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“The writing of DLMF Chapter BS1 by Leonard Maximon and myself is now
largely complete [...] However, a problem has arisen in connection with about a
dozen formulas from Chapter 10 of Abramowitz and Stegun for which we have not
yet tracked down proofs, and the author of this chapter, Henry Antosiewiecz, died
about a year ago. Since it is the editorial policy for the DLMF not to state formulas
without indications of proofs, I am hoping that you will be willing to step into the
breach and supply verifications by computer algebra methods [...] I will fax you the
formulas later today.”

In view of the upcoming trip to NIST, Paule was hoping to be able to provide at
least some help in this matter. But the arrival of Olver’s fax chilled the enthusiasm
quite a bit. Despite containing some identities with familiar pattern, the majority of
the entries involved Bessel functions of fractional order or with derivatives applied
with respect to the order.

Let us now display the bunch of formulas we are talking about. Here, Jν(z) and
Yν(z) denote the Bessel functions of the first and second kind, respectively, Iν(z) and
Kν(z) the modified Bessel functions, jn(z) and yn(z) the spherical Bessel functions,
Pn(z) the Legendre polynomials, and Si(z) and Ci(z) the sine and cosine integral,
respectively. Unless otherwise specified, all parameters are arbitrary complex num-
bers.
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z
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√

z2 +2zt =
∞

∑
n=0

(−t)n

n!
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(10.1.39)
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∞
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∂

∂ν
jν(z)

]
ν=0

=
1
z
(Ci(2z)sinz−Si(2z)cosz) (z ∈ C\ ]−∞,0])

(10.1.41)[
∂

∂ν
jν(z)

]
ν=−1

=
1
z
(Ci(2z)cosz+Si(2z)sinz) (z ∈ C\ ]−∞,0])

(10.1.42)[
∂

∂ν
yν(z)

]
ν=0

=
1
z
(Ci(2z)cosz+[Si(2z)−π]sinz) (z ∈ C\ ]−∞,0])

(10.1.43)[
∂

∂ν
yν(z)
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=−1
z
(Ci(2z)sinz− [Si(2z)−π]cosz) (z ∈ C\ ]−∞,0])

(10.1.44)

J0(zsinθ) =
∞

∑
n=0

(4n+1)
(2n)!
22nn!2 j2n(z)P2n(cosθ) (10.1.48)

1 finally Chapter 10 Bessel Functions
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jn(2z) =−n!zn+1
n

∑
k=0

2n−2k+1
k!(2n− k+1)!

jn−k(z)yn−k(z) (n = 0,1,2, . . .)

(10.1.49)
∞
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(10.1.52)
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(10.2.30)
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∂

∂ν
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(10.2.33)[
∂

∂ν
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]
ν=±1/2

=±
√

π

2z
E1(2z)ez (z ∈ C\ ]−∞,0])

(10.2.34)

The numbering follows that in Abramowitz and Stegun [AS73], and Olver re-
marked on the fax: “Irene Stegun left a record (without proofs) that (10.1.41)-
(10.1.44) have errors: the factor 1

2 π should not be there, and (10.1.44) also has
the wrong sign. Equations (10.2.32)-(10.2.34) have similar errors. Their correct ver-
sions are given by [...]”.

In view of these unfamiliar objects and of the approaching trip to NIST, Paule
asked his young collaborators for help. Within two weeks, all identities succumbed
to the members of the algorithmic combinatorics group of RISC. Moreover, in ad-
dition to the [AS73] typos mentioned by Olver, further typos in (10.1.39) and
(10.2.30) were found. Above we have listed the corrected versions of the formulas,
and when we use the numbering from [AS73], we refer to the corrected versions of
the formulas here and throughout the paper.

At this place we want to relate the [AS73] numbering to the one used in
the [DLMF]: (10.1.39) and (10.1.40) are DLMF entries 10.56.2 and 10.56.1, respec-
tively. With the help of the rewriting rule DLMF 10.47.3, (10.1.41) and (10.1.42)
are DLMF entries 10.15.6 and 10.15.7, respectively; using the rule DLMF 10.47.4,
(10.1.43) and (10.1.44) are DLMF entries 10.15.8 and 10.15.9, respectively. Entry
(10.1.48) is DLMF 10.60.10, (10.1.49) is DLMF 10.60.4, and (10.1.52) is DLMF
10.60.11. With the help of DLMF 10.47.8, entry (10.2.30) turns into DLMF 10.56.4;
and with the help of DLMF 10.46.7, entry (10.2.31) turns into DLMF 10.56.3.
Formulas (10.2.32) and (10.2.33) are bundled in DLMF entry 10.38.6; formula
(10.2.34) is DLMF 10.38.7.
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The goal of our exposition is to convince the reader that only a very limited
amount of techniques has to be mastered to be able to prove such special function
identities with computer algebra.

Our computer proofs are based on the algorithmic theory of holonomic func-
tions and sequences, and symbolic summation algorithms. In the following two sec-
tions, we do purely algebraic manipulations; where necessary, analytical justifica-
tions (convergence of series, etc.) are given in Section 4. In general, we rely on the
following computer algebra toolbox; underlying ideas are described in [KP11, K13].

Holonomic closure properties. The packages gfun [SZ94] (for Maple) and Gen-
eratingFunctions [Mal96] (for Mathematica) are useful for the manipulation of func-
tions f (x) that satisfy linear ordinary differential equations (LODEs) with poly-
nomial coefficients, as well as for sequences fn satisfying linear recurrence equa-
tions (LOREs) with polynomial coefficients. Such objects are called holonomic.
It can be shown that whenever f (x) and g(x) (resp. fn and gn) are holonomic,
then so are f (x) · g(x) and f (x)+ g(x) (resp. fn · gn and fn + gn). Furthermore, if
f (x) = ∑

∞
n=0 fnxn, then f (x) is holonomic if and only if fn is holonomic as a se-

quence. The packages gfun and GeneratingFunctions provide procedures for “execut-
ing closure properties,” i.e., from given differential equations for f (x) and g(x) they
can compute differential equations for f (x) ·g(x) and f (x)+g(x), and likewise for
sequences. Also several further closure properties can be executed in this sense, and
there are procedures for obtaining a recurrence equation for fn from a differential
equation for its generating function f (x) = ∑

∞
n=0 fnxn, and vice versa.

Symbolic summation tools. The package Zb [PS95] (for Mathematica) and the
more general and powerful packages Mgfun [Chy00] (for Maple), HolonomicFunc-
tions [Kou09] and Sigma [Sch05, Sch07] (both for Mathematica) provide algorithms
to compute for a given definite sum S(n,z)=∑

n
k=0 f (n,z,k) recurrences (in n) and/or

differential equations (in z). Here the essential assumption is that the summand
f (n,z,k) satisfies certain types of recurrences or differential equations; see Sec-
tion 3.

Subsequently, we restrict our exposition to the Mathematica packages Generat-
ingFunctions, Zb, HolonomicFunctions, and Sigma. In the Appendix, for the reader’s
convenience we list all formulas from Abramowitz and Stegun [AS73] that we apply
in our proofs.

As for applications of differentiating Bessel functions w.r.t. order, we mention
maximum likelihood estimation for the generalized hyperbolic distribution, and cal-
culating moments of the Hartman-Watson distribution. Both distributions have ap-
plications in mathematical finance [Pra99, Ger11]. Prause’s PhD thesis [Pra99] in
fact cites formulas (9.6.42)–(9.6.46).
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2 Basic Manipulations of Power Series

Let us now show how to apply these computer algebra tools for proving identities.
The basic strategy is to determine algorithmically a differential equation (LODE) or
a recurrence (LORE) for both sides of an identity and check initial conditions.

First we load the package GeneratingFunctions in the computer algebra system
Mathematica.

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – c© RISC Linz

2.1 LODE and initial conditions for (10.1.39)

We show that both sides of the equation satisfy the same differential equation in t,
and then check a suitable number of initial values.

First we compute a differential equation for the left hand side 1
z sin
√

z2 +2zt.
We view this function as the composition of 1

z sin(t) with
√

z2 +2zt and compute
a differential equation for it from defining equations of the components, by using
the command AlgebraicCompose. (The last argument specifies the function under
consideration. This symbol is used both in input and output.)

In[2]:= AlgebraicCompose[ f ′′[t] ==− f [t], f [t]2 == z2 +2zt, f [t]]

Out[2]= z f [t]+ f ′[t]+ (2t + z) f ′′[t] == 0

In order to obtain a differential equation for the right hand side, we first compute
a recurrence equation for the coefficient sequence cn := (−1)n/n!yn−1(z) from the
recurrences of its factors (using (10.1.19)). (The coefficient-wise product of power
series is called Hadamard product, which explains the name of the command RE-
Hadamard.)

In[3]:= REHadamard[c[n+1] ==−c[n]/(n+1),c[n−1]+ c[n+1] == (2(n−1)+1)/zc[n],c[n]]
CanRE::denom : Warning. The input equation will be multiplied by its denominator.

Out[3]= zc[n]+ (1+n)(1+2n)c[n+1]+ (1+n)(2+n)zc[n+2] == 0

Then we convert the recurrence equation for cn into a differential equation for its
generating function ∑

∞
n=0 cntn, which is the right hand side.

In[4]:= RE2DE[%,c[n], f [t]]

Out[4]= z f [t]+ f ′[t]+ (2t + z) f ′′[t] == 0

This agrees with output 2. To complete the proof, we need to check two initial
values.

In[5]:= Series[1/zSin[
√

z2 +2zt],{t,0,1}]

Out[5]=
Sin[
√

z2]

z
+

√
z2Cos[

√
z2]

z2 t +O[t]2
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By (10.1.12) and (10.1.19), this agrees with the initial values of the right hand side
for z ∈ R≥0. The extension to complex z will be discussed in Section 4.

Alternatively, we could have derived a differential equation only for the right
hand side and then check with Mathematica that the left hand side satisfies this
equation:

In[6]:= Out[4] /. f → (1/zSin[
√

z2 +2z#]&)

Out[6]= True

The proofs for (10.1.40), (10.2.30), and (10.2.31) follow the same scheme as the
proof above. Both variants of the proof work in each case.
In summary, the most systematic way is to compute a differential equation for the
difference of left hand side and right hand side, and then check that an appropriate
number of initial values are zero.

2.2 Proof of (10.1.41)

This time we will not derive an LODE, but instead a recurrence relation for the
Taylor coefficients of the difference of the left and the right hand side. The term
log(z/2) that occurs in the pertinent expansion (9.1.64) is not analytic at z = 0,
hence we first treat that one “by hand.” (Working with Taylor series at z = 1, say,
promises not much but additional complications.) This will leave us with a rather
complicated expression for a holonomic formal power series, for which we have to
prove that it is zero. At this point, we will employ the GeneratingFunctions package
for computing a recurrence equation for the coefficient sequence of that series. Upon
checking a suitable number of initial values, zero equivalence is then established.

One might think that we would not even have to compute the recurrences, since
it is known a priori that the sum of two sequences satisfying recurrences of order r1
and r2, respectively, satisfies a recurrence of order at most r1 + r2. The same holds
for products, with r1r2 instead of r1 + r2. The catch is that the leading coefficient of
the combined recurrence might have roots in the positive integers. It is clear that in
order to give an inductive proof there must not be an integer root beyond the places
where we check initial values.

Proposition 1. Identity (10.1.41) holds for z ∈ C\R≤0.

Proof. First we consider the left hand side. Using (10.1.1) and (9.1.64) from the
Appendix, we get

∂

∂ν
jν(z) = jν(z) log

z
2
− 1

2
√

π

∞

∑
n=0

(−1)n ψ(ν +n+ 3
2 )

Γ (ν +n+ 3
2 )

( 1
4 z2)n

n!
,

where Γ (x) and ψ(x) =
d
dx Γ (x)
Γ (x) denote the Gamma and digamma function, respec-

tively. Hence, with (10.1.11),
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∂

∂ν
jν(z)

]
ν=0

=
sinz

z
log

z
2
− 1

2
√

π

∞

∑
n=0

(−1)n ψ(n+ 3
2 )

Γ (n+ 3
2 )

( 1
4 z2)n

n!
.

For the right hand side, we need (5.2.14), (5.2.16), and the Taylor expansions of sinz
and cosz. We have to show that[

∂

∂ν
jν(z)

]
ν=0
−
(
Ci(2z)sinz−Si(2z)cosz

)
/z

=
sinz

z
log

z
2
− 1

2
√

π

∞

∑
n=0

(−1)nψ(n+ 3
2 )

Γ (n+ 3
2 )

( 1
4 z2)n

n!
+

Si(2z)cosz
z

− sinz
z

(
γ + log(2z)+

∞

∑
n=1

(−1)n(2z)2n

2n(2n)!

)
= − 1

2
√

π

∞

∑
n=0

(−1/4)nψ(n+ 3
2 )z

2n

Γ (n+ 3
2 )n!

+2
∞

∑
n=0

(−4)nz2n

(2n+1)(2n+1)!

∞

∑
n=0

(−1)nz2n

(2n)!

 (∗)
−
(
γ +2log2

) ∞

∑
n=0

(−1)nz2n

(2n+1)!
+4z2

∞

∑
n=0

(−4)nz2n

2(n+1)(2(n+1))!

∞

∑
n=0

(−1)nz2n

(2n+1)!

is identically zero, i.e., cn = 0 for all n≥ 0, where cn is defined as (∗) = ∑
∞
n=0 cnz2n.

To this end, we compute step by step a recurrence equation for cn from the various
coefficient sequences appearing in (∗). We suppress some of the output, in order
to save space. Recurrences for most of the inner coefficient sequences are easy to
obtain. For instance, for

In[7]:= f [n ] :=
(−4)n

(2n+1)(2n+1)!

we have
In[8]:= FullSimplify[ f [n+1]/ f [n]]

Out[8]=
−2(2n+1)

(n+1)(2n+3)2

and hence the recurrence fn+1 =
−2(2n+1)

(n+1)(2n+3)2 fn. Only the series involving ψ(n+ 3
2 )

requires a bit more work. Here, we use the package GeneratingFunctions to obtain a
recurrence from the recurrence (6.3.5) for ψ(n+ 3

2 ) and the first order recurrence of
(−1/4)n/Γ (n+ 3

2 )n!.

In[9]:= recSum = REHadamard[ f [n+1] == f [n]+
1

n+3/2
,

f [n+1] ==
−1

2(2n+3)(n+1)
f [n], f [n]];

Next, we compute recurrence equations for the coefficient sequence of the two series
products in (∗).

In[10]:= recSiCos = RECauchy[ f [n+1] ==
−2(2n+1)

(n+1)(2n+3)2 f [n],

f [n+1] ==
−1

2(2n+1)(n+1)
f [n], f [n]];
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In[11]:= recCiSin = RECauchy[ f [n+1] ==
−2(n+1)

(n+2)2(2n+3)
f [n],

f [n+1] ==
−1

2(n+1)(2n+3)
f [n], f [n]];

The latter recurrence has to be shifted by 1, owing to the factor z2.
In[12]:= recCiSin = recCiSin /. f [n ]→ f [n+1] /. n→ n−1;

The recurrences collected so far can now be combined to a recurrence for cn.
In[13]:= rec1 = REPlus[recSiCos, recSum, f [n]];

In[14]:= rec2 = REPlus[recCiSin, f [n+1] ==
−1

2(n+1)(2n+3)
f [n], f [n]];

In[15]:= rec = REPlus[rec1, rec2, f [n]]

Out[15]= 5184(227+60n) f [n]+ · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · ·+7600(4+n)(5+n)(6+n)2(9+2n)(11+2n)(13+2n)2(167+60n) f [n+6] = 0

The precise shape of the recurrence is irrelevant, it only matters that it has order 6
and that the coefficient of f [n+6] (i.e., of cn+6) does not have roots at nonnegative
integers. As this is the case, we can complete the proof by checking that the coeffi-
cients of z0, . . . ,z10 in (∗) vanish, which can of course be done with Mathematica.

Alternatively, a similar proof can be obtained more conveniently using the pack-
age
In[16]:= << HolonomicFunctions.m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 1.6 (12.04.2012)

One of the main features of this package is the Annihilator command; it analyzes the
structure of a given expression and executes the necessary closure properties auto-
matically, in order to compute a system of differential equations and/or recurrences
for the expression. We apply it to (∗):

In[17]:= Annihilator
[
− Sin[z]

z

(
EulerGamma+2Log[2]+Sum

[
(−1)n (2z)2n

2n(2n)!
,{n,1,∞}

])
−
√

π

2
Sum

[
(−1/4)n z2n PolyGamma[0,n+3/2]

n!Gamma[n+3/2]
,{n,0,∞}

]
+

Cos[z]
z

SinIntegral[2z],

Der[z]
]

Out[17]=
{
(48z5 +95z3)D8

z +(864z4 +1900z2)D7
z +(576z5 +5436z3 +10830z)D6

z +

(7968z4 +23684z2 +17100)D5
z +(1440z5 +32442z3 +77002z)D4

z +
(13344z4 +59332z2 +83448)D3

z +(1344z5 +33596z3 +82858z)D2
z +

(6240z4 +31404z2 +46892)Dz +(432z5 +6495z3 +15150z)
}

Since the HolonomicFunctions package uses operator notation, the second argument
indicates that a differential equation w.r.t. z is desired; instead of an equation the
corresponding operator is returned with Dz = d/dz. As before, the proof is completed
by checking a few initial values (see also Section 4). ut
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3 Symbolic Summation Tools

It is not always the case that recurrences for the power series coefficients can be ob-
tained by the package GeneratingFunctions. Sometimes combinatorial identities such
as the following one are needed. Its proof gives occasion to introduce the Mathe-
matica package Zb, an implementation of Zeilberger’s algorithm for hypergeometric
summation [Zei91].

Lemma 1. For k ∈ Z≥0 we have

k

∑
j=1

(−2) j

j

(
k
j

)
=

{
Hn+1−2H2n+2 k = 2n+1 is odd
Hn−2H2n k = 2n is even,

where Hn := ∑
n
k=1

1
k denotes the harmonic numbers.

It can be a chore to locate such identities in the literature. The closest match that
the authors found is the similar identity ∑

k
j=1(−1) j+1 j−1

(k
j

)
= Hk [GKP94, p. 281].

Thus, an automatic identity checker like the one we describe now is helpful. We
note in passing that we can not only verify such identities, but even compute the
right hand side from the left hand side [Sch05].

Proof (of Lemma 1). We denote the sum on the left hand side by ak. Using the
Mathematica package
In[18]:= << Zb.m

Fast Zeilberger Package by Peter Paule and Markus Schorn (enhanced by Axel Riese) – c© RISC Linz

we find
In[19]:= Zb[(−2) j/ j Binomial[2n+1, j],{ j,1,2n+1},n]

If ‘1 + 2 n’ is a natural number, then:

Out[19]= {(n+1)(2n+3)SUM[n]− (4n2 +14n+13)SUM[n+1]
+ (n+2)(2n+5)SUM[n+2] ==−2}

In[20]:= Zb[(−2) j/ j Binomial[2n, j],{ j,1,2n},n]
If ‘2n’ is a natural number, then:

Out[20]= {(n+1)(2n+1)SUM[n]− (4n2 +10n+7)SUM[n+1]
+ (n+2)(2n+3)SUM[n+2] ==−2}

hence the sequence ak satisfies the recurrences

(n+1)(2n+3)a2n+1− (4n2 +14n+13)a2n+3 +(n+2)(2n+5)a2n+5 =−2

and

(n+1)(2n+1)a2n− (4n2 +10n+7)a2n+2 +(2n+3)(n+2)a2n+4 =−2.

The right hand side satisfies these recurrences, too:
In[21]:= Out[19] /. SUM[n ]→ HarmonicNumber[n+1]−2HarmonicNumber[2n+2]

// ReleaseHold // FullSimplify
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Out[21]= {True}

In[22]:= Out[20]/. SUM[n ]→ HarmonicNumber[n]−2HarmonicNumber[2n]
// ReleaseHold // FullSimplify

Out[22]= {True}

Hence the desired result follows by checking the initial conditions k = 0,1,2,3. ut

Proposition 2. Identities (10.2.32) and (10.2.33) follow from Lemma 1. They hold
for z ∈ C\R≤0.

Proof. We do Taylor series expansion on both sides of (10.2.32), and then com-
pare coefficients. Using the expansions (5.1.10) and (5.1.11) and computing Cauchy
products, we find that the right hand side of (10.2.32) equals√

2
πz

(
(logz+ log2+ γ)sinhz+

∞

∑
n=0

a2n+1

(2n+1)!
z2n+1

)
, (1)

where ak is the sum from Lemma 1. The expansion of the left hand side of (10.2.32)
can be done with (9.6.10) and (9.6.42). Since

(z2/4)n

Γ (n+ 3
2 )n!

=
2z2n

√
π(2n+1)!

and
ψ(n+ 3

2 ) =−γ−2log2+2H2n+2−Hn+1,

the left hand side of (10.2.32) turns out to be√
2

πz

(
(logz+ log2+ γ)sinhz+

∞

∑
n=0

(Hn+1−2H2n+2)
z2n+1

(2n+1)!

)
. (2)

Lemma 1 completes the coefficient comparison.
Identity (10.2.33) can be proved analogously; replace sinh by cosh and 2n+1 by

2n in (1), and sinh by cosh and the summand by (Hn−2H2n)z2n/(2n)! in (2). ut

We proceed to prove the identities (10.1.48), (10.1.49), and (10.1.52) by the same
strategy as above: compute LODEs or LOREs for both sides, and check initial
values. Since in these identities definite sums occur for which one cannot derive
LOREs or LODEs by using holonomic closure properties, symbolic summation al-
gorithms enter the game. For hypergeometric sums, like in Lemma 1, the package
Zb is the perfect choice. Since in the following identities the occurring sums do not
have hypergeometric summands, we use more general summation methods [Sch05]
and [Kou09] that are available in the packages Sigma and HolonomicFunctions, re-
spectively.

In general, the sums under consideration are of the form
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S(n,z) =
∞

∑
k=0

h(n,k) f (n,z,k) (3)

with integer parameter n and complex parameter z where h and f have the following
properties: h(n,k) is a hypergeometric term in n and k, i.e., h(n+ 1,k)/h(n,k) and
h(n,k+1)/h(n,k) are rational functions in n and k. Furthermore, f (n,z,k) satisfies
a recurrence relation of the form

f (n,z,k+d) = α0(n,z,k) f (n,z,k)

+α1(n,z,k) f (n,z,k+1)+ · · ·+αd−1(n,z,k) f (n,z,k+d−1), (4)

and either a recurrence relation

f (n+1,z,k) = β0(n,z,k) f (n,z,k)

+β1(n,z,k) f (n,z,k+1)+ · · ·+βd−1(n,z,k) f (n,z,k+d−1) (5)

or a differential equation

d
dz

f (n,z,k) = β0(n,z,k) f (n,z,k)

+β1(n,z,k) f (n,z,k+1)+ · · ·+βd−1(n,z,k) f (n,z,k+d−1), (6)

where the αi,βi are rational functions in k, n, and z. From recurrences of the
forms (4) and (5) we will derive a recurrence relation in n for S(n,z). If, on the
other hand, we have (6) instead of (5), we will compute a differential equation for
S(n,z) in z.

We note that the HolonomicFunctions package allows more flexible recurrence/
differential systems as input specifying the shift/differential behavior of the sum-
mand accordingly. However, the input description given above gives rise to rather
efficient algorithms implemented in the Sigma package to calculate LOREs and
LODEs for S(n,z).

3.1 LORE and initial conditions for (10.1.49)

We compute a LORE for the right hand side

S(n) :=
n

∑
k=0
−n!zn+1 2n−2k+1

k!(2n− k+1)!
jn−k(z)yn−k(z)

=
n

∑
k=0

−n!zn+1(2k+1)
(n− k)!(n+ k+1)!

jk(z)yk(z)

using
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In[23]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

First we insert the sum in the form (3) with recurrences of the type (4) and (5). Note
that h(n,k) = −n!zn+1(2k+1)

(n−k)!(n+k+1)! is hypergeometric in n and k. Moreover, by (10.1.19) the
spherical Bessel functions of the first kind j(k) := jk(z) (we suppress the parameter
z in our Mathematica session) fulfill the recurrence
In[24]:= recJ = z j[k]− (2k+3) j[k+1]+ z j[k+2] == 0;

Since the same recurrence holds for yk(z), see (10.1.19), we obtain with
In[25]:= recJY = REHadamard[recJ, recJ, j[k]]/.{j→ f};

Out[25]= (−2k−5)z2f[k]+ (2k+3)(4k2 +16k− z2 +15) f [k+1]
−(2k+5)(4k2 +16k− z2 +15) f [k+2]+ (2k+3)z2 f [k+3] = 0

a recurrence in the form (4) for f (k) := jk(z)yk(z). Since f (k) is free of n, we choose
f [n+ 1,k] == f [k] for the required recurrence of the form (5). Given these recur-
rences we are ready to compute a recurrence for our sum

In[26]:= mySum =
n

∑
k=0

−n!zn+1(2k+1)
(n− k)!(n+ k+1)!

f[k];

by using the Sigma-function
In[27]:= GenerateRE[mySum,n,{recJY, f [k]}, f [n+1,k] == f [k]]

Out[27]= 2zSUM[n]− (2n+3)SUM[n+1]+2zSUM[n+2] == 0

Note that S(n) = ∑
n
k=0 h(n,k) f (k)(= mySum = SUM[n]). Since besides S(n) also

jn(2z) fulfills the computed recurrence and since S(n) = jn(2z) for n = 0,1, we have
S(n) = jn(2z) for all n≥ 0.

A correctness proof. Denote ∆kg(z,k) := g(z,k+1)−g(z,k). The correctness of the
produced recurrence follows from the computed proof certificate

∆kg(n,k) = c0h(n,k) f (k)+ c1h(n+1,k) f (k)+ c2h(n+2,k) f (k) (7)

given by c0 = 2z, c1 =−(2n+3), c2 = 2z and

g(n,k) =
zn+1n!

(2k+3)(n+ k+2)!(n− k+2)!
[
g0f(k)+g1f(k+1)+g2f(k+2)

]
with

g0 =8k5−8(n−1)k4− (z2 +28n+30)k3 +2(2n2 +(2z2−9)n+2z2−19)

k2 +((z2 +8)n2 +(8z2 +15)n+8z2 +1)k+(n2 +3n+2)(2z2 +3)

g1 =(2k+3)(k−n−2)(2k3 +(3−2n)k2− (5n+2)k+(n+1)(z2−3)),

g2 =− (k+1)(k−n−2)(k−n−1)z2.

Namely, one can show that (7) holds for all n≥ 0 and 0≤ k≤ n as follows. Express
∆kg(n,k) in terms of f (k) and f (k + 1) by using the recurrence given in Out[25]
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and rewrite any factorial in (7) in terms of (n+ k+2)! and (n− k+2)!. Afterwards
verify (7) by polynomial arithmetic. The summation of (7) over k from 0 to n gives
the recurrence in Out[27]; here we needed the first evaluations of f (i) = ji(z)yi(z),
i = 0,1,2, from (10.1.11) and (10.1.12).
We remark that the underlying algorithms [Sch05] unify the creative telescop-
ing paradigm [Zei91] in the difference field setting [Sch07] and holonomic set-
ting [Chy00]. This general point of view opens up interesting applications, e.g.,
in the field of combinatorics [APS05] and particle physics [ABRS12].

3.2 LODE and initial conditions for (10.1.48)

For the proof of (10.1.48) we choose the package HolonomicFunctions. As we have
seen before, holonomic closure properties include algebraic substitution; but since
sin(θ) is not algebraic, we have to transform identity (10.1.48) slightly in order to
make it accessible to our software: just replace cos(θ) by c and sin(θ) by

√
1− c2.

Now it is an easy task to compute a LODE in z for the left hand side:

In[28]:= Annihilator
[
BesselJ

[
0,z
√

1− c2
]
, Der[z]

]
Out[28]=

{
zD2

z +Dz +(z− c2z)
}

The sum on the right hand side requires some more work. Similar to identity
(10.1.49) above, the technique of creative telescoping [Zei91] is applied and it fits
perfectly to the HolonomicFunctions package. The latter can deal with multivariate
holonomic functions and sequences, i.e., roughly speaking, mathematical objects
that satisfy (for each variable in question) either a LODE or a LORE of arbitrary
(but fixed) order. For example, the expression

f (n,z,c) = (4n+1)
(2n)!
22nn!2 j2n(z)P2n(c)

satisfies a LORE in n of order 4 and LODEs w.r.t. z and c, both of order 2. To derive
a LODE in z for the sum we employ the following command (the shift operator Sn,
defined by Sn f (n) = f (n+ 1), is input as S[n], and the derivation Dz, defined by
Dz f (z) = f ′(z), is input as Der[z]):
In[29]:= CreativeTelescoping[(4n+1)(2n)!/(22nn!2)SphericalBesselJ[2n,z]LegendreP[2n,c],

S[n]−1, Der[z]]

Out[29]=

{{
zD2

z +Dz+(z−c2z)
}
,

{
4(n+1)2

4n+5
SnDz+

4(n+1)2(8n2 +18n− z2 +9)
(4n+3)(4n+5)z

Sn+
4n2

4n+1
Dz+

−16c2n2z2−16c2nz2−3c2z2 +32n4 +40n3 +4n2z2 +12n2 +4nz2 + z2

(4n+1)(4n+3)z

}}
The output consists of two operators, say P and Q, which are called telescoper and
certificate (note already that P equals Out[28]). They satisfy the relation
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P+(Sn−1)Q

)
f (n,z,c) = 0, (8)

a fact that can be verified using the well-known LODEs and LOREs for spherical
Bessel functions and Legendre polynomials. Summing (8) w.r.t. n and telescoping
yields

P
∞

∑
n=0

f (n,z,c)− (Q f )(0,z,c)+ lim
n→∞

(Q f )(n,z,c) = 0

(P is free of n and Sn and therefore can be interchanged with the summation quanti-
fier). Using (9.3.1) and (10.1.1) it can be shown that the limit is 0, and also the part
(Q f )(0,z,c) vanishes.

Consequently, we have established that both sides of (10.1.48) satisfy the same
second-order LODE. It suffices to compare the initial conditions at z = 0 (see Sec-
tion 4). For the left hand side we have J0(0) = 1. From (10.1.25) it follows that the
Taylor expansion of j2n(z) starts with z2n and hence for z = 0 all summands are zero
except the first one. With (10.1.11) we see that the initial conditions on both sides
agree.

Before turning to the next identity, we want to point to [Sch07] where a differ-
ent computer algebra proof of (10.1.48) has been given. More examples of prov-
ing special function identities with the HolonomicFunctions package are collected
in [KM11].

3.3 LODE and initial conditions for (10.1.52)

Again we compute a LODE with Sigma. In order to get a LODE of the left hand side
of (10.1.52) we compute a LODE of its truncated version

In[30]:= mySum =
a

∑
k=0

j[k]2;

Note that the summand of our input-sum depends non-linearly on jk(z). In order to
handle this type of summation input, Sigma needs in addition the package [Ger02]
In[31]:= << OreSys.m

OreSys package by Stefan Gerhold c© RISC-Linz

for uncoupling systems of LODE-systems. Then using a new feature of Sigma we
can continue as “as usual”. Given the difference-differential equation of the form (6)
for j(k) := jk(z) and j(0,1)(k,z) := d

dz jk(z):

In[32]:= recZ = j(0,1)[k,z] ==
k
z

j[k]+ j[k+1];

see (10.2.20), and the recurrence In[24] of the form (5), we compute a LODE for
mySum(= SUM[n]):

In[33]:= mySum =
a

∑
k=0

j[k]2;

In[34]:= GenerateDE[mySum,n,{recJ, j[k]}, recZ]
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Out[34]= zSUM′[z]+SUM[z] == (z j[a] j[a+1]− (2a+1) j[a]2)− (z j[0] j[1]− j[0]2)

A correctness proof. The correctness of the LODE can be checked by the computed
proof certificate

∆kg(z,k) = c0 j(k)2 + c1 j(0,1)(k,z)2 (9)

with c0 = 1, c1 = z and g(z,k) = z j(k) j(k+ 1)− (2k+ 1) j(k)2. Namely, one can
easily show that (9) holds for all 0 ≤ k as follows. Express (9) in terms of j(k)
and j(k+ 1) by using the recurrence given in In[24] and the difference-differential
equation given in In[32]. Afterwards verify (9) by polynomial arithmetic. Then sum-
ming (9) over k from 0 to a gives the recurrence in Out[34]; here we used the initial
values (10.1.11).

Next, we let a→ ∞. Then ja(z) tends to zero by (9.3.1). Therefore, the left hand
side of (10.1.52) satisfies the LODE

S(z)+ z
dS(z)

dz
=

sin(2z)
2z

. (10)

It is readily checked that the right hand side satisfies it, too, and both sides equal 1
at z = 0. This establishes equality of both sides of (10.1.52).

Alternatively, we can derive the inhomogeneous differential equation for the left
hand side of (10.1.52) with HolonomicFunctions:
In[35]:= Annihilator[Sum[SphericalBesselJ[n,z]2,{n,0, Infinity}], Der[z], Inhomogeneous→ True]

Out[35]= {{zDz +1},{Hold[Limit[. . . ,n→ ∞]]+ . . .}}

The output consists of a differential operator and an expression that gives the in-
homogeneous part (abbreviated above). Without help, Mathematica is not able to
simplify the latter (i.e., compute the limit), but using (9.3.1) it succeeds and we get

(
zDz +1

)
S(z)− sin(z)cos(z)

z
= 0

which of course agrees with (10).

4 Series Solutions of LODEs and Analyticity

In some proofs we have determined a differential equation that is satisfied by both
sides of the identity in question, and then compared initial values. In contrast to the
case of recurrences, the validity of this approach needs some non-trivial justification.
This procedure can be justified by well-known uniqueness results for solutions of
LODEs, to be outlined in this section. In the proofs of (10.1.39), (10.1.40), (10.2.30),
and (10.2.31), the point t = 0, where we checked initial conditions, is an ordinary
point of the LODE (i.e., the leading coefficient of the LODE does not vanish at
t = 0). Then there is a unique analytic solution, if the number of prescribed initial
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values equals the order of the equation. The identity then holds (at least) in the
domain (containing zero) where we can establish analyticity of both sides.

Proposition 3. Identity (10.1.40) holds for all complex t and all complex z 6= 0. The
same is true for (10.2.31).

Proof. We consider (10.1.40) and omit the analogous considerations for (10.2.31).
For n ∈ Z, the function jn−1(z) is defined for z ∈ C∗. We fix such a z and consider
both sides of (10.1.40) as functions of t. By (9.3.1), the right hand side converges
uniformly for all complex t, therefore it is an entire function of t. The left hand
side is also entire, since cos

√
w = ∑n≥0(−1)nwn/(2n)! is an entire function of w.

Initial values at t = 0 and an LODE satisfied by both sides were already presented in
Section 2, hence, by the above uniqueness property, identity (10.1.40) is proved. ut

Proposition 4. Identity (10.1.39) holds for all complex z and t with |ℑ(z)| ≤ ℜ(z)
and 2|t|< |z|. If |ℑ(z)| ≤ −ℜ(z), then the identity holds with switched sign for all t
with 2|t|< |z|. The same is true for (10.2.30).

Proof. We give the proof in the case of (10.1.39); (10.2.30) is treated analogously.
First we complete the check of initial values from Section 2. For t = 0, the right
hand side is y−1(z) = (sinz)/z, and on the left hand side we have (sin

√
z2)/z. Thus,

at t = 0 both sides agree for |arg(z)|< π/2, which follows from |ℑ(z)| ≤ℜ(z); for
π/2 < |arg(z)|< π , which follows from |ℑ(z)| ≤ −ℜ(z), the identity holds at t = 0
with switched sign, because the function w 7→

√
w2 changes sign when crossing the

branch cut iR. The first derivatives at t = 0 are (cos
√

z2)/
√

z2 = (cosz)/
√

z2 and
−y0(z) = (cosz)/z, respectively. The same consideration as for the first initial value
completes the check of the initial conditions.

Now we show that both sides of (10.1.39) are analytic functions of t for fixed
z 6= 0 with |ℑ(z)| ≤ |ℜ(z)|. Let us start by determining the radius of convergence of
the right hand side. It is an easy consequence of (9.3.1) that

yn(z)∼−
√

2
z

(
2n
ez

)n

, n→ ∞, z 6= 0.

Hence, by Stirling’s formula, the radius of convergence is |z|/2, and so the right
hand side is analytic for 2|t|< |z|.

The left hand side of (10.1.39) has a branch cut along a half-line starting at t =
−z/2, a point on the circle of convergence of the right hand side. If this half line has
no other intersection with this circle, then the left hand side is analytic in the disk
{t : 2|t|< |z|}. Otherwise, the branch cut separates the disk into two segments, and
the identity does not necessarily hold in a segment that does not contain t = 0. As
we will now show, our assumptions exclude the possibility of a second intersection.
Once again it is convenient to proceed by computer algebra. Note that the presence
of two intersections means that(
∃s 6= t ∈ C

)(
2|s|= |z|∧2|t|= |z|∧ z2 +2zs ∈ ]−∞,0]∧ z2 +2zt ∈ ]−∞,0]

)
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holds. Upon rewriting this formula with real variables, it can be simplified by Math-
ematica’s Reduce command; the result – translated back into complex language –
is the equivalent formula |ℜ(z)|< |ℑ(z)|. Summing up, under our assumptions on z
the left hand side of (10.1.39) is analytic in the disk {t : 2|t|< |z|}. ut

Now consider the LODE (10), which we want to employ to prove (10.1.52). The
point z = 0 is not an ordinary point, so the question of uniqueness of the solution is
more subtle. The origin is a regular singular point of (10), since the degree of the
indicial polynomial

[z0]ps(z)−1zs−σ L zσ = σ +1

agrees with the order s = 1 of the LODE. Here, ps(z) = z denotes the leading coef-
ficient, and L the differential operator

L := 1+ zDz.

The following classical result [Inc26] describes the structure of a fundamental
system at a regular singular point. See also the concise exposition in Meunier and
Salvy [MS03].

Theorem 1. Let z = 0 be a regular singular point of a homogeneous LODE of or-
der s. Denote the roots of the indicial polynomial by σ1, . . . ,σs, and let m1, . . . ,ms
be their multiplicities. Then the equation has a basis of s solutions

zσi
di

∑
j=0

log j(z)Φi j(z), 1≤ i≤ s, (11)

where di < s, and the Φi j(z) are convergent power series. Each of these solutions is
uniquely defined by the coefficients of the s “monomials”

s⋃
i=1

{
zσi ,zσi logz, . . . ,zσi logmi−1 z

}
in the series (11).

Proposition 5. Identity (10.1.52) holds for all z ∈ C.

Proof. We have shown in the preceeding section that both sides satisfy the LODE
(10). As seen above, the indicial polynomial of the homogeneous equation L f =
f + z f ′ = 0 is σ + 1. Hence, by Theorem 1, a solution of L f = 0 that has the
form (11) is uniquely defined by the coefficient of z−1. Hence the zero function
is the only analytic solution of the homogeneous initial value problem L f = 0,
f (0) = 0. It is a trivial consequence that the inhomogeneous equation (10) cannot
have more than one analytic solution with f (0) = 1. Therefore, (10.1.52) holds in
a neighbourhood of z = 0. The left hand side of (10.1.52) is entire since it is a
uniform limit of entire functions, and the right hand side is entire by (5.2.14). Thus,
the identity holds in the whole complex plane by analytic continuation. ut
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Proposition 6. Identity (10.1.48) holds for all complex z and θ .

Proof. By the Laplace-Heine formula [Sze75, Theorem 8.21.1], P2n(cosθ) grows at
most exponentially as n→ ∞. Together with (9.3.1) and n(2n)!/(22nn!2) = O(

√
n),

this shows that the right hand side of (10.1.48) is an entire function of z and θ . In
Section 3 we showed that both sides of (10.1.48) satisfy the differential equation
z f ′′(z)+ f ′(z)+ z(1− c2) f (z) = 0 (whose indicial equation is σ2 = 0) and that the
initial condition at z0 agrees. The result follows from Theorem 1 and the fact that
both sides are entire functions. ut

5 Non-Computer Proofs

Some of our identities can be easily proved from some of the others, without using
any software machinery. The computer proofs that we have in hand suffice for es-
tablishing the remaining identities (10.1.42), (10.1.43), (10.1.44), and (10.2.34) in
this spirit. The reader should by now be convinced that, if desired, all of them can
also be proved by the algorithmic methods we have presented.

Proposition 7. Identities (10.1.42), (10.1.43), and (10.1.44) follow from (10.1.41).
They hold for z ∈ C\R≤0.

Proof. Identities (10.1.42), (10.1.43), and (10.1.44) can be done analogously to
(10.1.41), but we instead present (non-computer) deductions from (10.1.41). The
derivative of Yν w.r.t. ν can be expressed in terms of Jν , J−ν , and Yν , see (9.1.65) in
the appendix. Note that cot(ν +1/2)π vanishes for ν = 0,1. (9.1.65) thus yields[

∂

∂ν
yν(z)

]
ν=0

=

[
∂

∂ν
jν(z)

]
ν=−1

− π sinz
z

and [
∂

∂ν
yν(z)

]
ν=−1

=−
[

∂

∂ν
jν(z)

]
ν=0
− π cosz

z
.

Therefore, we have a relation between the left hand sides of (10.1.42) and (10.1.43),
and one between the left hand sides of (10.1.41) and (10.1.44). It is easy to verify
that the respective right hand sides satisfy the same relations. Hence the assertion
will be established once we show that (10.1.42) follows from (10.1.41). To this end,
it suffices to show that the left hand sides of these identities satisfy

∂

∂ z

(
z
[

∂

∂ν
jν(z)

]
ν=0

)
− z
[

∂

∂ν
jν(z)

]
ν=−1

=− sinz
z

, (12)

since once again it is easy to see that the right hand sides of (10.1.41) and (10.1.42)
obey the same relation. By (9.1.64), the recurrence relations of Γ and ψ , and the
duplication formula of Γ , the left hand side of (12) equals
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sinz
z
−
√

π

∞

∑
k=0

(− 1
4 )

k

(
ψ(k+ 3

2 )

Γ (k+ 3
2 )/(k+

1
2 )
−

ψ(k+ 1
2 )

Γ (k+ 1
2 )

)
z2k

k!

=
sinz

z
−
√

π

∞

∑
k=0

(− 1
4 )

k 1
Γ (k+ 1

2 )(k+
1
2 )

z2k

k!

=
sinz

z
−

∞

∑
k=0

(− 1
4 )

k 22k+1z2k

Γ (2k+2)
=− sinz

z
. ut

Proposition 8. Identity (10.2.34) follows from (10.1.32) and (10.2.33). It holds for
z ∈ C\R≤0.

Proof. Indeed, by (9.6.43) we have[
∂

∂ν
Kν(z)

]
ν=±1/2

=
π

2
csc(νπ)

[
∂

∂ν
I−ν(z)−

∂

∂ν
Iν(z)

]
ν=±1/2

=−π

2
csc(νπ)

([
∂

∂ν
Iν(z)

]
ν=∓1/2

+

[
∂

∂ν
Iν(z)

]
ν=±1/2

)

=±
√

π

2z
ezE1(2z). ut

Finally, we note that (10.2.32), which was proved in Proposition 2, can be proved
by hand from (10.1.41). Indeed, replacing z with iz in (9.1.64) makes the k-sum
in (9.1.64) equal the k-sum in (9.6.42). Solving both relations for the k-sum al-
lows to express ∂

∂ν
Iν(z) by Iν(z), Jν(iz), and ∂

∂ν
Jν(iz). Plugging in ν = 1

2 , rewriting
∂

∂ν
Jν(iz) with (10.1.41), and using the relations (5.2.21) and (5.2.23) between the

exponential integral and the sine and cosine integrals gives (10.2.32). Analogously,
(10.2.33) follows from (10.1.42).
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Appendix: List of Relevant Table Entries

For the reader’s convenience, we collect here all identities from Abramowitz, Ste-
gun [AS73] that we have used.

Ei(x) = γ + lnx+
∞

∑
n=1

xn

nn!
(x > 0) (5.1.10)

E1(z) =−γ− lnz−
∞

∑
n=1

(−1)nzn

nn!
(|argz|< π) (5.1.11)
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Si(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)(2n+1)!
(5.2.14)

Ci(x) = γ + logx+
∞

∑
n=1

(−1)nx2n

2n(2n)!
(5.2.16)

Si(x) =
1
2i
(E1(iz)−E1(−iz))+

π

2
(|argz|< π

2
) (5.2.21)

Ci(x) =−1
2
(E1(iz)+E1(−iz)) (|argz|< π

2
) (5.2.23)

ψ(z+1) = ψ(z)+
1
z

(6.3.5)

∂

∂ν
Jν(z) = Jν(z) log( 1

2 z)− ( 1
2 z)ν

∞

∑
k=0

(−1)k ψ(ν + k+1)
Γ (ν + k+1)

( 1
4 z2)k

k!
(9.1.64)

∂

∂ν
Yν(z) = cot(νπ)

(
∂

∂ν
Jν(z)−πYν(z)

)
(9.1.65)

− csc(νπ)
∂

∂ν
J−ν(z)−πJν(z) (ν 6= 0,±1,±2, . . .)

Jν(z)∼
1√
2πν

( ez
2ν

)ν

, Yν(z)∼−
√

2
πν

( ez
2ν

)−ν

(ν → ∞) (9.3.1)

Iν(z) = ( 1
2 z)ν

∞

∑
k=0

( 1
4 z2)k

k!Γ (ν + k+1)
(9.6.10)

∂

∂ν
Iν(z) = Iν(z) ln( 1

2 z)− ( 1
2 z)ν

∞

∑
k=0

ψ(ν + k+1)
Γ (ν + k+1)

( 1
4 z2)k

k!
(9.6.42)

jn(z) =
√

1
2 π/zJn+ 1

2
(z), yn(z) =

√
1
2 π/zYn+ 1

2
(z) (10.1.1)

j0(z) =
sinz

z
, j1(z) =

sinz
z2 −

cosz
z

, (10.1.11)

j2(z) =
( 3

z3 −
1
z

)
sinz− 3

z2 cosz

y0(z) =− j−1(z) =−
cosz

z
, y1(z) = j−2(z) =−

cosz
z2 , (10.1.12)

y2(z) =− j−3(z) =
(1

z
− 3

z2

)
cosz− 3

z2 sinz

jn−1(z)+ jn+1(z) = (2n+1)z−1 jn(z) (n ∈ Z) (10.1.19)

yn−1(z)+ yn+1(z) = (2n+1)z−1yn(z) (n ∈ Z)

jn(z) = zn
(
−1

z
∂

∂ z

)n sinz
z

(10.1.25)

n+1
z

jn(z)+
d
dz

jn(z) = jn−1(z) (10.2.20)
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Algebra in Quantum Field Theory: Integration, Summation and Special Functions,
Texts and Monographs in Symbolic Computation. Springer (2013).

[KP11] M. Kauers, P. Paule. The Concrete Tetrahedron. Springer, 2011.
[Kou09] C. Koutschan. Advanced applications of the holonomic systems approach. PhD

thesis, RISC, J. Kepler University, Linz, 2009.
[KM11] C. Koutschan, V. H. Moll. The integrals in Gradshteyn and Ryzhik. Part 18: Some

automatic proofs. SCIENTIA Series A: Mathematical Sciences 20:93–111, 2011.
[Mal96] C. Mallinger. Algorithmic manipulations and transformations of univariate holo-

nomic functions and sequences. Master’s thesis, RISC, J. Kepler University, Linz,
1996.

[MS03] L. Meunier, B. Salvy. ESF: An automatically generated encyclopedia of special func-
tions. In J. Rafael Sendra, editor, Proceedings of ISSAC ’03, pages 199–206. ACM
Press, 2003.

[DLMF] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Digital
Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.5 of 2012-10-
01.

[PS95] P. Paule, M. Schorn. A Mathematica version of Zeilberger’s algorithm for proving
binomial coefficient identities. J. Symbolic Comput., 20(5-6):673–698, 1995.

[Pra99] K. Prause. The Generalized Hyperbolic Model: Estimation, Financial Derivatives,
and Risk Measures. PhD thesis, Albert-Ludwigs-Universität, Freiburg i. Br., 1999.

[SZ94] B. Salvy, P. Zimmermann. Gfun: A package for the manipulation of generating and
holonomic functions in one variable. ACM Trans. Math. Software, 20:163–177, 1994.

[Sch05] C. Schneider. A new Sigma approach to multi-summation. Advances in Applied Math.
Special Issue Dedicated to Dr. David P. Robbins. Edited by D. Bressoud, 34(4):740–
767, 2005.

[Sch07] C. Schneider: Symbolic summation assists combinatorics. Sém. Lothar. Combin.
56:1–36, Article B56b, 2007.
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