linkage obtained by
applying ConstructStrongLinkage to P ′ is constituted by 3d+ 2 links and 9

2 d+ 1

joints, because the degree of P ′ is 3
2 d — note that d must be even. �

Example 7.11. We illustrate the algorithm ConstructStrongLinkage with the
example from Section 2. In contrast to Example 5.16, here we multiply the poly-
nomial P (t) = (t2 + 1) + η (ıt− 2) by C = t− ı, as prescribed by Proposition 7.10.
Calling FactorMotionPolynomial with CP as input, we get R = 1 and obtain:

C(t) · P (t) =
(
t− ı− 1

2η ı
)
·
(
t− ı+ 1

2η ı
)
·
(
t+ ı+ η ı

)
.

Next we have to fix an l ∈ K such that the IFM condition holds; it turns out that
l = − 9

5 ı−
18
35η ı = l1 is a good choice (which yields a linkage that is well suited for

visualization, see Figure 2). Applying the flip procedure iteratively to this input
data, one obtains the following:

k̃1 = ı− 13
28η ı, k̃2 = ı+ 5

8η ı, k̃3 = −ı− 11
56η ı,

l2 = − 9
5 ı+ 9

20η ı, l3 = − 9
5 ı−

27
40η ı, l4 = − 9

5 ı−
207
140η ı.

Now we can use these quantities to construct a linkage — whose graph is shown
in Figure 8 — that draws an ellipse. Note that all linear polynomials appearing
here are purely imaginary in their secondary parts. This implies that their fixed
points are of the form (x, 0), so that all joints are located on the horizontal axis
when the linkage is in its initial position (t =∞); the same happens for t = 0.

1

5

2

6

3

7

4

8

χ(k1) χ(k2) χ(k3)

χ(l1) χ(l2) χ(l3) χ(l4)

χ(k̃1) χ(k̃2) χ(k̃3)

Figure 8. The link graph for the linkage drawing an ellipse.
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8. Self-collisions

A natural question that arises in the construction of a linkage is whether it can
be physically realized such that no collisions between components of the linkage
occur. More precisely, one asks whether there exists an assignment of 1, 2, . . . , n
to the links such that for any i < k < j for which i and j are neighboring links,
the joint connecting i and j never overlaps with the link k. For general linkages it
is a difficult problem to detect such collisions; see for example [5, Section 9.3 and
Theorem 9.5.5]. However, it turns out that the same problem has a straightforward
solution for linkages constructed by our algorithm, and the reason is that all joints in
our case follow rational curves whose explicit parametrization is a direct byproduct
of the algorithm ConstructStrongLinkage. Assuming that a link is realized as
a collection of line segments connecting the (two or three) joints attached to it,
a collision is described as follows: for some i < k < j as above there exists a
t ∈ R ∪ {∞} such that the position

(
x1(t), y1(t)

)
of the joint (i, j) lies on one of

the line segments of link k; denote its endpoints by
(
x2(t), y2(t)

)
and

(
x3(t), y3(t)

)
.

Then a collision between joint {i, j} and link k happens if and only if the system

(8.1)

{
x1(t) = s · x2(t) + (1− s) · x3(t)

y1(t) = s · y2(t) + (1− s) · y3(t)

has a solution for 0 ≤ s ≤ 1 and t ∈ R ∪ {∞}. In our construction, the coordi-
nates xi, yi are rational functions in t, so that the system (8.1) is equivalent to a
bivariate polynomial system that can be easily solved. Note that we have to solve
(8.1) for each admissible triple i < k < j. This way we can decide whether collisions
occur or not, and if so, we get a precise description when and where they happen.

Example 8.1. Consider again the linkage constructed in Example 7.11, whose link
graph is shown in Figure 8. With the ordering (5, 1, 6, 2, 7, 8, 4, 3) of the links, we
get two collisions, which both happen at t = ∞. Hence in principle we can trace,
without disassembling the linkage, the full ellipse except a single point; see also the
animations provided on our webpage [17].

At the same time, we want to mention a remarkable method for preventing
collisions for planar linkages with a ladder-shaped link diagram as shown in Figure 7.
This method is based on designing the shape of some links and joints: we introduce
three types of links (F-link, U-link, Z-link), and two types of joints (T-joint, Z-joint).

As before, all links are arranged in different layers, and w.l.o.g. we assume that
these layers correspond to integer numbers. An F-link is located in a single layer,
in other words, we associate one integer for each F-link. On the other hand, U-links
and Z-links stretch across two, not necessarily neighboring, layers. Therefore, to
such links we associate a pair of integers (a, b) with a < b, which means that one
part of the link is located in layer a and the other part in layer b; the two parts are
rigidly connected by a vertical rod. For two U-links with layers (a1, b1) 6= (a2, b2),
we prohibit the situations a1 < a2 < b1 < b2 and a2 < a1 < b2 < b1, which could
yield a collision between these two U-links. For a Z-link on layers (a, b) we impose
the condition b − a = 2, and the link located on layer a + 1 (this will always be
some part of a U-link) is connected with this Z-link by a revolute joint (which we
call Z-joint) around its vertical rod. In contrast, a T-joint joins two links located
on neighboring layers. These types of links and joints are illustrated in Figure 9.
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Using the above design, one can check that collisions can only happen between
links, not between links and joints. We argue now that even such collisions can be
avoided. First, an F-link cannot collide with another F-link or a Z-link. Second,
a Z-link cannot collide with another Z-link. Third, if we move the vertical rods of
all U-links sufficiently far away, they do not collide with the F-links and Z-links.
Fourth, the above conditions on the layers of U-links imply that two U-links can
collide only if they occur in a nested way (e.g., a1 < a2 < b2 < b1). Again, this can
be avoided by moving the vertical rod of the outer U-link far enough away. Thus we
can always make a collision-free design, by manipulating the shape of the U-links.

Figure 9. A linkage without self-collisions composed of three F-
links (gray), two U-links (white), and one Z-link (black)

It remains to argue that for a general ladder-shaped link diagram, as returned
by our algorithm ConstructStrongLinkage and as displayed in Figure 7, we can
find an assignment of link types and layers such that all the above conditions are
fulfilled. One such assignment is depicted in Figure 10; it demonstrates that we
can realize a motion — given by a factored motion polynomial of degree n — by a
collision-free linkage using 4n+ 1 layers.

U

(0, 4n)

F

(1)

U

(3, 4n−1)

Z

(2, 4)

U

(6, 4n−2)

Z

(5, 7)

U

(3n−3, 3n+1)

Z

(3n−4, 3n−2)

F

(3n)

F

(3n−1)

T

T

T

Z

T

Z

T

Z

T

T

T

· · ·

· · ·

Figure 10. Assignment of joint types (T, Z), link types (F, U, Z)
and layers (above and below the corresponding vertices) for realiz-
ing a linkage with ladder-shaped link graph without self-collisions.
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Figure 11. A rational curve approximating the “J” in John Han-
cock’s signature and a linkage drawing it. The corresponding mo-
tion is a translation, which we visualize by using a quill pen whose
shape is a line segment in direction (5, 6). The spatial arrangement
of the links is indicated by hue: darker links lie below brighter ones.

9. A signing linkage

We conclude with an example in connection to a popular formulation of Kempe’s
Theorem, stating that “There is a linkage that signs your name”. King [15, Corol-
lary 1.3] attributes this formulation to William Thurston. However, as remarked
by O’Rourke [23], it is very implausible that a concrete “signing linkage” has ever
been constructed due to the complexity, in terms of links and joints, of the link-
ages produced following Kempe’s procedure. As an example to support his claim,
O’Rourke points out that already constructing a linkage drawing the “J” of John
Hancock’s famous signature (see Figure 12) would be very difficult.

We approximate the “J” by the rational curve given by the parametrization
(f/h, g/h), where

f(t) = −321880t5 − 436132t4 − 237449t3 − 64488t2 − 8666t− 451,

g(t) = −336018t5 − 472949t4 − 270569t3 − 78158t2 − 11325t− 651,

h(t) = 170
(
7225t6 + 13770t5 + 11187t4 + 4908t3 + 1219t2 + 162t+ 9

)
.

Our implementation [17] of the algorithm ConstructStrongLinkage produces a
linkage with 26 links and 37 joints realizing a translational motion along this curve,
see Figure 11; notice that these numbers are in accordance with Proposition 7.9.
When this linkage draws the depicted “J”, one encounters seven collisions.
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Figure 12. John Hancock’s signature on the United States Dec-
laration of Independence.
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