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Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

I 5 invited talks

I 32 articles (18 in French, 14 in English)

I highlight: thesis defense of Mireille Bousquet-Mélou

(taken from https://fpsac.org/invited speakers)
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Hypergeometric Terms

Definition: A term f(n) is called hypergeometric if

f(n+ 1)

f(n)
= rational function in n =

p0(n)

p1(n)
.

Alternatively: if f(n) satisfies a first-order linear recurrence with
polynomial coefficients:

p1(n) · f(n+ 1)− p0(n) · f(n) = 0.

Remark: Generalize geometric sequences where
f(n+ 1)

f(n)
= const.

Examples: rat(n), xn, n!, (a)n,

(
2n

n

)
, Γ(3n+ 1), etc.
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Gosper’s algorithm
Purpose: decide and solve the indefinite hypergeometric
summation problem:

f(k) = g(k)− g(k + 1)

=⇒
n∑
k=0

f(k) = g(0)− g(n+ 1).

Examples:

I
n∑
k=0

(4k + 1) k!

(2k + 1)!
=

n∑
k=0

(
2k!

(2k)!
− 2(k + 1)!

(2k + 2)!

)
= 2− n!

(2n+ 1)!

I
n∑
k=0

k! has no closed form (no hypergeometric g(k) exists).

Question: What about definite hypergeometric summation

n∑
k=0

f(n, k) = ? Such as
n∑
k=0

(
n

k

)
= 2n.
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Fasenmyer’s Algorithm

I aka “Sister Celine’s algorithm”

I developed in her doctoral thesis in 1945
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Sister Celine’s Algorithm
Algorithm: given hg. f(n, k), find recurrence for

∑∞
k=−∞ f(n, k).

1. Choose r, s ∈ N (order in n, order in k).

2. Ansatz for a k-free recurrence:
∑r

i=0

∑s
j=0 ci,j · f(n+ i, k + j).

3. Divide by f(n, k) and simplify.

4. Multiply by the common denominator.

5. Perform coefficient comparison with respect to k.

6. Solve the linear system for the ci,j ∈ K(n).

7. Sum over the k-free recurrences and return the result.

Example: F (n) :=
n∑
k=0

f(n, k) =

(
2n

n

)
with f(n, k) :=

(
n

k

)2

.

With r = s = 2 we find the k-free recurrence. Summing yields

0 = −(n+ 1) + (2n+ 2) − (n+ 1)
+ (2n+ 3) + (2n+ 3) − (n+ 2)

Collecting terms: (4n+ 6)F (n+ 1)− (n+ 2)F (n+ 2) = 0.

7 / 51



Sister Celine’s Algorithm
Algorithm: given hg. f(n, k), find recurrence for

∑∞
k=−∞ f(n, k).

1. Choose r, s ∈ N (order in n, order in k).

2. Ansatz for a k-free recurrence:
∑r

i=0

∑s
j=0 ci,j · f(n+ i, k + j).

3. Divide by f(n, k) and simplify.

4. Multiply by the common denominator.

5. Perform coefficient comparison with respect to k.

6. Solve the linear system for the ci,j ∈ K(n).

7. Sum over the k-free recurrences and return the result.

Example: F (n) :=

n∑
k=0

f(n, k) =

(
2n

n

)
with f(n, k) :=

(
n

k

)2

.

With r = s = 2 we find the k-free recurrence. Summing yields

0 = −(n+ 1) + (2n+ 2) − (n+ 1)
+ (2n+ 3) + (2n+ 3) − (n+ 2)

Collecting terms: (4n+ 6)F (n+ 1)− (n+ 2)F (n+ 2) = 0.

7 / 51



Sister Celine’s Algorithm
Algorithm: given hg. f(n, k), find recurrence for

∑∞
k=−∞ f(n, k).

1. Choose r, s ∈ N (order in n, order in k).

2. Ansatz for a k-free recurrence:
∑r

i=0

∑s
j=0 ci,j · f(n+ i, k + j).

3. Divide by f(n, k) and simplify.

4. Multiply by the common denominator.

5. Perform coefficient comparison with respect to k.

6. Solve the linear system for the ci,j ∈ K(n).

7. Sum over the k-free recurrences and return the result.

Example: F (n) :=

n∑
k=0

f(n, k) =

(
2n

n

)
with f(n, k) :=

(
n

k

)2

.

With r = s = 2 we find the k-free recurrence

. Summing yields

0 = −(n+ 1)f(n, k) + (2n+ 2)f(n, k + 1) − (n+ 1)f(n, k + 2)
+ (2n+ 3)f(n+ 1, k + 1) + (2n+ 3)f(n+ 1, k + 2) − (n+ 2)f(n+ 2, k + 2)

Collecting terms: (4n+ 6)F (n+ 1)− (n+ 2)F (n+ 2) = 0.

7 / 51



Sister Celine’s Algorithm
Algorithm: given hg. f(n, k), find recurrence for

∑∞
k=−∞ f(n, k).

1. Choose r, s ∈ N (order in n, order in k).

2. Ansatz for a k-free recurrence:
∑r

i=0

∑s
j=0 ci,j · f(n+ i, k + j).

3. Divide by f(n, k) and simplify.

4. Multiply by the common denominator.

5. Perform coefficient comparison with respect to k.

6. Solve the linear system for the ci,j ∈ K(n).

7. Sum over the k-free recurrences and return the result.

Example: F (n) :=

n∑
k=0

f(n, k) =

(
2n

n

)
with f(n, k) :=

(
n

k

)2

.

With r = s = 2 we find the k-free recurrence. Summing yields

0 = −(n+ 1)F (n) + (2n+ 2)F (n) − (n+ 1)F (n)
+ (2n+ 3)F (n+ 1) + (2n+ 3)F (n+ 1) − (n+ 2)F (n+ 2)

Collecting terms: (4n+ 6)F (n+ 1)− (n+ 2)F (n+ 2) = 0.

7 / 51



Sister Celine’s Algorithm
Algorithm: given hg. f(n, k), find recurrence for

∑∞
k=−∞ f(n, k).

1. Choose r, s ∈ N (order in n, order in k).

2. Ansatz for a k-free recurrence:
∑r

i=0

∑s
j=0 ci,j · f(n+ i, k + j).

3. Divide by f(n, k) and simplify.

4. Multiply by the common denominator.

5. Perform coefficient comparison with respect to k.

6. Solve the linear system for the ci,j ∈ K(n).

7. Sum over the k-free recurrences and return the result.

Example: F (n) :=

n∑
k=0

f(n, k) =

(
2n

n

)
with f(n, k) :=

(
n

k

)2

.

With r = s = 2 we find the k-free recurrence. Summing yields

0 = −(n+ 1)F (n) + (2n+ 2)F (n) − (n+ 1)F (n)
+ (2n+ 3)F (n+ 1) + (2n+ 3)F (n+ 1) − (n+ 2)F (n+ 2)

Collecting terms: (4n+ 6)F (n+ 1)− (n+ 2)F (n+ 2) = 0.
7 / 51



Wilf–Zeilberger (WZ) Theory
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Zeilberger’s Fast Algorithm
Problem: given a hypergeometric f(n, k), find a recurrence for

F (n) :=
∑

k
f(n, k)

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n, k) is a “proper” term),
one can show that a recurrence for F (n) exists.

But one does not know it, neither its order nor its coefficients.

I Try order r = 0, 1, 2, . . . until success.

I Write recurrence with undetermined coefficients pi ∈ K(n):

pr(n)F (n+ r) + · · ·+ p1(n)F (n+ 1) + p0(n)F (n) = 0.

I Apply a parametrized version of Gosper’s algorithm to

pr(n)f(n+ r, k) + · · ·+ p1(n)f(n+ 1, k) + p0(n)f(n, k).
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman’s differentiating under the integral sign)

Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: write f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).

Creative Telescoping: write

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).g(x, b)− g(x, a)
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Beyond Hypergeometric: Holonomic Functions

Definition: A sequence f(n) is called P-recursive if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)f(n+r)+ · · ·+p1(n)f(n+1)+p0(n)f(n) = 0 (pr 6= 0).

Definition: A function f(x) is called D-finite if it satisfies a linear
ordinary differential equation with polynomial coefficients:

pr(x)f (r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0 (pr 6= 0).

Remarks:

I Equivalently, such functions/sequences are called holonomic.

I Generalizations to several variables and mixed cases exist.

I In any case, one needs only finitely many initial conditions.

I The holonomic (finite!) data structure consists of a system of
linear functional equations together with initial values.
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Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function

12 / 51



Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function

Bessel function Coulomb function

12 / 51



Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function

Coulomb function

12 / 51



Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function

12 / 51



Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function

12 / 51



Special Functions

I arise in physics (real-world) and mathematical analysis

I are solutions to certain differential equations / recurrences

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function

12 / 51



The Holonomic Systems Approach

I This is the seminal paper by Doron Zeilberger (1990).

I The proposed algorithm applies to general holonomic functions.

I The approach is similar to Sister Celine’s algorithm.

I Not based on linear algebra, but on elimination techniques.

I Therefore, it was named the “slow algorithm”.
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Takayama’s Algorithm

Recall: creative telescoping requires a relation of the form

I cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k),

I or cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y) = d
dyg(x, y).

I Left-hand side is called telescoper, g is called certificate.

Ideas of the Algorithm:

I Work in the setting of Weyl algebra and D-modules.

I It is not necessary to eliminate k (resp. y) completely.

I Note that the certificate g is not needed in certain situations.

I Based on elimination, uses Gröbner bases over modules.
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Chyzak’s Algorithm

Ideas of the Algorithm:
I Employ Gröbner bases for normal forms, not for elimination.
I Ansatz with undetermined coeffs for telescoper and certificate.
I Coupled system of linear difference / differential equations.
I Solve it by uncoupling or by a direct method.

I Variation: C.K. proposed a heuristic approach that avoids the
expensive uncoupling step (caveat: may not terminate).
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Reduction-Based Creative Telescoping

Motivation:

I Typically, the certificate is much larger than the telescoper.

I Often it is not needed (natural boundaries / closed contour).

I Compute the telescoper without computing the certificate.

Contributors: Alin Bostan, Hadrian Brochet, Shaoshi Chen,
Frédéric Chyzak, Hao Du, Lixin Du, Louis Dumont, Hui Huang,
Manuel Kauers, Christoph Koutschan, Pierre Lairez, Ziming Li,
Bruno Salvy, Michael Singer, Joris van der Hoeven,
Mark van Hoeij, Rong-Hua Wang, Guoce Xin, . . .

Active Research Area: Google Scholar lists more than 1000
articles about creative telescoping.
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Reduction-Based Creative Telescoping
Reduction procedure (differential case): define ρ : F → F s.t.

I for each f ∈ F there is g ∈ F such that f − ρ(f) = g′,

I ρ(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for
∫ b
a f(x, y) dy, apply the reduction ρ

to the successive derivatives of the integrand f :

f = g′0 + ρ
(
f
)

= g′0 + h0,
d
dxf = g′1 + ρ

(
d
dxf
)

= g′1 + h1,

d2

dx2
f = g′2 + ρ

(
d2

dx2
f
)

= g′2 + h2, . . .

If the hi live in a finite-dimensional K(x)-vector space, then there
exists a nontrivial linear combination p0h0 + · · ·+ prhr = 0.

−→ Hence, the desired telescoper is p0f + p1f
′ + · · ·+ prf

(r).
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Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer

polynomials C
(α)
n (x)

Gamma
function Γ(x)

Bessel
function Jν(x)

I A large portion of such identities can be proven via the
holonomic systems approach.

I Algorithms are implemented in the HolonomicFunctions package.

Holonomic system, satisfied by both sides of the identity:

ia(n+ 2ν)f ′n(a) + a(n+ 1)fn+1(a)− in(n+ 2ν)fn(a) = 0,

a(n+ 1)(n+ 2)fn+2(a)− 2i(n+ 1)(n+ ν + 1)(n+ 2ν + 1)fn+1(a)

−a(n+ 2ν)(n+ 2ν + 1)fn(a) = 0.
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I A large portion of such identities can be proven via the
holonomic systems approach.

I Algorithms are implemented in the HolonomicFunctions package.

Holonomic system, satisfied by both sides of the identity:

ia(n+ 2ν)f ′n(a) + a(n+ 1)fn+1(a)− in(n+ 2ν)fn(a) = 0,

a(n+ 1)(n+ 2)fn+2(a)− 2i(n+ 1)(n+ ν + 1)(n+ 2ν + 1)fn+1(a)

−a(n+ 2ν)(n+ 2ν + 1)fn(a) = 0. 18 / 51



Random Walk Generating Functions
Study random walks on a lattice:
I d-dimensional integer lattice, or other
I certain set of allowed steps
I with or without restriction (positive quadrant or the like)
I univariate g.f. for excursions
I multivariate g.f. for walks with arbitrary endpoint

Many operations can be performed by creative telescoping:
I constant-term extraction
I positive part computation
I diagonals

Some Contributors: Axel Bacher, Olivier Bernardi, Alin Bostan,
Mireille Bousquet-Mélou, Manfred Buchacher, Frédéric Chyzak,
Julien Courtiel, Guy Fayolle, Éric Fusy, Anthony Guttmann,
Manuel Kauers, Irina Kurkova, Jean-Marie Maillard, Stephen Melczer,
Marni Mishna, Kilian Raschel, Andrew Rechnitzer, Bruno Salvy,
Gilles Schaeffer, Amélie Trotignon, Michael Wallner, . . .
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Face-centered cubic (fcc) lattice
Example: Construction in 3D

Generalization to higher dimensions is straight-forward.
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Lattice Green’s Function
The lattice Green’s function is the probability generating function

P (x; z) =

∞∑
n=0

pn(x)zn

where pn(x) is the probability of being at point x after n steps.

Let λ(k) denote the structure function of the lattice:

λ(k) =
∑
x∈Rd

p1(x)eix·k =

(
d

2

)−1 ∑
16i<j6d

cos(ki) cos(kj).

One is particularly interested in

P (0; z) =

∞∑
n=0

pn(0)zn =
1

πd

∫ π

0
· · ·
∫ π

0

dk1 . . . dkd
1− zλ(k)

that encodes the return probability. It is a D-finite function, and its
differential equation can be computed by creative telescoping.
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Return Probability
Definition: The return probability R (Pólya number) is given by

R = 1− 1∑∞
n=0 pn(0)

= 1− 1

P (0; 1)
.

It is well known that in 2D the return is certain.

Fact: For d = 3, the return probability is one of Watson’s integrals:

R3 = 1−
(

1

π3

∫ π

0

∫ π

0

∫ π

0

dk1 dk2 dk3

1− 1
3(c1c2 + c1c3 + c2c3)

)−1
= 1− 16 3

√
4π4

9(Γ(13))6

= 0.25631823650464877109503018063... where ci = cos(ki).

Results: for higher dimensions one approximates R using the ODE:

I d = 4: R4 = 0.095713154172562896735316764901210185...

I d = 5: R5 = 0.046576957463848024193374420594803291...

I d = 6: R6 = 0.026999878287956124269364175426196380...
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Intermediate Conclusion
Significance of WZ theory and holonomic systems approach:

I Automatability

I Generality

I Shift from ad hoc to algorithmic

I Algorithm replaces ingenuity (or augments it)

I Can handle a quite large class of functions (= holonomic),
even those that do not have a name.

Key insight: one can prove many special function identities
without insight — just via algorithm. This was Zeilberger’s dream.

Drawbacks:

I Such proofs do not provide any “insight” (combinatorial
interpretation, etc.).

I Not fully automated: certain technical details have to be
checked manually (initial values, singularities, etc.).
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Plane Partitions

Definition: A plane partition π of n ∈ N is

I a two-dimensional array π = (πi,j)16i,j

I s.t. πi,j ∈ N with finite sum
∑
πi,j = n =: |π|

I and πi,j > πi+1,j and πi,j > πi,j+1 for all i, j > 1.

Example: A plane partition π of 17 and its 3D Ferrers diagram:
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Totally Symmetric Plane Partitions
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Orbit-Counting Generating Function for TSPPs

q-TSPP conjecture:
∑

π∈TSPP(n)

q|π/S3| =
∏

16i6j6k6n

1− qi+j+k−1

1− qi+j+k−2

(where TSPP(n) denotes the set of TSPPs with largest part 6 n).

Example: For n = 2 there are five such TSPPs

q0 q1 q2 q3 q4+ + + +

=
1− q5

1− q
=

1− q2

1− q
· 1− q3

1− q2
· 1− q4

1− q3
· 1− q5

1− q4
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Determinantal Formulation

Okada’s Theorem: The q-TSPP conjecture is true if

det (ai,j)16i,j6n =
∏

16i6j6k6n

(
1− qi+j+k−1

1− qi+j+k−2

)2
, where

ai,j := qi+j−1

([
i+ j − 2

i− 1

]
q

+ q

[
i+ j − 1

i

]
q

)
+ (1 + qi)δi,j − δi,j+1.
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Results on DSASMs and OSASMs
(joint work with Roger Behrend and Ilse Fischer)
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Alternating Sign Matrices
Definition:
I quadratic matrix (n× n) with entries 0, 1, and −1
I 1’s and −1’s alternate along rows and along columns
I all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM,
QTSASM, DSASM, DASASM, TSASM, . . .

Theorem: Zeilberger (1996), Kuperberg (1996)

ASM(n) =
n−1∏
i=0

(3i+ 1)!

(n+ i)!

Theorem: Behrend/Fischer/Konvalinka (2016)

DASASM(2n+ 1) =

n∏
i=0

(3i)!

(n+ i)!
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DSASMs for n = 1, 2, 3, 4

( 1 ) ( 1 0
0 1 ) ( 0 1

1 0 )

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) (
0 1 0
1 0 0
0 0 1

) (
0 1 0
1 −1 1
0 1 0

) (
0 0 1
0 1 0
1 0 0

)
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

) (
1 0 0 0
0 0 1 0
0 1 −1 1
0 0 1 0

)
(

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

) (
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) (
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) (
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
(

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) (
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) (
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

) (
0 0 1 0
0 1 0 0
1 0 −1 1
0 0 1 0

)
(

0 0 1 0
0 1 −1 1
1 −1 1 0
0 1 0 0

) (
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) (
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

) (
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
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Number of ASMs

n = 1 : 1 = 1
n = 2 : 2 = 2
n = 3 : 7 = 7
n = 4 : 42 = 2 · 3 · 7
n = 5 : 429 = 3 · 11 · 13
n = 6 : 7436 = 22 · 11 · 132
n = 7 : 218348 = 22 · 132 · 17 · 19
n = 8 : 10850216 = 23 · 13 · 172 · 192
n = 9 : 911835460 = 22 · 5 · 172 · 193 · 23
n = 10: 129534272700 = 22 · 3 · 52 · 7 · 17 · 193 · 232
n = 11: 31095744852375 = 32 · 53 · 7 · 192 · 233 · 29 · 31
n = 12: 12611311859677500 = 22 · 33 · 54 · 19 · 233 · 292 · 312
n = 13: 8639383518297652500 = 22 · 35 · 54 · 232 · 293 · 313 · 37
n = 14: 9995541355448167482000 = 24 · 35 · 53 · 23 · 294 · 314 · 372
n = 15: 19529076234661277104897200 = 24 · 33 · 52 · 294 · 315 · 373 · 41 · 43
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Number of DSASMs
n = 1 : 1 = 1
n = 2 : 2 = 2
n = 3 : 5 = 5
n = 4 : 16 = 24

n = 5 : 67 = 67
n = 6 : 368 = 24 · 23
n = 7 : 2630 = 2 · 5 · 263
n = 8 : 24376 = 23 · 11 · 277
n = 9 : 293770 = 2 · 5 · 29 · 1013
n = 10: 4610624 = 26 · 61 · 1181
n = 11: 94080653 = 4679 · 20107
n = 12: 2492747656 = 23 · 7 · 2063 · 21577
n = 13: 85827875506 = 2 · 29 · 73 · 20271109
n = 14: 3842929319936 = 213 · 7 · 67015369
n = 15: 223624506056156 = 22 · 67 · 7547 · 110563111
n = 16: 16901839470598576 = 24 · 13 · 12343 · 6583394929
n = 17: 1659776507866213636 = 22 · 263 · 1577734323066743
n = 18: 211853506422044996288 = 26 · 13 · 254631618295727159
n = 19: 35137231473111223912310 = 2 · 5 · 1601 · 2194705276271781631
n = 20: 7569998079873075147860464 = 24 · 473124879992067196741279
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Six-vertex model



0 0 0 1 0 0 0
0 1 0 −1 1 0 0
0 0 1 0 −1 0 1
1 −1 0 0 1 0 0
0 1 −1 1 −1 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0


I The degree-4 vertices have two

incoming and two outgoing
edges.

I The top vertical edges point up.

I The rightmost horizontal edges
point to the left.

, ↔ 1,

, ↔ −1,

, , , ↔ 0,

, ↔ 0.
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Pfaffian formula for DSASMs

Theorem. The number of (n× n)-DSASMs is equal to

Pfε(n)≤i<j≤n−1

(
[uivj ]

(v − u)(2 + uv)

(1− uv)(1− u− v)

)
,

where ε(n) = 0 for even n and ε(n) = 1 for odd n.
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Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

|OSASM(2n)| =
n∏
i=1

(6i− 2)!

(2n+ 2i)!
.

Conjecture:

|OSASM(2n+ 1)| = 2n−1 (3n+ 2)!

(2n+ 1)!

n∏
i=1

(6i− 2)!

(2n+ 2i+ 1)!

Theorem: The number of off-diagonally symmetric alternating
sign matrices, |OSASM(n)|, is given by

Pf06i<j6n−χeven(n)

[uivj ]
v − u

(1− uv)(1− u− v)
, j 6 n− 1

(−1)i, j = n

 .
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Request by Zeilberger (dated June 23, 2021)

Conjecture (Di Francesco’s determinant for 20V configurations):

det
06i,j<n

(
2i
(
i+ 2j + 1

2j + 1

)
−
(
i− 1

2j + 1

))
= 2

n∏
i=1

2i−1 (4i− 2)!

(n+ 2i− 1)!
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Determinants and Pfaffians

Who you gonna call?
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The Holonomic Ansatz

Problem: Prove a determinantal identity of
the form det

16i,j6n
(ai,j) = bn, where

I ai,j is a holonomic sequence

I that does not depend on n

, and

I bn is a closed form (bn 6= 0 for all n).

An =

 An−1

an,1 · · · an,n−1 an,n


Laplace expansion:
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Recipe for the Holonomic Ansatz
1. Guess a set of recurrences (holonomic description) for the

normalized cofactors cn,j .

2. Use it to prove, via creative telescoping, the three identities

cn,n = 1 (1 6 n) (1)
n∑
j=1

ai,jcn,j = 0 (1 6 i < n) (2)

n∑
j=1

an,jcn,j =
bn
bn−1

(1 6 n) (3)

Justification: Identity Found by Proving Identities!
I Invertibility of An (can be argued by an inductive argument)

guarantees a unique solution of the linear system (1) + (2).
I (1) + (2) prove that the solution of the guessed recurrences

equals indeed the normalized cofactors.
I (3) establishes the conjectured determinant evaluation.
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Di Francesco’s Determinant
Conjecture (Di Francesco’s determinant for 20V configurations):

det
06i,j<n

(
2i
(
i+ 2j + 1

2j + 1

)
−
(
i− 1

2j + 1

))
= 2

n∏
i=1

2i−1 (4i− 2)!

(n+ 2i− 1)!

Proof:
I Compute data for cn,j for 0 6 j < n 6 30

I Guess recurrences for cn,j (using Manuel Kauers’ Guess.m):

I Derive diagonal recurrence for cn,n; it implies cn,n = 1.

I Proving (2) by creative telescoping takes about 45 minutes.
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Ternary Variations of Di Francesco’s Determinant
Theorem: For n > 1 we have

det
06i,j<n

(
3i
(
i+3j
3j

)
+
(−i+3j

3j

))
= 2

n∏
i=1

2i−1 Γ(4i− 3) Γ
(
i+1
3

)
Γ(3i− 2) Γ

(
4i−2
3

)

det
06i,j<n

(
3i
(
i+3j+1
3j+1

)
+
(−i+3j+1

3j+1

))
= 2

n∏
i=1

2i−2 Γ(4i− 1) Γ
(
i
3

)
3 Γ(3i− 1) Γ

(
4i
3

)
det

06i,j<n

(
3i
(
i+3j+2
3j+2

)
+
(−i+3j+2

3j+2

))
= 2

n∏
i=1

2i−3 Γ(4i+ 1) Γ
(
i+2
3

)
Γ(3i+ 1) Γ

(
4i+2
3

)
det

06i,j<n

(
3i+1

(
i+3j+1

3j

)
+
(−i+3j−1

3j

))
=

n∏
i=1

2i+1 Γ(4i− 2) Γ
(
i+2
3

)
iΓ(3i− 2) Γ

(
4i−1
3

)
det

06i,j<n

(
3i+1

(
i+3j+2
3j+1

)
+
(−i+3j
3j+1

))
=

n∏
i=1

2i Γ(4i) Γ
(
i+1
3

)
3iΓ(3i− 1) Γ

(
4i+1
3

)
det

06i,j<n

(
3i+1

(
i+3j+1
3j+2

)
+
(−i+3j−1

3j+2

))
=

n∏
i=1

2i−1 Γ(4i− 1) Γ
(
i+2
3

)
Γ(3i) Γ

(
4i−1
3

)
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Three Infinite Families
Conjecture: for all x ∈ N0 and for all n ∈ N, n > x, we have

det
06i,j<n

(
3i+x

(
i+ 3j − x

3j

)
+

(
−i+ 3j − 3x

3j

))
=

2µ1(x) Ξ(x) (−1)b
x
3
c
n∏
i=1

2i−1 Γ(4i− 3) Γ
(
i+1
3

)
Γ(3i− 2) Γ

(
4i−2
3

)
det

06i,j<n

(
3i+x

(
i+ 3j − x+ 1

3j + 1

)
+

(
−i+ 3j − 3x+ 1

3j + 1

))
=

2µ2(x) Ξ(x) (−1)b
x+2
3
c
n∏
i=1

2i−2 Γ(4i− 1) Γ
(
i
3

)
3 Γ(3i− 1) Γ

(
4i
3

)
det

06i,j<n

(
3i+x

(
i+ 3j − x+ 2

3j + 2

)
+

(
−i+ 3j − 3x+ 2

3j + 2

))
=

µ0(x)

n
Ξ(x) (−1)b

x+1
3
c
n∏
i=2

2i−3 Γ(4i+ 1) Γ
(
i−1
3

)
9 Γ(3i) Γ

(
4i+2
3

)

where

Ξ(x) :=
x∏
i=2

3 Γ(i) Γ(4i− 3) Γ(4i− 2)

2 Γ(3i− 2)2 Γ(3i− 1)

µm(x) :=

{
2, if 3 | (x−m)

1, otherwise.
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2 Γ(3i− 2)2 Γ(3i− 1)

µm(x) :=

{
2, if 3 | (x−m)

1, otherwise.
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Three Infinite Families
Conjecture: for all x ∈ N0 and for all n ∈ N, n > x, we have

det
06i,j<n

(
3i+x

(
i+ 3j − x

3j

)
+

(
−i+ 3j − 3x

3j

))
=

2µ1(x) Ξ(x) (−1)b
x
3
c
n∏
i=1

2i−1 Γ(4i− 3) Γ
(
i+1
3

)
Γ(3i− 2) Γ

(
4i−2
3

)
det

06i,j<n

(
3i+x

(
i+ 3j − x+ 1

3j + 1

)
+

(
−i+ 3j − 3x+ 1

3j + 1

))
=

2µ2(x) Ξ(x) (−1)b
x+2
3
c
n∏
i=1

2i−2 Γ(4i− 1) Γ
(
i
3

)
3 Γ(3i− 1) Γ

(
4i
3

)
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Recent Progress on Some Conjectures
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Families of Binomial Determinants
(joint work with Hao Du, Thotsaporn Thanatipanonda, and Elaine Wong)

Inspired by some conjectures in Christian Krattenthaler’s
“Advanced Determinant Calculus: A Complement”.

Theorem: Let µ be an indeterminate and let m, r ∈ Z.
If m > r > 1, then

det
16i,j62m+1

[(
µ+ i+ j + 2r

j + 2r − 2

)
− δi,j+2r

]
=

(−1)m−r+1 (µ+ 3) (m+ r + 1)m−r

22m−2r+1
(µ
2 + r + 3

2

)
m−r+1

·
2m∏
i=1

(µ+ i+ 3)2r
(i)2r

×
m−r∏
i=1

(
µ+ 2i+ 6r + 3

)2
i

(µ
2 + 2i+ 3r + 2

)2
i−1(

i
)2
i

(µ
2 + i+ 3r + 2

)2
i−1

.
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Combinatorial Interpretation: Holey Hexagon
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The q-Case
Consider q-difference equations involving the q-shift operation

x 7→ qx, resp. qn 7→ qn+1.

That is, nontrivial linear functional equations of the form

pr(q, q
n)f(n+ r) + · · ·+ p1(q, q

n)f(n+ 1) + p0(q, q
n)f(n) = 0.

Examples:

I (a; q)n :=
n−1∏
i=0

(1− aqi), the q-Pochhammer symbol

I the q-binomial coefficient

[
n

k

]
q

:=
(q; q)n

(q; q)k (q; q)n−k

I q-trigonometric functions: sinq(x), Sinq(x), cosq(x), Cosq(x)

I q-special functions: q-Bessel functions, q-Legendre polynomials,
q-Gegenbauer polynomials, etc.
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q-TSPP: Holonomic Description of the Cofactors
The recurrences have the form

© · cn,j+4 =© · cn,j +© · cn,j+1 +© · cn,j+2 +

© · cn,j+3 +© · cn+2,j +© · cn+2,j+1

© · cn+1,j+3 =© · cn,j +© · cn,j+1 +© · cn,j+2 +© · cn,j+3 +

© · cn+1,j +© · cn+1,j+1 +© · cn+1,j+2 +

© · cn+2,j +© · cn+2,j+1 +© · cn+3,j

© · cn+2,j+2 =© · cn,j +© · cn,j+1 +© · cn,j+2 +

© · cn,j+3 +© · cn+2,j +© · cn+2,j+1

© · cn+3,j+1 =© · cn,j +© · cn,j+1 +© · cn,j+2 +© · cn,j+3 +

© · cn+1,j +© · cn+1,j+1 +© · cn+1,j+2 +

© · cn+2,j +© · cn+2,j+1 +© · cn+3,j

© · cn+4,j =© · cn,j +© · cn,j+1 +© · cn,j+2 +

© · cn,j+3 +© · cn+2,j +© · cn+2,j+1

The total size is 244MB (several 1000 pages of paper)!
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Solution of the q-TSPP Conjecture
(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)
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Identity Found by Proving Identities
Identity proving is now a whole branch of symbolic computation:

I Binomial sums and other combinatorial identities, e.g.,

n∑
k=0

(
n

k

)2(k + n

k

)2
=

n∑
k=0

(
n

k

)(
k + n

k

) k∑
j=0

(
k

j

)3

I Special function identities (integrals or sums), e.g.,∫ 1

−1

(
1− x2

)ν− 1
2 eiaxC(ν)

n (x) dx =
πinΓ(n+ 2ν)Jn+ν(a)

2ν−1aνn! Γ(ν)

I Evaluations of symbolic determinants, e.g.,

det
06i,j<n

(
2i
(
i+ 2j + 1

2j + 1

)
−
(
i− 1

2j + 1

))
= 2

n∏
i=1

2i−1 (4i− 2)!

(n+ 2i− 1)!
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