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Overview

Knot Theory
> AJ Conjecture
> A-polynomial
> Colored Jones polynomial

Computer Algebra

> Guessing
» Symbolic Summation

> Holonomic Systems Approach
> Creative Telescoping

> Factorization of g-shift operators

Computer algebra matters for knot theory!
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Basics of knot theory
Knot:
> embedding of the circle S in S3 (or in Euclidean space R?)
> “knotted (closed) string”
> oriented or non-oriented
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Basics of knot theory
Knot:
> embedding of the circle S in S3 (or in Euclidean space R?)
> “knotted (closed) string”
> oriented or non-oriented

Equivalence of knots:
> equivalence relation: ambient isotopy
> “two knots are the same if they can be transformed into each
other without cutting the string”

Examples:
> unknot: O
> trefoil knot 31:
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Basics of knot theory

Fundamental problem:
Determine whether two descriptions (e.g., knot diagrams)
represent the same knot.
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Basics of knot theory

Fundamental problem:
Determine whether two descriptions (e.g., knot diagrams)
represent the same knot.

Knot invariants:
» combinatorial invariants
> knot polynomials

> quantum invariants

Knot polynomials:
> Alexander polynomial (1928)
> Jones polynomial (1984)
> A-polynomial
» HOMFLY polynomial
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The A-polynomial

The A-polynomial A (M, L) of a knot K parametrizes the affine
variety of SL(2, C) representations of the knot complement,
viewed from the boundary torus:

» Mpg := 53 minus a tubular neighborhood of K
(“knot complement”)

> character variety: X, = Hom(m(Mk),SL(2,C))
(modulo conjugation)

> boundary: Xy(s,) = Hom(Z x 7Z,SL(2, C))

> consider the restriction map ¢ : Xr,e — Xo(ary)

> its image is defined by a bivariate polynomial, Ax (M, L)

» difficult to compute (e.g., using elimination)

> even unknown for some knots with only 9 crossings.
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Example: trefoil

A finite presentation of the fundamental group of the trefoil knot:

71(S%\ 31) = (a, b | aabbb)

SL(2, C) representations:

- (é 0 > — A (wlog)

Z_l

b—>(“ “’) —. B with det B =1
Ty

There are two distinguished elements in 71 (53 \ K), the

meridian p and the longitude A, which live on the boundary torus.

w = bab

A=ba 0 ta o e tab e o b
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Example: trefoil
Impose the following conditions:

(3 ) ) (8 2)-9)

M = BAB,
A=BA 'B 1A 'B A !B AB ' A" B~ AB.

where
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Example: trefoil
Impose the following conditions:

(3 ) ) (8 2)-9)

M = BAB,
A=BA 'B 1A 'B A !B AB ' A" B~ AB.

where

Putting things together, we have to consider the ideal
(vy—wz—1,AABBB—1Ids, M+ M~ ' —tr(M), L+ L~ —tr(A))

and intersect it with Q[M, L], e.g., by Grobner basis elimination.
In this case, we obtain Az, (M, L) = L + M?®.
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The Jones polynomial

Skein relation:
> a means to define/compute polynomial invariants

> three-term relation connecting the polynomials of knots which
differ only locally:

X%

L,
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The Jones polynomial

Skein relation:
> a means to define/compute polynomial invariants

> three-term relation connecting the polynomials of knots which
differ only locally:

AR

Definition. The skein relation for the Jones polynomial J(K) is
¢ I(Ly) = qJ(L-) = (¢ = ¢7/*)J (Lo)

where L., L_, Ly denote positive, negative, no crossing, resp.
Initial condition: J(Q) = 1.
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The colored Jones function

The colored Jones function Jg ,(g) of a knot K is a generalization
of the classical Jones polynomial. It is a sequence of Laurent
polynomials:

Trn(q) € Z[gN.
It can be defined using the n-th parallels of K:

n/2

o) = S0 (" F) o)

k=0

where J(K®)) denotes the Jones polynomial of K,
the k-th parallel of K.
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The colored Jones function
Alternative definition via state sums using a diagram of K:
> label the m crossings with variables k = k1, ...,k
> label the arcs: at a left-hand crossing k;

> add k; to the label a(k) of

a —|— k
the underpass
> subtract k; from the label
b(k) of the overpass /

> associate to each crossing k; a proper q-hypergeometric
expression R;, depending locally on the labels:

-n/2—a n+k;— a(k)—n b(k
Ri(n, k) = g~"/2~a(k)(n+ki=b(k) (gak) ;q)ki[ 5{)]
v g

> the colored Jones function of K is given by an m-fold sum:

JKn Z Rl

0<k<n
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g-calculus
Recall some notation from ¢-calculus:

n—1

(a;q)n = [](1 - ag®)
k=0

n/2 _ ,—n/2

=

g2 — g1/

n

)t = T

k=1
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g-calculus
Recall some notation from ¢-calculus:
n—1
(a;q)n = [](1 - ag®)
k=0
qn/2 _ q—n/2

nj=-———"—-
[7] g2 — ¢ 1/2

— All these terms are (proper) g-hypergeometric:

f’n-‘rl(Q) n
fule) © Kig.a")

fnulq) is ¢-hg. =
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Wilf-Zeilberger theory

Theorem. (“fundamental theorem of WZ theory")
Every (multi-) sum over a proper g-hypergeometric term is
g-holonomic.
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Wilf-Zeilberger theory

Theorem. (“fundamental theorem of WZ theory")
Every (multi-) sum over a proper g-hypergeometric term is
g-holonomic.

— The colored Jones function is a g-holonomic sequence.
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g-holonomic sequences

Notation.
» IK: field of characteristic zero

> ¢: indeterminate, transcendental over K

Definition.

A univariate sequence (fn(Q))nelN is called g-holonomic
if it satisfies a nontrivial linear recurrence with coefficients
that are polynomials in ¢ and ¢™:

M:‘

cj(q,4") furi(@) =0  (n€N)
7=0

where d is a nonnegative integer and ¢;(z,y) € Kz, y| are
bivariate polynomials for j = 0,...,d with cg(x,y) # 0.
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The noncommutative A-polynomial

Notation.
Introduce operator notation:

(Lf)n(Q) = fn+1(Q)a (Mf)n(q) = qnfn(q)

and let
O =K(q, M)(L)/(LM — qML).
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The noncommutative A-polynomial

Notation.
Introduce operator notation:

(Lf)n(Q) = fn+1(Q)a (Mf)n(q) = qnfn(q)

and let
O =K(q, M)(L)/(LM — qML).

Definition.

The noncommutative A-polynomial Ax (g, M, L) € O of a knot K
is the minimal-order operator (denominator- and content-free) that
annihilates Jg ,,(q).

13 /43



The AJ conjecture
There is a close relation between the A-polynomial A (M, L) and
the annihilator Ak (g, M, L) of the colored Jones function:

AJ Conjecture:
For every knot K the following identity holds:

Ag(1,M, L) = poly(M) - Ag(M? L).
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The AJ conjecture

There is a close relation between the A-polynomial A (M, L) and
the annihilator Ak (g, M, L) of the colored Jones function:

AlJ Conjecture:
For every knot K the following identity holds:

Ag(1,M, L) = poly(M) - Ag(M? L).

The AJ conjecture has been verified (rigorously / non-rigorously)
for some knots with few crossings, by explicit computations, as
well as for some special families of knots.
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Consider 1-parameter family of pretzel knots K, = (—2,3,2p + 3):

Pretzel knots

=~

£

-2

3

2p+3

+1

/

N

_/

=

- X
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2-fusion knots

The pretzel knots K, are members of a 2-parameter family of
2-fusion knots K (my,mg) for integers m1 and mey:

We have: K, = K(p,1).
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Formula for the colored Jones polynomial
JK(ml,mg),n—‘rl(l/Q) =
p(n) e lmma)

2mi+2m 2mo+1
T Z v(2k1,n,n) ™M T2y (n + 2kg, 2k1, n) 2

(k1,k2)EnPNZ2
U(2k1)U(n + 2k2)
O(n,n,2k1)O(n, 2k, n + 2k2)
where
pla) = (1)qe s
w(mi,ma) = 2my + 6mg + 2
P = Polygon({(0,0), (1/2,~1/2), (1,0), (1, 1)})

Tet(n, 2k1, 2k1, n,n,n + 2ka)

I/(C, a, b) _ (_1)(a+b—c)/2q(—a(a+2)—b(b+2)+C(C+2))/8
a+b+c atbte
O(a,b,c) = (_1)(a+b+c)/2 |: S + 1:| [aébﬂ: aESJrc a+gic
) ) q

U(a) = (=1)"[a +1]
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Formula for the colored Jones polynomial
min S

Tet(a,b,c,d,e, f) = Z (—D)F[k 4 1]

k=max T}
" k
Si—k, S —k, S — k,k— T,k — To, k — Ts, k — Ta),

where

1 1 1
S = 5(a+d+b+c), Sy = 5(a+cl+e+f), Sy = 5(b+c+e+f)
and

1 1
T1=§(a+b+€), ngi(a—i-c—i-f),

1 1
T3:§(c+d+e), Ty= 5(b+d+f).
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Guessing

A candidate for a g-recurrence of Jg ,(g) can be obtained by
“guessing’:
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Guessing
A candidate for a g-recurrence of Jg ,(g) can be obtained by
“guessing’:

1. Use the formula to compute the values of Jg ,,(g) for 1 <n < N.

2. For the recurrence equation make an ansatz of the form

r d
An) = eij(@d Tk ntia)
i=0 j=0
with undetermined coefficients ¢; ; € K(g).
3. Solve the linear system A(1) =--- = A(N —r) = 0 for the ¢; ;.

4. If there is a solution for N —r > (r 4+ 1)(d + 1), then this is a
very plausible candidate.
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Degree of the colored Jones polynomial

Size of the colored Jones polynomial at n = 10, 20, 30 for the
pretzel knot family, where d(p) = d; + da for a Laurent polynomial
?ifdl ciq' with c_g, # 0 and cg, # 0:

p | dUk,10(9) | d(Jk,20(9)) | d(JK,30(q))

-5 453 1919 4400
-4 363 1546 3549
-3 282 1197 2735
-2 225 950 2175
-1 225 950 2175

0 265 1130 2595

1 330 1410 3240
2 406 1736 3991
3 491 2098 4821
4 579 2469 5671
5 667 2843 6529
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Some tricks

. Use modular computations (evaluation — interpolation)
evaluate Jx, »(q) for specific integers ¢ and modulo a prime
guess the recurrence (for that particular ¢ and modulo prime)
do this for many ¢ and many primes

use interpolation and rational reconstruction (modulo prime),
then chinese remaindering, to obtain the desired recurrence
equation

vvyyy

. Trade order versus degree of the recurrence and compute the
(supposedly minimal-order) recurrence by gerd.

. Use information about the Newton polygon known from the
A-polynomial.

. Exploit palindromicity to halve the number of unknowns.
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Palindromicity
We say that an operator P € K(q)(M*!, L*Y) /(LM — gML) is
palindromic if and only if there exist integers a,b € Z such that

P(g. M, L) = (~1)%"™/2M™ L' P(q, M~", L") L/~

where m = deg),(P) + ldeg,,;(P) and ¢ = deg (P) + ldeg (P).
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Palindromicity

We say that an operator P € K(q)(M*!, L*Y) /(LM — gML) is
palindromic if and only if there exist integers a,b € Z such that

P(q,M,L) = (—1)% bm/szLbP(q, Mﬁl,Lfl)LE*b
where m = deg,;(P) + 1deg,;(P) and £ = deg; (P) + ldeg; (P).
If P= Z” pz-,jMiLj then this implies that

Dij = (—1)aqb(i_m/2)pm_i7g_j for all 7,5 € Z.

0DV
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Palindromicity
We say that an operator P € K(q)(M*!, L*1) /(LM — ¢ML) is
palindromic if and only if there exist integers a,b € Z such that

P(q,M,L) = (-1)%¢"™>M™ L P(q, M~ L7 L

where m = deg),(P) + ldeg,,;(P) and ¢ = deg (P) + ldeg (P).

fP=3,, pi;M'L7 then this implies that

Dij = (_1)aqb(i—m/2)pm_i7£_j for all 4,5 € 7Z.
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Verification of AJ conjecture

1. The A-polynomials of K_5, ..., K5 were known.

. Compute the ¢ = 1 images of the guessed recurrence
operators.

3. The results are in accordance with the AJ conjecture.

4. Assuming that the guessed operators are correct, how can we

know that they are of minimal order?
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Verification of AJ conjecture

1. The A-polynomials of K_5, ..., K5 were known.

. Compute the ¢ = 1 images of the guessed recurrence
operators.

3. The results are in accordance with the AJ conjecture.

4. Assuming that the guessed operators are correct, how can we

know that they are of minimal order?

. Try to show irreducibility, which implies minimality.
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An easy sufficient criterion for irreducibility

Consider

IS

A(q,M,L) = aj(qg, M)L) € O
j=0
with d > 1 and assume
» A(1,M,L) € K(M)[L] is well-defined,
> irreducible,
> and ao(1, M)aq(1, M) # 0.
Then A(q, M, L) is irreducible in O.
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An easy sufficient criterion for irreducibility

Consider

IS

A(q,M,L) = aj(qg, M)L) € O
j=0
with d > 1 and assume
» A(1,M,L) € K(M)[L] is well-defined,
> irreducible,
> and ao(1, M)aq(1, M) # 0.
Then A(q, M, L) is irreducible in O.

— Most of the guessed operators are irreducible by this criterion
and therefore of minimal order.
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Double twist knots

Consider the family of double twist knots K, ,:

[-X - X

— Interesting family because their A-polynomials are reducible.
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Colored Jones function of K,
Using the Habiro theory of the colored Jones function, we get

n—1
KOS
Tie, on(@) = (D epr(@ep u(@a™ 2 (¢ 50 k(@™ )k
k=0

where the sequence ¢ ,(q) is defined by

Zn: k+n —7+ +3”+ +kp+k2 (1*‘]%“)((1;(])71

C .
o puars (4 k(@ Dkt
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Colored Jones function of K,
Using the Habiro theory of the colored Jones function, we get

n—1
ROy
Tie, on(@) = (D epr(@ep u(@a™ 2 (¢ 50 k(@™ )k
k=0

where the sequence ¢ ,(q) is defined by

2k+1)(

n
Skt n? e, (1 - 67 ) (g5 9)n
C7(q): (_1)k+q s t5 +5+% +kptkip '
o ;CZO (@ Dn—k(T Dntrt1

— Apply CK's HolonomicFunctions package.
www.risc.jku.at/research /combinat/software/HolonomicFunctions/
> symbolic summation via creative telescoping
> closure properties

> delivers a g-holonomic recurrence for the sum
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Apply HolonomicFunctions

Consider the case p = p’ = 2, i.e., the knot K32 (which is 7).

Result:
> (inhomogeneous) recurrence of order 5
> M-degree 24 and g-degree 65

> corresponds to 4 printed pages
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Apply HolonomicFunctions

Consider the case p = p’ = 2, i.e., the knot K32 (which is 7).

Result:
> (inhomogeneous) recurrence of order 5
> M-degree 24 and g-degree 65

> corresponds to 4 printed pages

Problem:
Creative telescoping doesn’t necessarily give the minimal-order
recurrence, but at least it certifies that it is correct.

Strategy:
Again, we try to show that the corresponding operator is
irreducible.
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How to show irreducibility?

Unfortunately, we cannot apply the previous criterion, since
A(1,M,L) in our case is reducible (double twist knots!).

For example, for K32 one gets
(L3 (M7 — 2M5 + 3MP + 2M* — TM + 2M2? + 6M — 2)L2 +
(2M7 — 6 M5 — 2M5 + TM* — 2M3 — 3M2 + 2M — 1)L+M7)
x(L2—(M4—M3—2M2—M+1)L+M4)
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How to show irreducibility?

Unfortunately, we cannot apply the previous criterion, since
A(1,M,L) in our case is reducible (double twist knots!).

For example, for K32 one gets
(L3 (M7 — 2M5 + 3MP + 2M* — TM + 2M2? + 6M — 2)L2 +
(2M7 — 6 M5 — 2M5 + TM* — 2M3 — 3M2 + 2M — 1)L+M7)
x(L2—(M4—M3—2M2—M+1)L+M4)
This means, if a factorization exists then it must be of the form

> (irreducible of order 2) - (irreducible of order 3)

> (irreducible of order 3) - (irreducible of order 2)
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Necessary and sufficient criterion for irreducibility

Lemma: Let P,Q, R € O such that P = QR is a factorization
of P, and let k denote the order of R, i.e., k = deg; (R). Then
AP has a linear right factor L — a for some a € K(q, M).
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Necessary and sufficient criterion for irreducibility

Lemma: Let P,Q, R € O such that P = QR is a factorization
of P, and let k denote the order of R, i.e., k = deg; (R). Then
AP has a linear right factor L — a for some a € K(q, M).

Proof:
> Let F = {f(l), ey f(k’)} be a fundamental solution set of R.
> By the lemma it follows that w = W (f(V, ..., f¥)) satisfies a

recurrence of order 1, say wy+1 = awy,a € K(g, M).

» But F'is also a set of linearly independent solutions of Pf =0
and therefore w is contained in the solution space of /\kP.

> It follows that A" P has the right factor L — a.
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Exterior powers of P,

Some statistics concerning P7, and its exterior powers:

’ | L-degree | M-degree | g-degree ‘ ByteCount

Py, 5 24 65 463,544
N Pr, 10 134 749 | 37,293,800
NPy, 10 183 1108 | 62,150,408

— We now have to prove that APy, and A’P7, have no linear
right factors.
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Exterior powers of P,

Some statistics concerning P7, and its exterior powers:

’ | L-degree | M-degree | g-degree ‘ ByteCount

Py, 5 24 65 463,544
N Pr, 10 134 749 | 37,293,800
NPy, 10 183 1108 | 62,150,408

— We now have to prove that APy, and A’P7, have no linear
right factors.

This can be achieved by an optimized version of the qHyper
algorithm (Abramov+Paule+Petkovsek 1998).
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Results for double twist knots
Koo = Ty:
> rigorous computation of A(q, M, L)
> rigorous proof that it is of minimal order (irreducible!)
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Results for double twist knots

Koo = Ty:

> rigorous computation of A(q, M, L)

> rigorous proof that it is of minimal order (irreducible!)
K3 3:

> rigorous computation of A(q, M, L)

> (q, M, L)-degree = (458,74,11)

> minimality proof out of scope (requires A>P and A°P)
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Results for double twist knots
Koo = Ty:
> rigorous computation of A(q, M, L)
> rigorous proof that it is of minimal order (irreducible!)

K3 3:
> rigorous computation of A(q, M, L)
> (q, M, L)-degree = (458,74,11)
> minimality proof out of scope (requires A>P and A°P)

K474:
» A(q, M, L) guessed
> (q, M, L)-degree = (2045,184,19)

K575:
» A(q,M, L) guessed
> (q, M, L)-degree = (6922, 396, 29), ByteCount = 8GB
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Colored Jones for connected sum of knots
Connected sum K1# K5 of two knots K7 and Ko:

>

E
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Colored Jones for connected sum of knots
Connected sum K1# K5 of two knots K7 and Ko:

E

> A knot is irreducible if it cannot be written as connected sum
of two nontrivial knots.

» Each knot has a “unique factorization”.

> Rolfsen's table contains only irreducible knots.

Fact: Let K7 and K5 be two knots in 3-space. Then the colored
Jones function of their connected sum is given by

JKl#Kg,n(Q) = JKLn(q) JK%n(q) for all n € N.

— Like for the classical Jones polynomial.
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Symmetric product

For P, P» € O the symmetric product P; x P» is the
operator P € O with minimal L-degree such that P(f -g) =0 for
all sequences f and g for which Pi(f) =0 and P(g) = 0.
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Remark 1: P is unique up to multiplication by elements from
K(q, M) \ {0}.

33/43



Symmetric product

For P, P» € O the symmetric product P; x P» is the
operator P € O with minimal L-degree such that P(f -g) =0 for
all sequences f and g for which Pi(f) =0 and P(g) = 0.
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sequences.
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Symmetric product

For P, P» € O the symmetric product P; x P» is the
operator P € O with minimal L-degree such that P(f -g) =0 for
all sequences f and g for which Pi(f) =0 and P(g) = 0.

Remark 1: P is unique up to multiplication by elements from
K(q, M) \ {0}.

Remark 2: The definition does not imply that the symmetric
product gives the shortest recurrence for the product of two
sequences.

Corollary: Let K; and K5 be two knots and let Py, P> € O be
annihilating operators of their colored Jones functions, respectively.
Then the symmetric product Py x P annihilates Jg, 4k, n(q).
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Example

Example.

Consider the sequence f(n) = ¢" + (—1)" whose minimal-order
annihilating operator is P = L? + (1 — q)L — q. As expected, the
symmetric product P x P is of order 3:

PxP=1L"(¢*—q+1)L*—(¢* —q+ 1)L +¢°
=(L-1)(L+q) (L~

On the other hand, we have f(n)? = ¢*® + 1 + 2(—q)" and this
expression is annihilated by the second-order operator

(gM*+1)L* = (q— 1)(¢*M* = 1)L — q(¢°M* + 1).
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A-polynomial for connected sums
Definition.

For two bivariate polynomials A (M, L) and A2(M, L) we define
the "A-product” A; ¢ Ay as follows:
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A-polynomial for connected sums

Definition.
For two bivariate polynomials A (M, L) and A2(M, L) we define
the "A-product” A; ¢ Ay as follows:

> let I C K(M)[L1, Lo, L] be the ideal
(A1(M, Ly), Ao(M, L), L — L1 Ls)

> Aj o Ay is the generator of the elimination ideal I N K (M)[L]

> Note that K(M)[L] is a PID, thence A; ¢ Ag is unique up to
multiplication by elements from K (M) \ {0}.

Fact: Let K; and K be two knots and A;(M, L) and As(M, L)
their respective A-polynomials. Then the A-polynomial of K1# K>
is given by A; o As.
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Theorem

Notation: We introduce the map ) by

v: O — K(M)[L], P(q M,L) — P(1, M, L).
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Proof (1)

Recall the algorithm for computing the symmetric power P x P».
> let f(n) and g(n) be generic sequences that are annihilated
by P and Ps, respectively
> make an ansatz for the minimal-order g-recurrence for the
product h(n) = f(n)g(n):

with undetermined coefficients ¢; € K(q, M).
> let d; and dy denote the L-degrees of P; and P», respectively.
> using the g-recurrence represented by P, we can rewrite
f(n+s) as a K(q, M)-linear combination of
f(n),...,f(n+d; — 1) for any s € N, and similarly for

g(n+s)
> the ansatz therefore can be reduced to the following form:
di—1do—1
Z Z Rst(q,M,co,...,cq)f(n+s)g(n+1t)=0
s=0 t=0
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Proof (2)

di—1ldx—1

Z Z Rs+(q,M,co,...,ca)f(n+s)gn+t) =0

notation for the 2-tuples corresponding to the summands:
{(s0,%0), (s1,t1),... } ={(5,t) | 0< s < d1—1,0 <t < dp—1}

for example, put s; = |i/d2] and t; = ¢ mod da
equating all R,; to zero yields a linear system Mc =0

> the matrix M is given by

M = (mij)o<i<didy—10<j<d  With  my; = (¢j)Rs, 1,

the algorithm proceeds by trying d =0, d = 1, etc., until a
solution is found; this guarantees minimality.

if d > dyds the linear system has more unknowns than
equations so that a solution must exist; this ensures

termination.
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Proof (3)

To prove the claim, apply the above algorithm to ¢(P;) and ¢(P).

>

rewriting of f(n + s) into f(n),...,f(n+d; — 1) can be
rephrased as the (noncommutative) polynomial reduction of
the operator L® with P;

if instead ¢ (P) is used the noncommutativity disappears

the reduction procedure boils down to a polynomial division
with remainder in K(M)[L]

let rem(a, b) denote the remainder of dividing the
polynomial a by b
obtain a matrix M with M = (M)
the entries ¢)(m; ;) of the matrix M are obtained as follows:
Y(mig) = ((L*) rem(L7, (P1))) - ((L%) rem (L7, 9)(P2)))
— (L3 LY) (rem(L{,P1(1,M, L1)) - rem(Li, Py (1, M, LQ)))
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Proof (4)

note that the set G = {P1(1, M, Ly), Po(1, M, Ly)} is a
Grobner basis in IK(M)[L1, Lo] by Buchberger's product
criterion

can define red(P, G) for P € IK(M)[Ly, Lo] as the unique
reductum of P with GG

Observe that
vem (L], P (1, M, Ly))-rem (L}, Po(1, M, Lo)) = red((L1Ls)’, G).

the linear system Me = 0 translates to the problem:
find co, ..., cq € IK(M) such that

¢j(M)red((Li1L2),G) = 0.

.
I M&
o
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Proof (5)

d
> ¢i(M)red((L1 L), G) = 0.
7=0

> this can be rephrased as an elimination problem
> identify Ly Lo with a new indeterminate L

> want to find a polynomial in IK(M)[L], free of Ly and Lo, in
the ideal generated by G and L — L1 Lo
> this elimination problem is just the definition of (P;) ¢ ¥(P)

» Hence we have shown:

Y(P1) xp(P2) = P(P1) o p(Pe).

> we have deg;, (Y(P1* P2)) > degy (V(P1) x ¥ (P,))

> moreover: 1)(P; x P) is an element of the elimination ideal
generated by (P;) ¢ 1 (Ps)

therefore ) (Py) o (Ps) | ¥(Py % Py) as claimed
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Example

Consider the connected sum 31#31. Its colored Jones polynomial
satisfies PJ3, 43, n(q) = b with

P = (M’ —2M3¢* — M*¢* + M?q +2Mq* — 1) L?
+ ( o M10q13 +2]\49q12 +]\48q12 o M8q11 . M7q11 o M6q10
+M5q9 . M5q8 + 2M4q7 . M3q6)L
o M13q13 + 2M12q13 . M11q13 + M11q10 _ 2M10q10 + M9q10
h— M”q” _ 2ngm _ M9q8 _ M8q9 —|—M7q9 +2M7q7 +M6q$
+ 2M6q6 . M5q6 . 2M4q5 . M4q3 + quz
The operator P is reducible:
P = ((M?q— 1)L+ M°q° — M?¢°)
x (M?¢* —2Mq + 1)L — M3* + 2M"¢* — MS¢*)

But this factorization doesn’t yield a lower order recurrence for

J3, 43, n(q). Hence P is of minimal order.
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Some results

Consider connected sums of 31 and 44:
> 31#31: degy(P) = 2, reducible into 1 + 1
> 31#41: degp(P) =5, reducible into 24+ 1+2and 1+ 2+ 2
> 41#41: degy(P) =5, reducible into 2 4 3

— In all cases the operators are reducible.

— Nevertheless, in all cases they are already minimal.
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