Identity Found by Proving Identities

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences

24 July 2025

The 37th International Conference on Formal Power Series and Algebraic Combinatorics Hokkaido University, Sapporo

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

▶ 5 invited talks

FPSAC 1991 : Bordeaux (France)

- Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- · Gaston Gonnet: Waterloo, Canada
- · Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

- 5 invited talks
- ▶ 32 articles (18 in French, 14 in English)

FPSAC 1991 : Bordeaux (France)

- Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- Gaston Gonnet: Waterloo, Canada
- · Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

- 5 invited talks
- ▶ 32 articles (18 in French, 14 in English)
- highlight: thesis defense of Mireille Bousquet-Mélou

FPSAC 1991 : Bordeaux (France)

- · Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- · Gaston Gonnet: Waterloo, Canada
- · Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Doron Zeilberger's Invited Talk 1991

IDENTITIES IN SEARCH OF IDENTITY

Doron ZEILBERGER

Department of Mathematical Sciences
Drexel University
Philadelphia
jdl@pruxe.att.com

Abstract

The time is ripe to start a science of identities for their own sake, without paying lipservice to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or analytic flesh and blood on identities did lead and will lead to considerable insight as well as new identities, there is also much to be gained in forgetting advanced mathematics, and starting a new sub-discipline of high-school mathematics called "the theory of identities".

Doron Zeilberger's Invited Talk 1991

Definition. A mathematical sentence that has "=" in its middle is called an *identity*.

The format of an identity is thus

SOMETHING = SOMETHING ELSE.

Trivial Example. Re(s) = $\frac{1}{2}$, for every complex zero s of $\zeta(s)$.

Easy Example. Analytic index = topological index.

Deep Example. 1+1=2.

Abstract

The time is ripe to start a science of identities for their own sake, without paying lipservice to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or analytic flesh and blood on identities did lead and will lead to considerable insight as well as new identities, there is also much to be gained in forgetting advanced mathematics, and starting a new sub-discipline of high-school mathematics called "the theory of identities".

Definition: A term f(n) is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Definition: A term f(n) is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if f(n) satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Definition: A term f(n) is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if f(n) satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Remark: Generalize geometric sequences where $\frac{f(n+1)}{f(n)} = \text{const.}$

Definition: A term f(n) is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if f(n) satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Remark: Generalize geometric sequences where $\frac{f(n+1)}{f(n)} = \text{const.}$

Examples:
$$\operatorname{rat}(n), \ x^n, \ n!, \ (a)_n, \ \binom{2n}{n}, \ \Gamma(3n+1), \ \operatorname{etc.}$$

Proc. Natl. Acad. Sci. USA Vol. 75, No. 1, pp. 40–42, January 1978 Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)

R. WILLIAM GOSPER, JR.

Xerox Palo Alto Research Center, Palo Alto, California 94304

Communicated by Donald E. Knuth, September 26, 1977

ABSTRACT Given a summand a_n , we seek the "indefinite sum" S(n) determined (within an additive constant) by

$$\sum_{n=0}^{\infty} a_n = S(m) - S(0)$$
 [0]

or, equivalently, by

$$a_n = S(n) - S(n-1).$$
 [1]

An algorithm is exhibited which, given a_n , finds those S(n) with the property

$$\frac{S(n)}{S(n-1)} = \text{a rational function of } n.$$
 [2]

erate case where a_n is identically zero.) Express this ratio as

$$\frac{a_n}{a_{n-1}} = \frac{p_n}{p_{n-1}} \frac{q_n}{r_n}, \quad [5]$$

where p_n , q_n , and r_n are polynomials in n subject to the following condition:

$$gcd(q_n, r_{n+1}) = 1,$$
 [6]

for all non-negative integers j.

It is always possible to put a rational function in this form, for if $gcd(q_n, r_{n+1}) = g(n)$, then this common factor can be

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1)$$

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^{n} f(k) = g(0) - g(n+1).$$

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^{n} f(k) = g(0) - g(n+1).$$

Examples:

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^{n} f(k) = g(0) - g(n+1).$$

Examples:

 $ightharpoonup \sum_{k=0}^{\infty} k!$ has no closed form (no hypergeometric g(k) exists).

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^{n} f(k) = g(0) - g(n+1).$$

Examples:

$$\sum_{k=0}^{n} \frac{(4k+1)\,k!}{(2k+1)!} = \sum_{k=0}^{n} \left(\frac{2k!}{(2k)!} - \frac{2(k+1)!}{(2k+2)!} \right) = 2 - \frac{n!}{(2n+1)!}$$

 $ightharpoonup \sum_{k=0}^{n} k!$ has no closed form (no hypergeometric g(k) exists).

Question: What about definite hypergeometric summation

$$\sum_{k=0}^{n} f(n,k) = ?$$

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^{n} f(k) = g(0) - g(n+1).$$

Examples:

 $ightharpoonup \sum_{k=0}^{n} k!$ has no closed form (no hypergeometric g(k) exists).

Question: What about definite hypergeometric summation

$$\sum_{k=0}^n f(n,k) = ? \qquad \text{Such as } \sum_{k=0}^n \binom{n}{k} = 2^n.$$

Fasenmyer's Algorithm

- aka "Sister Celine's algorithm"
- developed in her doctoral thesis in 1945

SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS

SISTER MARY CELINE FASENMYER

1. Introduction. We shall obtain some basic formal properties of the hypergeometric polynomials

$$f_n(a_i; b_j; x) \equiv f_n(a_1, a_2, \cdots, a_p; b_1, b_2, \cdots, b_q; x)$$

$$(1) \equiv {}_{p+2}F_{q+2}\begin{bmatrix} -n, n+1, a_1, \cdots, a_p; \\ 1/2, 1, b_1, \cdots, b_n; x \end{bmatrix}$$

(*n* a non-negative integer) in an attempt to unify and to extend the study of certain sets of polynomials which have attracted considerable attention. Some special cases of the $f_n(a_i; b_j; x)$ are:

Algorithm: given hg. f(n,k), find recurrence for $\sum_{k=-\infty}^{\infty} f(n,k)$.

- 1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
- 2. Ansatz for a k-free recurrence: $\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i,j} \cdot f(n+i,k+j)$.
- 3. Divide by f(n,k) and simplify.
- Multiply by the common denominator.
- 5. Perform coefficient comparison with respect to k.
- 6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
- 7. Sum over the k-free recurrences and return the result.

Algorithm: given hg. f(n,k), find recurrence for $\sum_{k=-\infty}^{\infty} f(n,k)$.

- 1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
- 2. Ansatz for a k-free recurrence: $\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i,j} \cdot f(n+i,k+j)$.
- 3. Divide by f(n,k) and simplify.
- 4. Multiply by the common denominator.
- 5. Perform coefficient comparison with respect to k.
- 6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
- 7. Sum over the k-free recurrences and return the result.

Example:
$$F(n) := \sum_{k=0}^{n} f(n,k) = \binom{2n}{n}$$
 with $f(n,k) := \binom{n}{k}^2$.

Algorithm: given hg. f(n,k), find recurrence for $\sum_{k=-\infty}^{\infty} f(n,k)$.

- 1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
- 2. Ansatz for a k-free recurrence: $\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i,j} \cdot f(n+i,k+j)$.
- 3. Divide by f(n,k) and simplify.
- 4. Multiply by the common denominator.
- 5. Perform coefficient comparison with respect to k.
- 6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
- 7. Sum over the k-free recurrences and return the result.

Example:
$$F(n) := \sum_{k=0}^{n} f(n,k) = \binom{2n}{n}$$
 with $f(n,k) := \binom{n}{k}^2$.

With r = s = 2 we find the k-free recurrence

$$0 = -(n+1)f(n,k) + (2n+2)f(n,k+1) - (n+1)f(n,k+2) + (2n+3)f(n+1,k+1) + (2n+3)f(n+1,k+2) - (n+2)f(n+2,k+2)$$

Algorithm: given hg. f(n,k), find recurrence for $\sum_{k=-\infty}^{\infty} f(n,k)$.

- 1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
- 2. Ansatz for a k-free recurrence: $\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i,j} \cdot f(n+i,k+j)$.
- 3. Divide by f(n,k) and simplify.
- 4. Multiply by the common denominator.
- 5. Perform coefficient comparison with respect to k.
- 6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
- 7. Sum over the k-free recurrences and return the result.

Example:
$$F(n) := \sum_{k=0}^{n} f(n,k) = \binom{2n}{n}$$
 with $f(n,k) := \binom{n}{k}^2$.

With r = s = 2 we find the k-free recurrence. Summing yields

$$0 = -(n+1)F(n) + (2n+2)F(n) - (n+1)F(n) + (2n+3)F(n+1) - (n+2)F(n+2)$$

Algorithm: given hg. f(n,k), find recurrence for $\sum_{k=-\infty}^{\infty} f(n,k)$.

- 1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
- 2. Ansatz for a k-free recurrence: $\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i,j} \cdot f(n+i,k+j)$.
- 3. Divide by f(n,k) and simplify.
- 4. Multiply by the common denominator.
- 5. Perform coefficient comparison with respect to k.
- 6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
- 7. Sum over the k-free recurrences and return the result.

Example:
$$F(n) := \sum_{k=0}^{n} f(n,k) = \binom{2n}{n}$$
 with $f(n,k) := \binom{n}{k}^2$.

With r=s=2 we find the k-free recurrence. Summing yields

$$0 = -(n+1)F(n) + (2n+2)F(n) - (n+1)F(n) + (2n+3)F(n+1) - (n+2)F(n+2)$$

Collecting terms: (4n+6)F(n+1) - (n+2)F(n+2) = 0.

Wilf-Zeilberger (WZ) Theory

Invent. math. 108: 575-633 (1992)

Inventiones mathematicae
© Springer-Verlag 1992

An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities

Herbert S. Wilf* and Doron Zeilberger **

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

J. Symbolic Computation (1991) 11, 195-204

The Method of Creative Telescoping

DORON ZEILBERGER

Department of Mathematics and Computer Science, Temple University, Philadelphia, PA 19122, USA

In memory of John Riordan, master of ars combinatorica

(Received 1 June 1989)

An algorithm for definite hypergeometric summation is given. It is based, in a non-obvious way, on Gosper's algorithm for definite hypergeometric summation, and its theoretical justification relies on Bernstein's theory of holonomic systems.

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum\nolimits_k f(n,k)$$

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum\nolimits_k f(n,k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum_{k} f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n,k) is a "proper" term), one can show that a recurrence for F(n) exists.

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum_{k} f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n,k) is a "proper" term), one can show that a recurrence for F(n) exists.

But one does not know it, neither its order nor its coefficients.

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum_{k} f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n,k)) is a "proper" term), one can show that a recurrence for F(n) exists.

But one does not know it, neither its order nor its coefficients.

▶ Try order $r = 0, 1, 2, \ldots$ until success.

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum_{k} f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n,k)) is a "proper" term), one can show that a recurrence for F(n) exists.

But one does not know it, neither its order nor its coefficients.

- ▶ Try order $r = 0, 1, 2, \ldots$ until success.
- ▶ Write recurrence with undetermined coefficients $p_i \in \mathbb{K}(n)$:

$$p_r(n)F(n+r) + \dots + p_1(n)F(n+1) + p_0(n)F(n) = 0.$$

Problem: given a hypergeometric f(n,k), find a recurrence for

$$F(n) := \sum_{k} f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n,k)) is a "proper" term), one can show that a recurrence for F(n) exists.

But one does not know it, neither its order nor its coefficients.

- ▶ Try order r = 0, 1, 2, ... until success.
- ▶ Write recurrence with undetermined coefficients $p_i \in \mathbb{K}(n)$:

$$p_r(n)F(n+r) + \dots + p_1(n)F(n+1) + p_0(n)F(n) = 0.$$

Apply a parametrized version of Gosper's algorithm to

$$p_r(n)f(n+r,k) + \cdots + p_1(n)f(n+1,k) + p_0(n)f(n,k).$$

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem:
$$F(n) := \sum_{k=a}^{b} f(n,k)$$

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^{\circ} f(n,k)$

Telescoping: write f(n,k) = g(n,k+1) - g(n,k).

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^{\circ} f(n,k)$

Telescoping: write
$$f(n,k) = g(n,k+1) - g(n,k)$$
.

Then
$$F(n) = \sum_{k=a}^{b} (g(n, k+1) - g(n, k)) = g(n, b+1) - g(n, a).$$

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^{\circ} f(n,k)$

Telescoping: write f(n,k) = g(n,k+1) - g(n,k).

Then
$$F(n) = \sum_{k=a}^{b} (g(n, k+1) - g(n, k)) = g(n, b+1) - g(n, a).$$

Creative Telescoping: write

$$c_r(n)f(n+r,k) + \cdots + c_0(n)f(n,k) = g(n,k+1) - g(n,k).$$

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^{\circ} f(n,k)$

Telescoping: write
$$f(n,k) = g(n,k+1) - g(n,k)$$
.

Then
$$F(n) = \sum_{k=a}^{b} (g(n, k+1) - g(n, k)) = g(n, b+1) - g(n, a).$$

Creative Telescoping: write

$$c_r(n)f(n+r,k) + \cdots + c_0(n)f(n,k) = g(n,k+1) - g(n,k).$$

Summing from a to b yields a recurrence for F(n):

$$c_r(n)F(n+r) + \cdots + c_0(n)F(n) = g(n,b+1) - g(n,a).$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following integration problem: $F(x) := \int_a^b f(x,y) dy$

Telescoping: write $f(x,y) = \frac{d}{dy}g(x,y)$.

Then
$$F(n) = \int_a^b \left(\frac{\mathrm{d}}{\mathrm{d}y}g(x,y)\right) \mathrm{d}y$$
 $= g(x,b) - g(x,a).$

Creative Telescoping: write

$$c_r(x)\frac{\mathrm{d}^r}{\mathrm{d}x^r}f(x,y) + \dots + c_0(x)f(x,y) = \frac{\mathrm{d}}{\mathrm{d}y}g(x,y).$$

Integrating from a to b yields a differential equation for F(x):

$$c_r(x)\frac{\mathrm{d}^r}{\mathrm{d}x^r}F(x) + \dots + c_0(x)F(x) = g(x,b) - g(x,a)$$

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A function f(x) is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \dots + p_1(x)f'(x) + p_0(x)f(x) = 0$$
 $(p_r \neq 0).$

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A function f(x) is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \dots + p_1(x)f'(x) + p_0(x)f(x) = 0$$
 $(p_r \neq 0).$

Remarks:

Equivalently, such functions/sequences are called holonomic.

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A function f(x) is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \dots + p_1(x)f'(x) + p_0(x)f(x) = 0$$
 $(p_r \neq 0).$

Remarks:

- ► Equivalently, such functions/sequences are called **holonomic**.
- ▶ Generalizations to several variables and mixed cases exist.

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A function f(x) is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \dots + p_1(x)f'(x) + p_0(x)f(x) = 0$$
 $(p_r \neq 0).$

Remarks:

- Equivalently, such functions/sequences are called holonomic.
- Generalizations to several variables and mixed cases exist.
- In any case, one needs only finitely many initial conditions.

Definition: A sequence f(n) is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \dots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \ (p_r \neq 0).$$

Definition: A function f(x) is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \dots + p_1(x)f'(x) + p_0(x)f(x) = 0$$
 $(p_r \neq 0).$

Remarks:

- Equivalently, such functions/sequences are called holonomic.
- ▶ Generalizations to several variables and mixed cases exist.
- In any case, one needs only finitely many initial conditions.
- ► The holonomic (finite!) data structure consists of a system of linear functional equations together with initial values.

Airy function

Airy function

Airy function

Bessel function

Coulomb function

- arise in physics (real-world) and mathematical analysis
- are solutions to certain differential equations / recurrences

Airy function

Bessel function

Coulomb function

- arise in physics (real-world) and mathematical analysis
- are solutions to certain differential equations / recurrences
- cannot be expressed in terms of the usual elementary functions $(\sqrt{\ }, \exp, \log, \sin, \cos, \dots)$

Airy function

Bessel function

Coulomb function

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland 321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

▶ This is the seminal paper by Doron Zeilberger (1990).

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland 321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hyperemoentric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland 321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hyperemoentric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland 321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.
- Not based on linear algebra, but on elimination techniques.

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland 321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hyperemoentric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.
- Not based on linear algebra, but on elimination techniques.
- Therefore, it was named the "slow algorithm".

Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

Department of Mathematics, Kobe University Rokko, Kobe, 657, Japan

Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

Department of Mathematics, Kobe University Rokko, Kobe, 657, Japan

Recall: creative telescoping requires a relation of the form

- $ightharpoonup c_r(n)f(n+r,k) + \cdots + c_0(n)f(n,k) = g(n,k+1) g(n,k),$
- ▶ Left-hand side is called **telescoper**, *g* is called **certificate**.

Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

Department of Mathematics, Kobe University Rokko, Kobe, 657, Japan

Recall: creative telescoping requires a relation of the form

- $ightharpoonup c_r(n)f(n+r,k) + \cdots + c_0(n)f(n,k) = g(n,k+1) g(n,k),$
- $rc_r(x) \frac{\mathrm{d}^r}{\mathrm{d}x^r} f(x,y) + \dots + c_0(x) f(x,y) = \frac{\mathrm{d}}{\mathrm{d}y} g(x,y).$
- ▶ Left-hand side is called **telescoper**, *g* is called **certificate**.

Ideas of the Algorithm:

- ▶ Work in the setting of Weyl algebra and D-modules.
- ▶ It is not necessary to eliminate k (resp. y) completely.
- ightharpoonup Note that the certificate g is not needed in certain situations.
- ▶ Based on elimination, uses Gröbner bases over modules.

Chyzak's Algorithm

DISCRETE MATHEMATICS

Discrete Mathematics 217 (2000) 115-134

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions[☆]

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Chyzak's Algorithm

DISCRETE MATHEMATICS

Discrete Mathematics 217 (2000) 115-134

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions[☆]

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Ideas of the Algorithm:

- Employ Gröbner bases for normal forms, not for elimination.
- Ansatz with undetermined coeffs for telescoper and certificate.
- Coupled system of linear difference / differential equations.
- Solve it by uncoupling or by a direct method.

Chyzak's Algorithm

DISCRETE MATHEMATICS

Discrete Mathematics 217 (2000) 115-134

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions☆

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Ideas of the Algorithm:

- Employ Gröbner bases for normal forms, not for elimination.
- Ansatz with undetermined coeffs for telescoper and certificate.
- Coupled system of linear difference / differential equations.
- Solve it by uncoupling or by a direct method.
- ➤ Variation: C.K. proposed a heuristic approach that avoids the expensive uncoupling step (caveat: may not terminate).

Motivation:

- ▶ Typically, the certificate is much larger than the telescoper.
- ▶ Often it is not needed (natural boundaries / closed contour).
- ▶ Compute the telescoper without computing the certificate.

Contributors: Alin Bostan, Hadrian Brochet, Shaoshi Chen, Frédéric Chyzak, Hao Du, Lixin Du, Louis Dumont, Hui Huang, Manuel Kauers, Christoph Koutschan, Pierre Lairez, Ziming Li, Bruno Salvy, Michael Singer, Joris van der Hoeven, Mark van Hoeij, Rong-Hua Wang, Guoce Xin, ...

Active Research Area: Google Scholar lists more than 1000 articles about creative telescoping.

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f \rho(f) = g'$,
- ho(f) = 0 if and only if f is integrable.

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f \rho(f) = g'$,
- ho(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f \rho(f) = g'$,
- ho(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for $\int_a^b f(x,y) \, \mathrm{d}y$, apply the reduction ρ to the successive derivatives of the integrand f:

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx}f = g'_1 + \rho(\frac{d}{dx}f) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2}f = g'_2 + \rho(\frac{d^2}{dx^2}f) = g'_2 + h_2, \dots$$

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f \rho(f) = g'$,
- ho(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for $\int_a^b f(x,y) \, \mathrm{d}y$, apply the reduction ρ to the successive derivatives of the integrand f:

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx}f = g'_1 + \rho(\frac{d}{dx}f) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2}f = g'_2 + \rho(\frac{d^2}{dx^2}f) = g'_2 + h_2, \dots$$

If the h_i live in a finite-dimensional $\mathbb{K}(x)$ -vector space, then there exists a nontrivial linear combination $p_0h_0 + \cdots + p_rh_r = 0$.

Reduction procedure (differential case): define $\rho \colon \mathcal{F} \to \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f \rho(f) = g'$,
- ho(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for $\int_a^b f(x,y) \, dy$, apply the reduction ρ to the successive derivatives of the integrand f:

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx}f = g'_1 + \rho(\frac{d}{dx}f) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2}f = g'_2 + \rho(\frac{d^2}{dx^2}f) = g'_2 + h_2, \dots$$

If the h_i live in a finite-dimensional $\mathbb{K}(x)$ -vector space, then there exists a nontrivial linear combination $p_0h_0+\cdots+p_rh_r=0$.

 \longrightarrow Hence, the desired telescoper is $p_0f + p_1f' + \cdots + p_rf^{(r)}$.

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

tan infrarence of Austropean S

7.204 (a belong to the couples when with a december when the interest from 1 to +1)	1	Tan . F.O. on "Array V 14 . C	To the same of the	
	$2 - \frac{1}{2} + p e^{2} = \frac{4\pi}{2} p_{2m/2}(a) da = \frac{2}{2m+2} (-p)^{m/2} (1+p) = 0.0$ $2 + \frac{1}{2} + p e^{2} = \frac{4\pi}{2} p_{2m/2}(a) da = \frac{2}{2m+2} (-p)^{m/2} (1+p) = 0.0$	- 1 1 2 2 1	- (Christian and American	$4 - eF_c + 2e^2 \left[J_0(m)^2 dr - \frac{1}{2(2m+1)} \left[J_0(m)^2 + \left[J_{m+1}(m)^2 \right]^2 \right] \right]$ (27 Example).
p a second			A $_{and}^{c} \circ (P_{a}) \circ dr = 0$ [c and 0] $= (-1)^{n} \sum_{P_{and}(-1)} (-1)^{n} = 0$ (a residual)	$b = a F_n + 2ab^2 A_0(ac) F_0(ac) dc = \frac{1}{8(bc+1)} [A_0(ac) F_0(ac) + A_{col}(ac) F_{col}(ac)]$ $CF = 10000a$
1 40 × 1 Panter = 10,00 ET 4 1005	Table 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tag , r, r - de - (r - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	-(U = A _{k-1} ()	E VA. 1 Dr Applery (Section Street) and Apple
$1 - e^{-i\lambda}(s-s)^{-1}F_{s}(s)ds = 2e^{-i\lambda}Q_{s}(s) - \frac{e^{-i\lambda}(s)ds}{2(s-1)^{2}}$ (Finally)	Table Green Prints of Them of 1 "To Trights		7.00 F. 1 200° cm² mark = 2000 to 1) 00 71	ked from
1 Christopher action in a gramma	Febla into the l	L Particularly - 40 - 40 Print St. 10 (30 15)	TAST Parallelense = 1 10 = 2 Aprel 10 (4) 15 15 17 1900	2
A DESTRUCTION - PROPERTY IN A STREET	7.25 Combinations of Legendre polynomials and powers	Bracks Cropp	the state of the s	- (+1) [s+] ++1 [+] + +sh = = -+1 [+] ++1 = = = = =
	THE STATE OF THE S	$b = P_{2n+1}(acb, c) = 2a - \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2}$ (b) $\frac{a^2}{ a^2 - c ^2} = \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2}$ (c) $\frac{a^2}{ a^2 - c ^2} = \frac{a^2}{ a^2 - c ^2} \frac{a^2}{ a^2 - c ^2$	t. We'll have "the west have " Publisher only " Published in the street of the street only the	jant flege hell erentum
6. $(a - a)^{-1}P_{a+1}(a) + a - 2P_{a+1}(a) + Q_{a}(a) = \frac{a}{a+1}$ 67 # 200(49)	1. $r P_{2n}(x)dx = \begin{cases} \frac{1}{2}r^{n} = \frac{1}{2}\frac{1}{2} + \frac{1}{2} & 2n > 1 \end{cases}$ Because 0	h Parimeter "der all all all all all all all all all al	2. For her than o'er her to Francis and the Property of the Control of the Property of the Control of the Contr	$E_{ABB} = e^{-i\phi} F_{AB} - 0.05 f_{ABB} c_1 dc_2 = \frac{1}{ \alpha-1 } (E_A(\alpha) + E_{ABB}(\alpha))$
T. NO. 10 TA-DEPLOON - TO PAGE QUEE (M.C.). SEC. 10.	$\Sigma^{0} = \frac{1}{2} P_{\text{Book}}(s) ds = \frac{(-2)^{m} - m + \frac{1}{2} - \frac{1}{2} - \frac{1}{2}}{1 - \frac{1}{2} - \frac{1}{2}}$	Board Crown	2 - 4 Frems	post president
$ \ \ d(x-x)^{-1}(P_{x}(x))^{2}dx = 2xP_{x}(x)Q_{x}(x) - \frac{2}{2x+1} \qquad \qquad \qquad \text{effection} $	No > E message	$0. \qquad P_{2k+1}(mn) = \frac{n}{2}dr = \frac{n}{2}\frac{d^2 + 2^2}{(d^2 + 2^2)(d^2 + 2^2)} - \frac{d^2 + (2n)^2}{(d^2 + 2^2)(d^2 + 2^2)}$	130	**************************************
Tam.	1. (1 of Fundament	Brand Bridge	1. P _a (x) emiscreto = 0 (n in resu)	1.34 (7. 1 37 (total description (17 (total de la colo))
$1, (e - 1)^{-1/2} F_{\alpha}(t) dt = - \alpha + \frac{1}{2} - (1 + \alpha)^{-1/2} [F_{\alpha}(s) + F_{\alpha + \beta}(s)] \qquad \qquad \text{disc surject}$	- F (a) is and F() manhactereds at	6" P.004 - P Z. April) 4-8.12 4>8	- in the per personal personal	
2 0 0 10 P 10 P 10 P 10 R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Barrell Stranger	96 × (0.16)	-	
1935 Segentuar polymerate (*_(x) and power	PM Oringend Polyamish 1304	FIRS Significan polymerick (*_(x) and demotion function PMF	78 Couples Spinn of Orlegand Day Facilities 1 379	Tax Cognition feature and Board Section 198
7.3 7.4 Orthogonal Polynomials	1.04	7.304 1 e^{it} $C_{it}(m)$ can write the i $de = \frac{e^{it}}{2} \frac{A_{it}(t)}{A_{it}(t)} C_{it}(m) + C_{it}(m)$	at the same and the same of the	1.00
7.35 Combinations of Gegenhauer polynomials $C_{\alpha}(x)$ and powers	1 (0 s) 5(1 s) 1(F ₄ (s) ² dr = (0 (1 (0))	No red Constant	-2" NO () "C_(no.) C_(no.) (11 + n) "	the state of the s
1 1 2 10,000 -0 -> 1 Franco	to > j errange	1 0 my 100 mm 0 m 1 mm 1	No 24 decision	and the second of the second of the second
2 Per 1 P 10,000 - 0 -0 0 -0 -0 -0 -0	$2 (0 e) (3 + e)^{2} (3) \cdot (e)^{2} de = \frac{p^{2} \cdot (1 \cdot (2 + e)^{2} \cdot 3e + e)}{p(2^{2} \cdot (2 + e)^{2} \cdot 3e + e)}$ $2 (0 e) (3 + e)^{2} (3) \cdot (4e^{-2} \cdot 3e^{-2} \cdot 4e^{-2} \cdot 4e^{-2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 P Continues of 10 the 1 things	
h > h > transp	s 'o et a lave lateral et	8 0 0 1 1 10 0 10 10 10 10 10 10 10 10 10		
8 (3 x) 53 x x) C(x) th = (2 x x) (1 x 1) x 1 (2 x x) x 1	" of about the term of the same term of	1.65 and	2 1 1 1 Calciminate = (10 (0x+2)17-pole)	a compared by the company of the about
	= 15 + 1 + 1 + 10 + 1 (2 + 10) 1 + 10 1	3 -4 1, 2 By >4, Br >4 ETTINGS	Br > j. 4>0 \$71900s	-1 mm ma . 2 2 mm 2 2 mm co 1 5 mm
6 (0 o) (1+o) C ₀ (c)de+ (1+o) (+1) (+1) (+1)	4 '0 10 10 10 10 10 10 10 10 10 10 10 10 10	to but but but be a see of the but	7.325 Complete System of Orthogonal Step Functions	[Repeat
1.00 mark 12 1 1 1 1 1		The $\frac{1}{2}(x_1 + x_2) \frac{1}{2}(x_1 + x_2) \frac{1}{2}(x_2 + x_3) \frac{1}{2}(x_1 + x_2 + x_3) \frac{1}{2}(x_1 + x_3) \frac{1}{2}(x_2 + x_3) \frac{1}{2}(x_1 + x_3) \frac$	Let $a_j(x) = \{-1\}^{d_{j+1}}$ for $j = N$ and $a_j(x) = \{-1\}^{d_{j+1} + d_{j+1}}$ for $j = 0 + N$ where x denotes the integer part of x . Thus, $a_j(x)$ and $a_j(x)$ from animal point $j = 0$ and modified ones and odd quantity where	[repel] [solt Broth Broth Transport
(to > 1. to > 1) Ereanon	(1	1.00	x = 1/2 respectively, and m are the discrete analogues of one? ye and do?? jo. Particescene, the y is be y discrete its roll part: the quantum of y to be logical power of two factor. Then for all y and it is, if it is y discrete this roll part: the quantum of its individual power of two factor. Then for all y and it is. if (j) (j) discrete their highest commons where and (j) it discrete their breast common analogue.	THE STATE OF THE S
7.802 In the following integrals, a belonge to the complex plane with a rat along the interval of the real axis from: 1 to 3.	s 'a of taxo legislation	2 (2 mm 1 mm mm mm (20 (1 mm) mm m m m m m m m m m m m m m m m). Since $^{-1}\cos(\alpha m)\cos(C_{n}^{-1})\cos(\beta)$ (some size) for
I The series of the second series of the series of the series	- F 1 +1 0 +m 0 +n +1 +1 + n + 1 + n + 1 + n + 1 + 1 +	Physic Re oil effections	1. *(10)(104 - 10) #1(2 - 4)8	-(1) ²
m n. Br > Creaning		1. (1 of 2 16 mm she do (17 (a) (+a+1) +)	A Chicagoda - Chicagona Alica - Alic	-9 [n-1.4]
a house as a to be delicated and a state of the first first	6 (8 s) \$5+s)\$ **** \$ \$\epsilon_{\pi(s)} \epsilon_{\pi(s)} \end{align*}	hard he a groups		2. Dated "designer most C _s ⁻¹ (most / leaks stand de
111+0+8	$= \frac{p + n + 1}{1 + n + 1} \frac{1}{1 + n + 1}$		7.33 Combinations of the polymericals $C_{\alpha}(s)$ and thouse functions; integration of Gegenbauer functions with respect to the index	h
10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T O H DAN CONCLOR	7.32 Continuous of Gegenhauer polynomials $C_{\kappa}(x)$ and elementary functions	1.00	$-(-1)^{n_1^{-1}}\frac{1}{2}^{-n_1^{-1}}(m_1)\cdot C_n^{-1}(m_1)\cdot J_{-1,m_1^{-1}}(n_1)\cdot [n-1,3,1,]$
a p > 1 crossing		TABLE 1 2 1 2 - C_(1) (4 - 1 - 2 (1) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 and 1 = 1 60 = 1 1 (40)	(to > 1) MARKS
100		TABLE THE ALL PARTY TO A PARTY OF THE PARTY	and things of the child the control transfer	1. (max)* C_(max)* (1) de = (0 + m) J m() J m()
1 1 - Coccom-1	to a to be a firement	Principle Control Control	Fr (- '- ' I me " the tremm
ET A MARIES, MO-MA. BALLETING	ten '1 of 'came at 1 of at 1	1. C. ton 15th P d =0 [n=1.2.1]		2. $(mn)^2 C_n(mn) \frac{V(\cdot)}{2} dn = \frac{(0.+n) \int_{\mathcal{M}} (\cdot) Y_{-n}(\cdot)}{1 - (mn)^2 C_n(\cdot)}$
$A = \begin{cases} 1 & e^{-\frac{1}{2}} \ G_{n}(x)\ ^{2} dx - \frac{2^{n-1}}{2(n-1)!} \ G_{n}(x)\ ^{2} \end{cases}$ $B = \frac{1}{2} \begin{cases} 1 & e^{-\frac{1}{2}} \ G_{n}(x)\ ^{2} dx - \frac{2^{n-1}}{2(n-1)!} \ G_{n}(x)\ ^{2} dx + \frac{1}{2} \ G_{n}(x)\ ^{2} $	Tan 1 1 1 1 1 Calanda - 1 1 1 1 2 2 2 1	-2 * (2 +0) (0 + 2 * (a +4)		- 1+ 1 mer to
Complete System of Enthogenal Day Functions 1.288	3.38 Onlypho polymoish and presen	Complete Systems of Delinquest Step Fermions 7.300	729 Bento piponisk BB	60 Complete System of Ordrogened Step Favorisms 1 275
Managine of Countries Section with report to the India	$1 \qquad (1-e)^{1/2}(1+e)^{2e+e+1} \mathcal{E}_{m}(x) \mathcal{E}_{n}(x) \mathcal{E}_{n}(x) dx = \frac{(2e+2e+2f)}{2e+e+2f+1} \qquad \text{ of $x \in \mathbb{N}(n)$}$	7.35 Continuium of Chabuter automobile and elementary functions	7.36 Continuings of Chaboday automobils and Board Sentines	1 "Auston "W-15" W
TARK		THE COLUMN TO THE PROPERTY OF A STATE OF THE PARTY OF THE	Time 1 of the Europe Country of the contract o	is all months of the second of
PcBs ccc0, legicatic decimals	$q = (1 - 1)^{-1}(1 + 1)^{-1} - 1 \cdot 2^{-1}(1) \cdot 2^{-1}(1) + \cdots + (n > n) \qquad $			1. (= e ² S _{el} () de = 11 1 S _{el} = 200 (7 + 100)
TAME and (a) + in A project project page (see) do	$b = \frac{(1-c)(1+c)^{(1)} \mathcal{E}_{m}(c) \mathcal{E}_{n}(c) dc = \frac{(2^{(n)}(m+1)(n+1)}{m+n+\frac{1}{2} - (2^{(n)}(m+1))}}{C + (2^{(n)}(m+1)(n+1))}$ or $c = \frac{(2^{(n)}(m+1)(m+1)}{m+n+\frac{1}{2} - (2^{(n)}(m+1)(m+1))}$	$1 \qquad \frac{x \Gamma_{x} x x^{2} x^{2} x^{2}}{(x^{2} + x^{2})^{2+2} (x^{2} + x^{2})} dx = \frac{x}{2n}, 2^{n-1}, n > 1, \frac{n+1}{2}.$	Table 1 1 1 7. 2 Kalendary Washington (Colored	$0 \qquad e^{-i\phi^2} B_{\alpha}(\cdot \varphi) B_{\alpha}(\cdot \varphi) d\alpha$
-1-me x()	6. (0 + a) 17 (1 + a) 17 (1 + a) 17 (1 + a) 18 (1 + a)	a (proposition of the proposition of the propositio	1.37 1.38 Hereite polymenish	
- PIP blue manual	- 100 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1 = \frac{e^{\frac{2}{3}} + e^{\frac{2}{3}} + e^{\frac{2}{3}}}{(e^{\frac{2}{3}} + e^{\frac{2}{3}})^{2/3}(e^{\frac{2}{3}} + \frac{1}{3})} + \frac{1}{2}(e + 1, e) = \frac{e^{-\frac{2}{3}}}{4} - \frac{e^{-\frac{2}{3}}}{2e}$	THE STREET PROPERTY AND ADDRESS OF THE PERSON.	= 10 Aug 2 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7.34 Combinations of Chebysher polynomials and powers	De est gramme	Band transm	*** 1 * 1 * * * * * * * * * * * * * * *	m - "" #,004-0 = 0" at 8, 40 at 1"
TARE (T.(x)* dr = 1 dr 1 (T.000)	1. (0+0 ¹⁰ 0 s) *F ₂ 01F ₂ 004	THE STATE OF THE S	ton	0 44 (0 000)
TAME F. o 1 p ²⁻¹⁰ p ²⁻¹⁰ pp. de = $\frac{1}{n-1}$ Figure	- 10g lips+((n+1) () n +]	1 . For Park to To a for 1 margin and a set	1. (*** E. (2) 4 - E. (2) (*** E. (2) (*** E. (2))	tan

mayon 1 of 17 1 of 17 Familian (17 1 of 17 Familia)

*Tariet man - 40 and 10° a July 10 - 40

ET 4 (MOIO)

er+moe

Tam 1 2" "Falcote P. D" 1 | 30<0

tam ' 1 2 " t. 1 A a - | the even a at

er + 2900

(0 a) 10(3 a) a) -- 1 Fa(4) Fa(4) a (0 a) (0 a) 10 (10)

1. ** March and Control To the section of $= \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^{2}} \left(|x|^{2} \int_{\mathbb{R}^{2}} |x|^{2} dx \right) dx + \frac{1}{2} \frac{1}{2} \frac{1}{2} \int_{\mathbb{R}^{2}} \frac{1}{2} \frac{1}{2} \int_{\mathbb{R}^{2}} \frac{1}{2} \int_{$ h contemporary fear and succession of the state of the same

18./.51

7.319

able of integrals by Gradienteyn and Tyzmix
$$\Gamma(\lambda + n)\Gamma(u)\Gamma(v) \qquad ($$

7.323

1. $\int_0^{\pi} C_n^{\nu} (\cos \varphi) (\sin \varphi)^{2\nu} d\varphi = 0$

$$x^{\mu-1}x^{\nu-1}C^{\lambda}$$
 $\left(\gamma x^{1/2}\right)dx = (-1)^n \Gamma(\lambda+n)\Gamma(\mu)\Gamma(\nu)$ ${}_2F_2\left(-n,n+\lambda,\nu\right)$

7.319

1.
$$\int_{0}^{1} (1-x)^{\mu-1} x^{\nu-1} C_{2n}^{\lambda} \left(\gamma x^{1/2} \right) dx = (-1)^{n} \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n! \Gamma(\lambda) \Gamma(\mu+\nu)} \, _{3}F_{2} \left(-n, n+\lambda, \nu; \frac{1}{2}, \mu+\nu; \gamma^{2} \right)$$

7.32 Combinations of Gegenbauer polynomials $C_n^{\nu}(x)$ and elementary functions

 $7.321 \qquad \int_{-1}^{1} \left(1-x^2\right)^{\nu-\frac{1}{2}} e^{iax} \; C_n^{\nu}(x) \, dx = \frac{\pi 2^{1-\nu} i^n \, \Gamma(2\nu+n)}{n! \, \Gamma(\nu)} a^{-\nu} \, J_{\nu+n}(a) \\ \left[\operatorname{Re} \nu > -\frac{1}{2}\right] \qquad \qquad \text{ET II 281(7), MO 99a}$

 $7.322 \qquad \int_0^{2a} [x(2a-x)]^{\nu-\frac{1}{2}} \; C_n^{\nu} \left(\frac{x}{a}-1\right) e^{-bx} \, dx = (-1)^n \frac{\pi \, \Gamma(2\nu+n)}{n! \, \Gamma(\nu)} \left(\frac{a}{2b}\right)^{\nu} e^{-ab} \, I_{\nu+n}(ab) \\ \left[\operatorname{Re} \nu > -\frac{1}{2}\right] \qquad \qquad \text{ET I 171(9)}$

 $2. \qquad \int_0^1 (1-x)^{\mu-1} x^{\nu-1} \ C_{2n+1}^{\lambda} \left(\gamma x^{1/2} \right) \ dx = \frac{(-1)^n 2\gamma \, \Gamma(\mu) \, \Gamma(\lambda+n+1) \, \Gamma\left(\nu+\frac{1}{2}\right)}{n! \, \Gamma(\lambda) \, \Gamma\left(\mu+\nu+\frac{1}{2}\right)}$

$$(x)^{\mu-1}x^{\nu-1}C^{\lambda}\left(\gamma x^{1/2}\right)dx = (-1)^n\frac{\Gamma(\lambda+n)\Gamma(\mu)\Gamma(\nu)}{\Gamma(\lambda+n)\Gamma(\mu)\Gamma(\nu)} \circ F_{\lambda}\left(-n,n+\lambda,\nu\right)$$

18 / 51

 $[\operatorname{Re} \mu > 0, \quad \operatorname{Re} \nu > 0]$ ET II 191(41)a

 $[\operatorname{Re} \mu > 0, \quad \operatorname{Re} \nu > -\frac{1}{2}]$ ET II 191(42)

 $\times {}_{3}F_{2}\left(-n,n+\lambda+1,\nu+\frac{1}{2};\frac{3}{2},\mu+\nu+\frac{1}{2};\gamma^{2}\right)$

 $[n = 1, 2, 3, \ldots]$

$$\int_{-1}^{1} \left(1-x^2\right)^{\nu-\frac{1}{2}} e^{iax} \; C_n^{\nu}(x) \, dx = \frac{\pi 2^{1-\nu} i^n \, \Gamma(2\nu+n)}{n! \, \Gamma(\nu)} a^{-\nu} \, J_{\nu+n}(a)$$

Gegenbauer polynomials $C_n^{(\alpha)}(x)$

$$\int_{-1}^{1} \left(1 - x^2\right)^{\nu - \frac{1}{2}} e^{iax} C_n^{\nu}(x) dx = \frac{\pi 2^{1 - \nu} i^n \Gamma(2\nu + n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu + n}(a)$$

► A large portion of such identities can be proven via the holonomic systems approach.

- ► A large portion of such identities can be proven via the holonomic systems approach.
- ▶ Algorithms are implemented in the HolonomicFunctions package.

Holonomic system, satisfied by both sides of the identity:

$$ia(n+2\nu)f_n'(a)+a(n+1)f_{n+1}(a)-in(n+2\nu)f_n(a)=0, \\ a(n+1)(n+2)f_{n+2}(a)-2i(n+1)(n+\nu+1)(n+2\nu+1)f_{n+1}(a) \\ -a(n+2\nu)(n+2\nu+1)f_n(a)=0. \quad \text{18 / 51}$$

Random Walk Generating Functions

Study random walks on a lattice:

- d-dimensional integer lattice, or other
- certain set of allowed steps
- with or without restriction (positive quadrant or the like)
- univariate g.f. for excursions
- multivariate g.f. for walks with arbitrary endpoint

Random Walk Generating Functions

Study random walks on a lattice:

- d-dimensional integer lattice, or other
- certain set of allowed steps
- with or without restriction (positive quadrant or the like)
- univariate g.f. for excursions
- multivariate g.f. for walks with arbitrary endpoint

Many operations can be performed by creative telescoping:

- constant-term extraction
- positive part computation
- diagonals

Random Walk Generating Functions

Study random walks on a lattice:

- ▶ d-dimensional integer lattice, or other
- certain set of allowed steps
- with or without restriction (positive quadrant or the like)
- univariate g.f. for excursions
- multivariate g.f. for walks with arbitrary endpoint

Many operations can be performed by creative telescoping:

- constant-term extraction
- positive part computation
- diagonals

Some Contributors: Axel Bacher, Olivier Bernardi, Alin Bostan, Mireille Bousquet-Mélou, Manfred Buchacher, Frédéric Chyzak, Julien Courtiel, Guy Fayolle, Éric Fusy, Anthony Guttmann, Manuel Kauers, Irina Kurkova, Jean-Marie Maillard, Stephen Melczer, Marni Mishna, Kilian Raschel, Andrew Rechnitzer, Bruno Salvy, Gilles Schaeffer, Amélie Trotignon, Michael Wallner, . . .

Example: Construction in 3D

Generalization to higher dimensions is straight-forward.

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x};z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x};z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

Let $\lambda(\mathbf{k})$ denote the structure function of the lattice:

$$\lambda(\mathbf{k}) = \sum_{\mathbf{x} \in \mathbb{R}^d} p_1(\mathbf{x}) e^{i\mathbf{x} \cdot \mathbf{k}} = \binom{d}{2}^{-1} \sum_{1 \leqslant i < j \leqslant d} \cos(k_i) \cos(k_j).$$

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x};z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

Let $\lambda(\mathbf{k})$ denote the structure function of the lattice:

$$\lambda(\mathbf{k}) = \sum_{\mathbf{x} \in \mathbb{R}^d} p_1(\mathbf{x}) e^{i\mathbf{x} \cdot \mathbf{k}} = \binom{d}{2}^{-1} \sum_{1 \leqslant i < j \leqslant d} \cos(k_i) \cos(k_j).$$

One is particularly interested in

$$P(\mathbf{0};z) = \sum_{n=0}^{\infty} p_n(\mathbf{0}) z^n = \frac{1}{\pi^d} \int_0^{\pi} \cdots \int_0^{\pi} \frac{\mathrm{d}k_1 \dots \, \mathrm{d}k_d}{1 - z\lambda(\mathbf{k})}$$

that encodes the return probability. It is a D-finite function, and its differential equation can be computed by creative telescoping.

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Fact: For d = 3, the return probability is one of Watson's integrals:

$$R_3 = 1 - \left(\frac{1}{\pi^3} \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}k_1 \, \mathrm{d}k_2 \, \mathrm{d}k_3}{1 - \frac{1}{3} (c_1 c_2 + c_1 c_3 + c_2 c_3)}\right)^{-1} = 1 - \frac{16\sqrt[3]{4}\pi^4}{9(\Gamma(\frac{1}{3}))^6}$$
$$= 0.25631823650464877109503018063... \quad \text{where } c_i = \cos(k_i).$$

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Fact: For d = 3, the return probability is one of Watson's integrals:

$$R_3 = 1 - \left(\frac{1}{\pi^3} \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}k_1 \, \mathrm{d}k_2 \, \mathrm{d}k_3}{1 - \frac{1}{3} (c_1 c_2 + c_1 c_3 + c_2 c_3)}\right)^{-1} = 1 - \frac{16\sqrt[3]{4}\pi^4}{9(\Gamma(\frac{1}{3}))^6}$$
$$= 0.25631823650464877109503018063... \quad \text{where } c_i = \cos(k_i).$$

Results: for higher dimensions one approximates R using the ODE:

- $d = 4: R_4 = 0.095713154172562896735316764901210185...$
- b d = 5: $R_5 = 0.046576957463848024193374420594803291...$
- $b d = 6: R_6 = 0.026999878287956124269364175426196380...$

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- Automatability
- Generality
- Shift from ad hoc to algorithmic
- Algorithm replaces ingenuity (or augments it)
- ► Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- Automatability
- Generality
- ► Shift from ad hoc to algorithmic
- Algorithm replaces ingenuity (or augments it)
- ► Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Key insight: one can prove many special function identities without insight — just via algorithm. This was Zeilberger's dream.

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- Automatability
- Generality
- ► Shift from ad hoc to algorithmic
- Algorithm replaces ingenuity (or augments it)
- ► Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Key insight: one can prove many special function identities without insight — just via algorithm. This was Zeilberger's dream.

Drawbacks:

- Such proofs do not provide any "insight" (combinatorial interpretation, etc.).
- Not fully automated: certain technical details have to be checked manually (initial values, singularities, etc.).

Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geqslant \pi_{i+1,j}$ and $\pi_{i,j} \geqslant \pi_{i,j+1}$ for all $i,j \geqslant 1$.

Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geqslant \pi_{i+1,j}$ and $\pi_{i,j} \geqslant \pi_{i,j+1}$ for all $i,j \geqslant 1$.

Example: A plane partition π of 17

5	4	1
3	2	1
1		

Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

		_
5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geqslant \pi_{i+1,j}$ and $\pi_{i,j} \geqslant \pi_{i,j+1}$ for all $i,j \geqslant 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \ge \pi_{i+1,j}$ and $\pi_{i,j} \ge \pi_{i,j+1}$ for all $i,j \ge 1$.

5	4	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geqslant \pi_{i+1,j}$ and $\pi_{i,j} \geqslant \pi_{i,j+1}$ for all $i,j \geqslant 1$.

5	$\mid 4 \mid$	1
3	2	1
1		

Definition: A plane partition π of $n \in \mathbb{N}$ is

- lacktriangle a two-dimensional array $\pi=(\pi_{i,j})_{1\leqslant i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geqslant \pi_{i+1,j}$ and $\pi_{i,j} \geqslant \pi_{i,j+1}$ for all $i,j \geqslant 1$.

5	4	1
3	2	1
1		

Totally Symmetric Plane Partitions

Totally Symmetric Plane Partitions

Conjecture 7. (see [11, Case 4]). The number of totally symmetric plane partitions with largest part < n is equal to

Totally Symmetric Plane Partitions

Conjecture 7. (see [11, Case 4]). The number of totally symmetric plane partitions with largest part $\leq n$ is equal to

$$T_{n} = \prod_{1 \le i \le j \le k \le n} \frac{i + j + k - 1}{i + j + k - 2}.$$

Note. All quantities arising in connection with Conjecture 7 have natural q-analogues. The q-analogue of T_ is

$$T_{n}(q) = \prod_{1 \le i \le j \le k \le n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where TSPP(n) denotes the set of TSPPs with largest part $\leq n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where TSPP(n) denotes the set of TSPPs with largest part $\leq n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where TSPP(n) denotes the set of TSPPs with largest part $\leq n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$
 (where $\mathrm{TSPP}(n)$ denotes the set of TSPPs with largest part $\leqslant n$).

q-TSPP conjecture:
$$\sum_{\pi \in \mathrm{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where TSPP(n) denotes the set of TSPPs with largest part $\leq n$).

Determinantal Formulation

On the Generating Functions for Certain Classes of Plane Partitions

SOICHI OKADA

Department of Mathematics, University of Tokyo Hongo, Tokyo, 113, Japan

Communicated by George Andrews

Received November 2, 1987

Okada's Theorem: The q-TSPP conjecture is true if

$$\det (a_{i,j})_{1 \leqslant i,j \leqslant n} = \prod_{1 \leqslant i \leqslant j \leqslant k \leqslant n} \left(\frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}} \right)^2, \quad \text{where}$$

$$a_{i,j} := q^{i+j-1} \left(\begin{bmatrix} i+j-2 \\ i-1 \end{bmatrix}_q + q \begin{bmatrix} i+j-1 \\ i \end{bmatrix}_q \right) + (1+q^i)\delta_{i,j} - \delta_{i,j+1}.$$

Results on DSASMs and OSASMs

(joint work with Roger Behrend and Ilse Fischer)

Definition:

- quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ightharpoonup 1's and -1's alternate along rows and along columns
- lacktriangle all row sums and all column sums equal 1

Definition:

- ightharpoonup quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Definition:

- ightharpoonup quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ightharpoonup 1's and -1's alternate along rows and along columns
- all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$ASM(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Definition:

- ightharpoonup quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ightharpoonup 1's and -1's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$ASM(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Theorem: Behrend/Fischer/Konvalinka (2016)

DASASM
$$(2n + 1) = \prod_{i=0}^{n} \frac{(3i)!}{(n+i)!}$$

Definition:

- ightharpoonup quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ightharpoonup 1's and -1's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$ASM(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Theorem: Behrend/Fischer/Konvalinka (2016)

DASASM
$$(2n + 1) = \prod_{i=0}^{n} \frac{(3i)!}{(n+i)!}$$

DSASMs for n = 1, 2, 3, 4

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Number of ASMs

```
n = 1 : 1
                                                        = 1
                                                        =2
n = 2 : 2
n = 3 : 7
                                                        =7
n = 4 : 42
                                                        = 2 \cdot 3 \cdot 7
n = 5 : 429
                                                        = 3 \cdot 11 \cdot 13
                                                        = 2^2 \cdot 11 \cdot 13^2
n = 6 : 7436
                                                        =2^2 \cdot 13^2 \cdot 17 \cdot 19
n=7:218348
                                                        =2^3 \cdot 13 \cdot 17^2 \cdot 19^2
n = 8 : 10850216
                                                        =2^2 \cdot 5 \cdot 17^2 \cdot 19^3 \cdot 23
n = 9 : 911835460
                                                        =2^2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 17 \cdot 19^3 \cdot 23^2
n = 10: 129534272700
                                                       =3^2 \cdot 5^3 \cdot 7 \cdot 19^2 \cdot 23^3 \cdot 29 \cdot 31
n = 11: 31095744852375
                                                      = 2^2 \cdot 3^3 \cdot 5^4 \cdot 19 \cdot 23^3 \cdot 29^2 \cdot 31^2
n = 12: 12611311859677500
                                                  =2^2 \cdot 3^5 \cdot 5^4 \cdot 23^2 \cdot 29^3 \cdot 31^3 \cdot 37
n = 13: 8639383518297652500
n = 14: 9995541355448167482000 = 2^4 \cdot 3^5 \cdot 5^3 \cdot 23 \cdot 29^4 \cdot 31^4 \cdot 37^2
n = 15: 19529076234661277104897200 = <math>2^4 \cdot 3^3 \cdot 5^2 \cdot 29^4 \cdot 31^5 \cdot 37^3 \cdot 41 \cdot 43
```

Number of DSASMs

```
n = 1 : 1
                                           = 1
n = 2 : 2
                                           =2
                                           =5
n = 3 : 5
                                           = 2^4
n = 4 : 16
n = 5 : 67
                                           = 67
                                           =2^4 \cdot 23
n = 6 : 368
                                           = 2 \cdot 5 \cdot 263
n = 7 : 2630
                                           =2^3 \cdot 11 \cdot 277
n = 8 : 24376
                                           = 2 \cdot 5 \cdot 29 \cdot 1013
n = 9 : 293770
n = 10: 4610624
                                           =2^6 \cdot 61 \cdot 1181
n = 11:94080653
                                           =4679 \cdot 20107
n = 12: 2492747656
                                           = 2^3 \cdot 7 \cdot 2063 \cdot 21577
n = 13: 85827875506
                                          = 2 \cdot 29 \cdot 73 \cdot 20271109
                                       =2^{13} \cdot 7 \cdot 67015369
n = 14: 3842929319936
                                          =2^2 \cdot 67 \cdot 7547 \cdot 110563111
n = 15: 223624506056156
                                   = 2^4 \cdot 13 \cdot 12343 \cdot 6583394929
n = 16: 16901839470598576
n = 17: 1659776507866213636 = <math>2^2 \cdot 263 \cdot 1577734323066743
n = 18: 211853506422044996288 = 2^{6} \cdot 13 \cdot 254631618295727159
n = 19: 35137231473111223912310 = <math>2 \cdot 5 \cdot 1601 \cdot 2194705276271781631
n = 20: 7569998079873075147860464 = 2^4 \cdot 473124879992067196741279
```

Six-vertex model

$$egin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & -1 & 0 & 1 \ 1 & -1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & -1 & 1 & -1 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- ➤ The degree-4 vertices have two incoming and two outgoing edges.
- ► The top vertical edges point up.
- ► The rightmost horizontal edges point to the left.

$$\begin{array}{c} & & +, + \leftrightarrow 1, \\ & & +, + \leftrightarrow -1 \\ & & +, + \leftrightarrow 0, \\ & & +, + \leftrightarrow 0. \end{array}$$

Pfaffian formula for DSASMs

Theorem. The number of $(n \times n)$ -DSASMs is equal to

$$\operatorname{Pf}_{\epsilon(n) \le i < j \le n-1} \left([u^i v^j] \frac{(v-u)(2+uv)}{(1-uv)(1-u-v)} \right),$$

where $\epsilon(n)=0$ for even n and $\epsilon(n)=1$ for odd n.

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\operatorname{OSASM}(2n)| = \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i)!}.$$

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\operatorname{OSASM}(2n)| = \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i)!}.$$

Conjecture:

$$|\operatorname{OSASM}(2n+1)| = \frac{2^{n-1}(3n+2)!}{(2n+1)!} \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i+1)!}$$

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\operatorname{OSASM}(2n)| = \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i)!}.$$

Conjecture:

$$|\operatorname{OSASM}(2n+1)| = \frac{2^{n-1}(3n+2)!}{(2n+1)!} \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i+1)!}$$

Theorem: The number of off-diagonally symmetric alternating sign matrices, $|\operatorname{OSASM}(n)|$, is given by

$$\mathrm{Pf}_{0\leqslant i < j\leqslant n-\chi_{\mathrm{even}}(n)} \left(\begin{cases} [u^i v^j] \frac{v-u}{(1-uv)(1-u-v)}, & j\leqslant n-1 \\ (-1)^i, & j=n \end{cases} \right).$$

Request by Zeilberger (dated June 23, 2021)

Von Doron Zeilberger @

An Christoph Koutschan (RICAM) (9)

Kopie (CC) Di Francesco, Philippe @

Betreff challenge

Dear Christoph,

Philippe Di Francesco just gave a great talk at the Lattice path conference mentioning, inter alia, a certain conjectured determinant.

It is

Conj. 8.1 (combined with Th. 8.2) in https://arxiv.org/pdf/2102.02920.pdf

I am curious if you can prove it by the Koutschan-Zeilberger-Aek holonomic ansatz method.

If you can do it before Friday, June 25, 2021, 17:00 Paris time, I will mention it in my talk in that conference.

Best wishes

Doron

Request by Zeilberger (dated June 23, 2021)

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \le i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Philippe Di Francesco just gave a great talk at the Lattice path conference mentioning, inter alia, a certain conjectured determinant.

It is

Conj. 8.1 (combined with Th. 8.2) in https://arxiv.org/pdf/2102.02920.pdf

I am curious if you can prove it by the Koutschan-Zeilberger-Aek holonomic ansatz method.

If you can do it before Friday, June 25, 2021, 17:00 Paris time, I will mention it in my talk in that conference.

Best wishes

Doron

Determinants and Pfaffians

Who you gonna call?

Determinants and Pfaffians

Who you gonna call?

ADVANCED DETERMINANT CALCULUS

C. KRATTENTHALER†

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. E-mail: kratt@pap.univie.ac.at WWW: http://radon.mat.univie.ac.at/People/kratt

Dedicated to the pioneer of determinant evaluations (among many other things), George Andrews

Problem: Prove a determinantal identity of

the form $\det_{1\leqslant i,j\leqslant n}(a_{i,j})=b_n$

Problem: Prove a determinantal identity of the form $\det_{1 \leq i,j \leq n} (a_{i,j}) = b_n$, where

 $ightharpoonup a_{i,j}$ is a holonomic sequence

Problem: Prove a determinantal identity of the form $\det_{1 \leq i,j \leq n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- that does not depend on n

Problem: Prove a determinantal identity of the form $\det_{1 \leq i,j \leq n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\mathcal{A}_n = \begin{pmatrix} \mathcal{A}_{n-1} & \vdots \\ \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

$$\det(\mathcal{A}_n) = a_{n,1}\operatorname{Cof}_{n,1} + \dots + a_{n,n-1}\operatorname{Cof}_{n,n-1} + a_{n,n}\det(\mathcal{A}_{n-1})$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- \blacktriangleright that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = a_{n,1} \frac{\operatorname{Cof}_{n,1}}{\det(\mathcal{A}_{n-1})} + \dots + a_{n,n-1} \frac{\operatorname{Cof}_{n,n-1}}{\det(\mathcal{A}_{n-1})} + a_{n,n}$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\mathcal{A}_n = \begin{pmatrix} & & & & & \\ & \mathcal{A}_{n-1} & & & & \\ & \vdots & & & & \\ & \vdots & & & \vdots & & \\ & a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = a_{n,1}c_{n,1} + \dots + a_{n,n-1}c_{n,n-1} + a_{n,n}c_{n,n}$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,j}$ is a holonomic sequence
- that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\mathcal{A}_n = \begin{pmatrix} A_{n-1} & & \\ A_{n-1} & & \\ \vdots & & \\ a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = \sum_{j=1}^n a_{n,j} c_{n,j}$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,i}$ is a holonomic sequence
- that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$0 = \sum_{j=1}^{n} a_{1,j} c_{n,j}$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i, j \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,i}$ is a holonomic sequence
- \blacktriangleright that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\mathcal{A}_n = \begin{pmatrix} A_{n-1} & \vdots \\ A_{n-1} & \vdots \\ \vdots \\ a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

$$0 = \sum_{i=1}^{n} a_{i,j} c_{n,j} \quad (1 \leqslant i < n)$$

Problem: Prove a determinantal identity of the form $\det_{1 \le i \le n} (a_{i,j}) = b_n$, where

- $ightharpoonup a_{i,i}$ is a holonomic sequence
- \blacktriangleright that does not depend on n, and
- ▶ b_n is a closed form $(b_n \neq 0 \text{ for all } n)$.

$$\mathcal{A}_n = \begin{pmatrix} & & & & \\ & \mathcal{A}_{n-1} & & & \\ & \vdots & & & \\ & \vdots & & & \\ a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

$$0 = \sum_{i=1}^{n} a_{i,j} c_{n,j} \quad (1 \leqslant i < n), \quad c_{n,n} = 1$$

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.

- 1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
- 2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \qquad (1 \leqslant n) \tag{1}$$

$$\sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \qquad (1 \leqslant n)$$
 (3)

- 1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
- 2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 (1 \leqslant n) (1)$$

$$\sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 \qquad (1 \leqslant i) \qquad (2)$$

$$\sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \qquad (1 \leqslant n)$$
 (3)

Justification:

 \triangleright Invertibility of \mathcal{A}_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).

- 1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
- 2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \qquad (1 \leqslant n) \tag{1}$$

$$\sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 \qquad (1 \leqslant i < n)$$
 (2)

$$\sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \qquad (1 \leqslant n)$$
 (3)

Justification:

- Invertibility of A_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- ightharpoonup (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.

- 1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
- 2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \qquad (1 \leqslant n) \tag{1}$$

$$\sum_{i=1}^{n} a_{i,j} c_{n,j} = 0 \qquad (1 \leqslant i) \qquad (2)$$

$$\sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \qquad (1 \leqslant n)$$
 (3)

Justification:

- Invertibility of A_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- ightharpoonup (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.
- ▶ (3) establishes the conjectured determinant evaluation.

- 1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
- 2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 (1 \leqslant n) (1)$$

$$\sum_{i=1}^{n} a_{i,j} c_{n,j} = 0 \qquad (1 \leqslant i) \qquad (2)$$

$$\sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \qquad (1 \leqslant n)$$
 (3)

Justification: Identity Found by Proving Identities!

- lnvertibility of A_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- \triangleright (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.
- (3) establishes the conjectured determinant evaluation.

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

▶ Compute data for $c_{n,j}$ for $0 \le j < n \le 30$

1									
-1	1								
1	- 2	1							
_ 16	47	_ 46	1						
15	15	15							
16	60	85	_ 54	1					
13	13	13	13						
_ 20	88	_ 633	291	_ 21	1				
13	13	52	26	4					
2008	9808	2441	_ 8107	33115	_ 362	1			
969	969	114	323	1938	57				
10592	55 360	_ 7712	16567	_ 159 022	5062	_ 82	1		
3553	3553	209	323	3553	209	11			
2608	2848	36 496	57 388	59 828	41 696	18739	_ 214	1	
575	115	575	575	575	575	575	25		
32 432	182 176	12 656	849728	_ 1011076	56 467	492191	8228	_ 29	1
4485	4485	115	4485	4485	299	4485	195	3	
161632	924992	2 606 624	4799 104	1 262 497	6 078 586	4 266 601	425 608	47 679	334
13 485	13 485	13 485	13 485	2697	13 485	13 485	2697	899	31

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ightharpoonup Compute data for $c_{n,j}$ for $0 \le j < n \le 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):

3 (2 - j) [21 - 56 j - 46 j - 16 j - 2 j | (j - n) n | (1 - 2 n) (-1 - 3 n) (1 - 3 n) 5,

2 [1-5] [1-5] [1072] - 5083] 1072] - 5083] 10903] - 10903] 10903] - 10903] 10903] - 5084] 10903] 11396 \$ 6 . 4932 \$ 6 . 4952 \$ 6 . 4963 \$ 6 .

(1-21-n) (720 + 3945) - 7844) - 9345 | - 6756 7902 | 6¹ - 29 703 | 6² - 49 400 | 6² - 49 33 8 | 6² - 24 334 | 6² - 28 42 | 6² - 24 42 | 6² - 100 | 6² - 44 56 | 6² - 22 215 | 6² - 48 59 1 | 6² - 57 59 | 6² - 37 202 | 6² - 12 202 | 6² - 100 | 6²

2774 \$ 6 . 2383 \$ 6 . 2732 6 . 22522 \$ 6 . 22522 \$ 6 . 16256 \$ 6 . 2652 \$ 6 . 2652 \$ 6 . 1625 \$ 6 . -3 [1 · j] (3 · j · n) (-1 · 3 n) (1 · 3 n) [2+j · 38 j² · 126 j² · 38 j² · 38 j² · 39 j² · 4 j² · 27 n · 288 j² n · 282 j² n · 22 j² n · 22 j² n · 22 j² n · 22 j² n · 40 j² n ² · 40 j² n ²

2 | 1 - 1) | 5 - 25 - n| (-1 - 4n) | 26 - 105 7 - 300 7 - 404 7 - 322 7 - 605 7 - 65 7 - 65 7 - 405 7 - 105 7 - 65 $2\;[2:j]\;[1:2j:n]\;(1:1:4n)\;[60:366j:632j^2:566j^2:322j^4:76j^4:6j^4:27:n:132jn:226j^2:n:172j^3:n:66j^4:n:6j^4:n:27n^2:78:jn^2:78:jn^2:72j^2:n^2:8j^4:27n^2:37n^2:$

9(-1-j-n)[1-n](3-j-n)[3-2n](-1-3n)[1-3n][2-3n](4-3n)[24j-88j-105j-88j-305j-4j-27n-108jn-208jn-132jn-52jn-52jn-106j-106j-72jn-40jjn-80jn][8]

6 [-1.3n] (1.3n] (-7776 3-37122 3 -87698 3 -46784 3 -2949 3 -82698 3 -59588 3 -29784 3 -82698 3 -59588 3 -29784 3 -8416 3 -3845 3 -8416 3 -3845 3 -8416 3 -841

781.000 j n . 155.004 j n . 431.194 j n . 117540 j n . 117540 j n . 11981 j n . 12981 j n

65206 \$ | 6 - 15006 \$ | 6 - 1500 [-54-288] - 370 \$\frac{1}{2} - 464 \$\frac{1}{2} - 288 \$\frac{1}{2} - 488 \$\frac{1}{2} - 288 \$\frac{1}{2} - 2 4[1.2].0](4.30)[1.40][1.40][1.40][.3240_16965_37044].39872].39274].2392].1924].3192].1946].6962].1946].6962].1948].6962].1948].6962].1948].4962].

1510s] n - 4810s] n - 43104] n - 17204] n - 17304] n - 1814] n - 1 472 j n° - 1170 n° - 4125 j n° - 2922 j n° - 4526 j n° - 5416 j n° - 5466 j n° - 1224 j n° - 1224 j n° - 1728 j n° - 5700 j n° - 6912 j n° - 7504 j n° - 7504 j n° - 5700 j n° - 7500 j n°

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \le j < n \le 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \le j < n \le 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \le j < n \le 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.
- ▶ Proving (3) by creative telescoping takes about 30 minutes.

Di Francesco's Determinant

Theorem (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \le j < n \le 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.
- ▶ Proving (3) by creative telescoping takes about 30 minutes.

Zeilberger's Talk at the Lattice Path Conference

Zeilberger's Talk at the Lattice Path Conference

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\det_{0 \le i,j \le n-1} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right)$$

$$= \begin{cases} 2^{9\binom{m}{2} + 3m+1} 3^{9\binom{m}{2} + 3m} \frac{\left(\frac{1}{6}\right)m}{\left(\frac{7}{12}\right)m} \prod_{i=1}^{3m-1} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i-2)!}{(12i-8)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2} + 6m+1} 3^{9\binom{m}{2} + 6m} \frac{\left(\frac{1}{2}\right)m}{\left(\frac{11}{12}\right)m} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2} + 9m+2} 3^{9\binom{m}{2} + 9m} \frac{\left(\frac{5}{6}\right)m}{\left(\frac{15}{12}\right)m+1} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+2, \end{cases}$$

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\det_{0 \le i, j \le n-1} \left(3^{i} \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right)$$

$$= \begin{cases} 2^{9\binom{m}{2} - 6m+1} 3^{9\binom{m}{2} + 6m} \frac{\binom{2}{3} 3m}{\binom{11}{12} m \binom{1}{2} 2m} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2} - 3m-1} 3^{9\binom{m}{2} + 9m} \frac{\binom{5}{3} 3m}{\binom{15}{12} m \binom{7}{6} 2m} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2} - 6} 3^{9\binom{m}{2} + 12m+1} \frac{\binom{8}{3} 3m}{\binom{7}{12} m+1 \binom{11}{6} 2m} \prod_{i=1}^{3m+2} \frac{(4i)!}{(3i)!} \prod_{i=1}^{m} \frac{(3i+1)!}{(12i+4)!}, & \text{for } n = 3m+2, \end{cases}$$

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\begin{split} \det_{0 \leq i,j \leq n-1} \left(3^i \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) \\ &= \left\{ \begin{array}{ll} 2^{9\binom{m}{2} - 3m+1} 3^{9\binom{m}{2} + 6m} \frac{\left(\frac{1}{2}\right)_m}{\left(\frac{11}{12}\right)_m} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2} - 1} 3^{9\binom{m}{2} + 9m} \frac{\left(\frac{5}{6}\right)_m}{\left(\frac{15}{12}\right)_m} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2} + 3m - 5} 3^{9\binom{m}{2} + 12m + 1} \frac{\left(\frac{13}{6}\right)_{m-1}}{\left(\frac{19}{12}\right)_m} \prod_{i=1}^{3m+2} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i+1)!}{(12i+4)!}, & \text{for } n = 3m+2, \\ \end{array} \right. \end{split}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-3) \Gamma(\frac{i+1}{3})}{\Gamma(3i-2) \Gamma(\frac{4i-2}{3})}$$

$$\det_{0\leqslant i,j< n} \Bigl(3^i \tbinom{i+3j}{3j} + \tbinom{-i+3j}{3j}\Bigr) = 2 \prod_{i=1}^n \frac{2^{i-1} \, \Gamma(4i-3) \, \Gamma\bigl(\frac{i+1}{3}\bigr)}{\Gamma(3i-2) \, \Gamma\bigl(\frac{4i-2}{3}\bigr)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} {i + 3j + 1 \choose 3j + 1} + {i - i + 3j + 1 \choose 3j + 1} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-2} \Gamma(4i - 1) \Gamma(\frac{i}{3})}{3 \Gamma(3i - 1) \Gamma(\frac{4i}{3})}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0\leqslant i,j< n} \left(3^{i} \binom{i+3j}{3j} + \binom{-i+3j}{3j}\right) = 2 \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0\leqslant i,j< n} \left(3^{i} \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1}\right) = 2 \prod_{i=1}^{n} \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0\leqslant i,j< n} \left(3^{i} \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2}\right) = 2 \prod_{i=1}^{n} \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0\leqslant i,j< n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j}\right) = \prod_{i=1}^{n} \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

$$\det_{0\leqslant i,j < n} \left(3^{i} \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0\leqslant i,j < n} \left(3^{i} \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0\leqslant i,j < n} \left(3^{i} \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0\leqslant i,j < n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j} \right) = \prod_{i=1}^{n} \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

$$\det_{0\leqslant i,j < n} \left(3^{i+1} \binom{i+3j+2}{3j+1} + \binom{-i+3j}{3j+1} \right) = \prod_{i=1}^{n} \frac{2^{i} \Gamma(4i) \Gamma\left(\frac{i+1}{3}\right)}{3i \Gamma(3i-1) \Gamma\left(\frac{4i+1}{3}\right)}$$

Theorem: For $n \ge 1$ we have

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i} \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^{n} \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j} \right) = \prod_{i=1}^{n} \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

$$\det_{0 \leqslant i,j < n} \left(3^{i+1} \binom{i+3j+2}{3j+1} + \binom{-i+3j}{3j+1} \right) = \prod_{i=1}^{n} \frac{2^{i} \Gamma(4i) \Gamma\left(\frac{i+1}{3}\right)}{i \Gamma(3i-1) \Gamma\left(\frac{4i+1}{3}\right)}$$

 $\det_{0 \leqslant i,j < n} \left(3^{i+1} \binom{i+3j+1}{3j+2} + \binom{-i+3j-1}{3j+2} \right) = \prod_{i=1}^{n} \frac{2^{i-1} \Gamma(4i-1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i) \Gamma\left(\frac{4i-1}{2}\right)}$

43 / 51

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geqslant x$, we have

$$\det_{0\leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) =$$

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geqslant x$, we have

$$\det_{0 \leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) = 2\mu_1(x) \Xi(x) (-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geqslant x$, we have

$$\det_{0\leqslant i,j< n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j}\right) = \\ 2\mu_1(x) \,\Xi(x) \, (-1)^{\left\lfloor \frac{x}{3} \right\rfloor} \prod_{i=1}^n \frac{2^{i-1} \,\Gamma(4i-3) \,\Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \,\Gamma\left(\frac{4i-2}{3}\right)}$$

where

$$\Xi(x) := \prod_{i=2}^x \frac{3\Gamma(i)\Gamma(4i-3)\Gamma(4i-2)}{2\Gamma(3i-2)^2\Gamma(3i-1)}$$

$$\mu_m(x) := \begin{cases} 2, & \text{if } 3 \mid (x-m) \\ 1, & \text{otherwise.} \end{cases}$$

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geqslant x$, we have

$$\det_{0\leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) = \\ 2\mu_1(x) \,\Xi(x) \, (-1)^{\left\lfloor \frac{x}{3} \right\rfloor} \prod_{i=1}^n \frac{2^{i-1} \,\Gamma(4i-3) \,\Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \,\Gamma\left(\frac{4i-2}{3}\right)} \\ \det_{0\leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x+1}{3j+1} + \binom{-i+3j-3x+1}{3j+1} \right) = \\ 2\mu_2(x) \,\Xi(x) \, (-1)^{\left\lfloor \frac{x+2}{3} \right\rfloor} \prod_{i=1}^n \frac{2^{i-2} \,\Gamma(4i-1) \,\Gamma\left(\frac{i}{3}\right)}{3 \,\Gamma(3i-1) \,\Gamma\left(\frac{4i}{3}\right)}$$

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geqslant x$, we have

$$\det_{0 \leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) = \\ 2\mu_1(x) \,\Xi(x) \, (-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-1} \,\Gamma(4i-3) \,\Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \,\Gamma\left(\frac{4i-2}{3}\right)} \\ \det_{0 \leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x+1}{3j+1} \right) + \binom{-i+3j-3x+1}{3j+1} \right) = \\ 2\mu_2(x) \,\Xi(x) \, (-1)^{\lfloor \frac{x+2}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-2} \,\Gamma(4i-1) \,\Gamma\left(\frac{i}{3}\right)}{3 \,\Gamma(3i-1) \,\Gamma\left(\frac{4i}{3}\right)} \\ \det_{0 \leqslant i,j < n} \left(3^{i+x} \binom{i+3j-x+2}{3j+2} + \binom{-i+3j-3x+2}{3j+2} \right) = \\ \frac{\mu_0(x)}{n} \,\Xi(x) \, (-1)^{\lfloor \frac{x+1}{3} \rfloor} \prod_{i=2}^n \frac{2^{i-3} \,\Gamma(4i+1) \,\Gamma\left(\frac{i-1}{3}\right)}{9 \,\Gamma(3i) \,\Gamma\left(\frac{4i+2}{3}\right)}$$

Recent Progress on Some Conjectures

DOMINO TILINGS, NONINTERSECTING LATTICE PATHS AND SUBCLASSES OF KOUTSCHAN-KRATTENTHALER-SCHLOSSER DETERMINANTS

QIPIN CHEN, SHANE CHERN, AND ATSURO YOSHIDA

ABSTRACT. Koutschan, Krattenthaler and Schlosser recently considered a family of binomial determinants. In this work, we give combinatorial interpretations of two subclasses of these determinants in terms of domino tilings and nonintersecting lattice paths, thereby partially answering a question of theirs. Furthermore, the determinant evaluations established by Koutschan, Krattenthaler and Schlosser produce many product formulas for our weighted enumerations of domino tilings and nonintersecting lattice paths. However, there are still two enumerations left corresponding to conjectural formulas made by the three. We hereby prove the two conjectures using the principle of holonomic Ansatz plus the approach of modular reduction for creative telescoping, and hence fill the gap.

Families of Binomial Determinants

(joint work with Hao Du, Thotsaporn Thanatipanonda, and Elaine Wong)

Inspired by some conjectures in Christian Krattenthaler's "Advanced Determinant Calculus: A Complement".

Theorem: Let μ be an indeterminate and let $m, r \in \mathbb{Z}$. If $m \geqslant r \geqslant 1$, then

$$\det_{1 \leqslant i,j \leqslant 2m+1} \left[\binom{\mu+i+j+2r}{j+2r-2} - \delta_{i,j+2r} \right]$$

$$= \frac{(-1)^{m-r+1} (\mu+3) (m+r+1)_{m-r}}{2^{2m-2r+1} (\frac{\mu}{2}+r+\frac{3}{2})_{m-r+1}} \cdot \prod_{i=1}^{2m} \frac{(\mu+i+3)_{2r}}{(i)_{2r}}$$

$$\times \prod_{i=1}^{m-r} \frac{(\mu+2i+6r+3)_i^2 (\frac{\mu}{2}+2i+3r+2)_{i-1}^2}{(i)_i^2 (\frac{\mu}{2}+i+3r+2)_{i-1}^2}.$$

Combinatorial Interpretation: Holey Hexagon

Combinatorial Interpretation: Holey Hexagon

Combinatorial Interpretation: Holey Hexagon

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

That is, nontrivial linear functional equations of the form

$$p_r(q,q^n)f(n+r) + \dots + p_1(q,q^n)f(n+1) + p_0(q,q^n)f(n) = 0.$$

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

That is, nontrivial linear functional equations of the form

$$p_r(q,q^n)f(n+r) + \dots + p_1(q,q^n)f(n+1) + p_0(q,q^n)f(n) = 0.$$

$$n-1$$

$$(a;q)_n := \prod_{i=0}^n (1-aq^i)$$
, the q-Pochhammer symbol

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

That is, nontrivial linear functional equations of the form

$$p_r(q,q^n)f(n+r) + \dots + p_1(q,q^n)f(n+1) + p_0(q,q^n)f(n) = 0.$$

- n-1
- $ightharpoonup (a;q)_n:=\prod (1-aq^i)$, the q-Pochhammer symbol
- $^{i=0}$ the q-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q;q)_n}{(q;q)_k\,(q;q)_{n-k}}$

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

That is, nontrivial linear functional equations of the form

$$p_r(q,q^n)f(n+r) + \dots + p_1(q,q^n)f(n+1) + p_0(q,q^n)f(n) = 0.$$

- n-
- $ightharpoonup (a;q)_n := \prod (1-aq^i)$, the q-Pochhammer symbol
- $\qquad \qquad \text{ the q-binomial coefficient } \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q;q)_n}{(q;q)_k \, (q;q)_{n-k}}$
- q-trigonometric functions: $\sin_q(x)$, $\sin_q(x)$, $\cos_q(x)$, $\cos_q(x)$

Consider q-difference equations involving the q-shift operation

$$x \mapsto qx$$
, resp. $q^n \mapsto q^{n+1}$.

That is, nontrivial linear functional equations of the form

$$p_r(q,q^n)f(n+r) + \dots + p_1(q,q^n)f(n+1) + p_0(q,q^n)f(n) = 0.$$

- $lackbox{ } (a;q)_n := \prod (1-aq^i)$, the q-Pochhammer symbol
- lacktriangle the q-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q;q)_n}{(q;q)_k \, (q;q)_{n-k}}$
- q-trigonometric functions: $\sin_q(x)$, $\sin_q(x)$, $\cos_q(x)$, $\cos_q(x)$
- q-special functions: q-Bessel functions, q-Legendre polynomials, q-Gegenbauer polynomials, etc.

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+3,j+1} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+3,j+1} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

The recurrences have the form

The recurrences have the form

The total size is 244MB (several 1000 pages of paper)!

Solution of the q-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)

Solution of the q-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)

Identity Found by Proving Identities

Identity proving is now a whole branch of symbolic computation:

▶ Binomial sums and other combinatorial identities, e.g.,

$$\sum_{k=0}^{n} \binom{n}{k}^2 \binom{k+n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \binom{k+n}{k} \sum_{j=0}^{k} \binom{k}{j}^3$$

▶ Special function identities (integrals or sums), e.g.,

$$\int_{-1}^{1} (1 - x^2)^{\nu - \frac{1}{2}} e^{iax} C_n^{(\nu)}(x) dx = \frac{\pi i^n \Gamma(n + 2\nu) J_{n+\nu}(a)}{2^{\nu - 1} a^{\nu} n! \Gamma(\nu)}$$

Evaluations of symbolic determinants, e.g.,

$$\det_{0 \leqslant i,j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$