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[Actual] Historical Introduction: How Beukers’ Proofs Were ACTUALLY found

Hilbert’s 0-th problem

Before David Hilbert [H] stated his famous 23 problems, he mentioned two problems that he

probably believed to be yet much harder, and indeed, are still wide open today. One of them was

to prove that there are infinitely many prime numbers of the form 2n + 1, and the other one was

to prove that the Euler-Mascheroni constant is irrational.

Two paragraphs later he stated his optimistic belief that “in mathematics there is no ignorabimus.”

As we all know, he was proven wrong by Gödel and Turing in general, but even for such concrete

problems, like the irrationality of a specific, natural, constant, like the Euler-Mascheroni constant

(that may be defined in terms of the definite integral −
∫∞
0

e−x log x dx) , that is most probably

decidable in the logical sense, (i.e. there probably exists a (rigorous) proof), we lowly humans did

not yet find it, (and may never will!).

While the Euler-Mascheroni constant (and any other, natural, explicitly-defined, constant that is

not obviously rational) is surely irrational, in the everyday sense of the word sure (like death and

taxes), giving a proof, in the mathematical sense of ‘proof’ is a different matter. While e was

proved irrational a long time ago (trivial exercise), and π was proved irrational by Lambert around

1750, we have no clue how to prove that e+ π is irrational. Ditto for e · π. Exercise: Prove that

at least one of them is irrational.

Apéry’s Miracle

As Lindemann first proved in 1882, the number π is more than just irrational, it is transcendental,

hence it follows that ζ(n) is irrational for all even arguments, since Euler proved that ζ(2n) is a

multiple of π2n by a rational number. But proving that ζ(3), ζ(5), . . . are irrational remained wide

open.

Since such problems are so hard, it was breaking news, back in 1978, when 64-years-old Roger

Apéry announced and sketched a proof that ζ(3) :=
∑∞

n=1
1
n3 is irrational. This was beautifully

narrated in a classic expository paper by Alf van der Poorten [vdP], aided by details filled-in by

Henri Cohen and Don Zagier. While beautiful in our eyes, most people found the proof ad-hoc and

too complicated, and they did not like the heavy reliance on recurrence relations.

To those people, who found Apéry’s original proof too magical, ad-hoc, and computational, another

proof, by a 24-year-old PhD student by the name of Frits Beukers [B] was a breath of fresh air. It
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was a marvelous gem in human-generated mathematics, and could be easily followed by a first-year

student, using partial fractions and very easy estimates of a certain triple integral, namely

∫ 1

0

∫ 1

0

∫ 1

0

(x(1− x)y(1− y)z(1− z))n

(1− z + xyz)n+1
dx dy dz .

The general approach of Apéry of finding concrete sequences of integers an, bn such that

|ζ(3)− an
bn

| < CONST

b1+δ
n

,

(see below) for a positive δ was still followed, but the details were much more palatable and elegant

to the average mathematician in the street.

As a warmup, Beukers, like Apéry before him, gave a new proof of the already proved fact that

ζ(2) = π2

6 is irrational, using the double integral

∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1
dx dy .

Ironically, we will follow Beukers’ lead, but heavily using recurrence relations, that will be the

engine of our approach. Thus we will abandon the original raison d’être of Beukers’ proof of

getting rid of recurrences, and bring them back with a vengeance.

[Alternative World] Historical Introduction: How Beukers’s Proofs Could (and Should!)

have been Discovered

Once upon a time, there was a precocious teenager, who was also a computer whiz, let’s call

him/her/it/they Alex. Alex just got a new laptop that had Maple, as a birthday present.

Alex typed, for no particular reason,

int(int(1/(1-x*y),x=0..1),y=0..1);

and immediately got the answer: π2

6 . Then Alex was wondering about the sequence

I(n) :=

∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1
dx dy .

(why not, isn’t it a natural thing to try out for a curious teenager?), and typed

I1:=n->int(int(1/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))**n,x=0..1),y=0..1);

(I is reserved in Maple for
√
−1, so Alex needed to use I1),

and looked at the first ten values by typing:
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L:=[seq(I1(i),i=1..10)]; ,

getting after a few seconds

[5− π2

2
,−125

4
+

19π2

6
,
8705

36
− 49π2

2
,−32925

16
+

417π2

2
,

13327519

720
− 3751π2

2
,−124308457

720
+

104959π2

6
,

19427741063

11760
− 334769π2

2
,−2273486234953

141120
+

9793891π2

6
,

202482451324891

1270080
− 32306251π2

2
,−2758128511985

1728
+

323445423π2

2
] .

Alex immediately noticed that, at least for n ≤ 10,

I(n) = an − bn
π2

6
,

for some integers bn and some rational numbers an. By taking evalf(L), Alex also noticed

that I(n) get smaller and smaller. Knowing that Maple could not be trusted with floating point

calculations (unless you change the value of Digits from its default, to something higher, say, in

this case Digits:=30), that they get smaller and smaller. Typing ‘evalf(L,30);’, Alex got:

[0.06519779945532069058275450006, 0.0037472701163022929758881663,

0.000247728866269394110526059, 0.00001762713127202699137347,

0.0000013124634659314676853, 0.000000100776323486001254,

0.00000000791212964371946, 0.0000000006317437711206,

5.1111100706× 10−11, 4.17922459× 10−12] .

Alex realized that I(n) seems to go to zero fairly fast, and since I(10)/I(9) and I(9)/I(8) were

pretty close, Alex conjectured that the limit of I(n)/I(n− 1) tends to a certain constant. But ten

data points do not suffice!

When Alex tried to find the first 2000 terms, Maple got slower and slower. Then Alex asked Alexa,

the famous robot,

Alexa: how do I compute many terms of the sequence I(n) given by that double-integral?

and Alexa replied:

Go to Doron Zeilberger’s web-site and download the amazing program

https://sites.math.rutgers.edu/~zeilberg/tokhniot/MultiAlmkvistZeilberger.txt ,

3



that accompanied the article [ApaZ]. Typing

MAZ(1,1/(1-x*y),x*(1-x)*y*(1-y)/(1-x*y),[x,y],n,N, {})[1];

immediately gave a recurrence satisfied by I(n)

I(n) = −
(

11n2 − 11n+ 3
)

n2
· I (n− 1) +

(n− 1)
2

n2
· I (n− 2) .

Using this recurrence, Alex easily computed the first 2000 terms, using the following Maple one-liner

(calling the sequence defined by the recurrence I2(n)):

I2:=proc(n) option remember: if n=0 then Pi**2/6 elif n=1 then 5-Pi**2/2 else -(11*n**2-

11*n+3)/n**2*I2(n-1)+(n-1)**2/n**2*I2(n-2):fi: end:

and found out that indeed I(n)/I(n− 1) tends to a limit, about 0.09016994. Writing

I(n) = an − bn
π2

6

and realizing that I(n) is small, Alex found terrific rational approximations to π2

6 , an/bn,

that after clearing denominators can be written as a′n/b
′
n where now both numerator a′n and

denominator b′n are integers.
π2

6
≈ a′n

b′n
.

Alex also noticed that for all n up to 2000, for some constant C,

|π
2

6
− a′n

b′n
| ≤ C

(b′n)
1+δ

,

where δ is roughly 0.09215925467. Then Alex concluded that this proves that π2

6 is irrational, since

if it were rational the left side would have been ≥ C1

b′n
, for some constant C1. Of course, some details

would still need to be filled-in, but that was not too hard.

The General Strategy

Let’s follow Alex’s lead. (Of course our fictional Alex owes a lot to the real Beukers and also to

Alladi and Robinson [AR]).

Start with a constant, let’s call it C, given by an explicit integral

∫ 1

0

K(x) dx ,

for some integrand K(x), or, more generally, a d-dimensional integral

∫ 1

0

. . .

∫ 1

0

K(x1, . . . , xk) dx1 . . . dxk .
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Our goal in life is to prove that C is irrational. Of course C may turn out to be rational (that

happens!), or more likely, an algebraic number, or expressible in terms of a logarithm of an algebraic

number, for which, there already exist irrationality proofs (albeit not always effective ones). But

who knows? Maybe this constant has never been proved irrational, and if it will happen to be

famous (e.g. Catalan’s constant, or ζ(5), or the Euler-Mascheroni constant mentioned above), we

will be famous too. But even if it is a nameless constant, it is still extremely interesting, if it is

the first irrationality proof, since these proofs are so hard, witness that, in spite of great efforts by

experts like Wadim Zudilin, the proofs of these are still wide open.

In this article we will present numerous candidates. Our proofs of irrationality are modulo a

‘divisibility lemma’ (see below), that we are sure that someone like Wadim Zudilin, to whom this

paper is dedicated, can fill-in. Our only doubts are whether these constants are not already proved

to be irrational because they happen to be algebraic (probably not, since Maple was unable to

identify them), or more complicated numbers (like logarithms of algebraic numbers). Recall that

Maple’s identify can’t (yet) identify everything that God can.

Following Beukers and Alladi-Robinson, we introduce a sequence of integrals, parameterized by a

non-negative integer n

I(n) =

∫ 1

0

K(x) (x(1− x)K(x))n dx ,

and analogously for multiple integrals, or more generally

I(n) =

∫ 1

0

K(x) (x(1− x)S(x))n dx ,

for another function S(x). Of course I(0) = C, our constant that we want to prove irrational.

It so happens that for a wide class of functions K(x), S(x), (for single or multivariable x) using

the Holonomic ansatz [Ze1], and implemented (for the single-variable case) in [AlZ], and for the

multi-variable case in [ApZ], and much more efficiently in [K], there exists a linear recurrence

equation with polynomial coefficients, that can be actually computed (always in theory, but

also often in practice, unless the dimension is high). In other words we can find a positive integer

L, the order of the recurrence, and polynomials p0(n), p1(n), . . . , pL(n), such that

p0(n)I(n) + p1(n)I(n+ 1) + . . .+ pL(n)I(n+ L) = 0 .

If we are lucky (and all the cases in this paper fall into this case) the order L is 2. Furthermore,

it would be evident in all the examples in this paper that p0(n), p1(n), p2(n) can be taken to have

integer coefficients.

Another ‘miracle’ that happens in all the examples in this paper is that I(0) and I(1) are rationally-

related, i.e. there exist integers c0, c1, c2 such that

c0I(0) + c1I(1) = c2 ,
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that our computers can easily find.

It then follows, by induction, that one can write

I(n) = bnC − an ,

for some sequences of rational numbers {an} and {bn} that both satisfy the same recurrence as

I(n).

Either using trivial bounds on the integral, or using the so-called Poincaré lemma (see, e.g. [vdP],

[ZeZu1],[ZeZu2]) it turns out that

an = Ω(αn) , bn = Ω(αn) ,

for some constant α > 1, and

|I(n)| = Ω(
1

βn
) ,

for some constant β > 1.

[Please note that we use Ω in a looser-than-usual sense, for us x(n) = Ω(αn) means that limn→∞
log x(n)

n =

α.]

In the tweaks of Beukers’ integrals for ζ(2) and ζ(3) coming up later, α and β are equal, but in the

tweaks of the Alladi-Robinson integrals, α is usually different than β.

It follows that

|C − an
bn

| = Ω(
1

(αβ)n
) .

Note that an, and bn are, usually, not integers, but rather rational numbers (In the original Beuk-

ers/Apéry cases, the bn were integers, but the an were not, in the more general cases in this article,

usually neither of them are integers).

It so happens, in all the cases that we discovered, that there exists another sequence of rational

numbers E(n) such that

a′n := an E(n) , b′n := bn E(n) ,

are always integers, and, of course gcd(a′n , b
′
n) = 1. We call E(n) the integer-ating factor.

In some cases we were able to conjecture E(n) exactly, in terms of products of primes satisfying

certain conditions (see below), but in other cases we can only conjecture that such an explicitly-

describable sequence exists.

In either case there exists a real number, that sometimes can be described exactly, and other times

only estimated, let’s call it ν, such that

lim
n→∞

logE(n)

n
= ν ,
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or, in our notation, E(n) = Ω( enν ) .

Since we have

|C − a′n
b′n

| = Ω(
1

(αβ)n
) ,

where b′n = Ω(eν nαn). We need a positive δ such that

(eν nαn)1+δ = (αβ)n .

Taking log (and dividing by n) we have

(ν + logα)(1 + δ) = logα+ log β ,

giving

δ =
log β − ν

logα+ ν
.

If we are lucky, and log β > ν, then we have δ > 0, and an irrationality proof!, Yea! We also, at

the same time, determined an irrationality measure (see [vdP])

1 +
1

δ
=

logα+ log β

log β − ν
.

If we are unlucky, and δ < 0, it is still an exponentially fast way to compute our constant C to any

desired accuracy.

Summarizing: For each specific constant defined by a definite integral, we need to exhibit

• A second-oder recurrence equation for the numerator and denominator sequence an and bn that

feature in I(n) = bnC − an.

• The initial conditions a0, a1, b0, b1 enabling a very fast computation of many terms of an, bn.

• The constants α and β

• Exhibit a conjectured integer-ating factor E(n), or else conjecture that one exists, and find,

or estimate (respectively), ν := limn→∞
logE(n)

n .

• Verify that β > eν and get (potentially) famous.

The Three Classical Cases

log 2 ([AR])

C =

∫ 1

0

1

1 + x
dx = log 2 .

I(n) =

∫ 1

0

(x(1− x))n

(1 + x)n+1
dx .
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Recurrence:

(n+ 1)X (n) + (−6n− 9)X (n+ 1) + (n+ 2)X (n+ 2) = 0 .

α = β = 3 + 2
√
2 .

Initial conditions

a0 = 0 , a1 = 2 ; b0 = 1 , b1 = 3 .

Integer-ating factor E(n) = lcm(1 . . . n), ν = 1.

δ =
log β − ν

logα+ ν
=

log β − 1

logα+ 1
=

log(3 + 2
√
2)− 1

log(3 + 2
√
2) + 1

= 0.276082871862633587 .

Implied irrationality measure: 1 + 1/δ = 4.622100832454231334 . . ..

ζ(2) ([B])

C =

∫ 1

0

∫ 1

0

1

1− xy
dx dy = ζ(2) .

I(n) =

∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1
dx dy .

Recurrence:

− (1 + n)
2
X (n) +

(

11n2 + 33n+ 25
)

X (n+ 1) + (2 + n)
2
X (n+ 2) = 0 .

α = β =
11

2
+

5
√
5

2
.

Initial conditions

a0 = 0 , a1 = −5 ; b0 = 1 , b1 = −3 .

Integer-ating factor E(n) = lcm(1 . . . n)2, ν = 2.

δ =
log β − ν

logα+ ν
=

log β − 2

logα+ 2
=

log(11/2 + 5
√
5/2)− 2

log(11/2 + 5
√
5/2) + 2

= 0.09215925473323 . . . .

Implied irrationality measure: 1 + 1/δ = 11.8507821910523426959528 . . ..
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ζ(3) ([B])

C =

∫ 1

0

∫ 1

0

∫ 1

0

1

1− z + xyz
dx dy dz = ζ(3) .

I(n) =

∫ 1

0

∫ 1

0

∫ 1

0

(x(1− x)y(1− y)z(1− z))n

(1− z + xyz)n+1
dx dy dz .

Recurrence:

(1 + n)
3
X (n)− (2n+ 3)

(

17n2 + 51n+ 39
)

X (n+ 1) + (n+ 2)
3
X (n+ 2) = 0 .

α = β = 17 + 12
√
2 .

Initial conditions

a0 = 0 , a1 = 12 ; b0 = 1 , b1 = 5 .

Integer-ating factor E(n) = lcm(1 . . . n)3, ν = 3.

δ =
log β − ν

logα+ ν
=

log β − 3

logα+ 3
=

log(17 + 12
√
2)− 3

log(17 + 12
√
2) + 3

= 0.080529431189061685186 . . . .

Implied irrationality measure: 1 + 1/δ = 13.41782023335376578458 . . ..

Accompanying Maple packages

This article is accompanied by three Maple packages, GenBeukersLog.txt, GenBeukersZeta2.txt,

GenBeukersZeta3.txt all freely available from the front of this masterpiece

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/beukers.html ,

where one can find ample sample input and output files, that readers are welcome to extend.

Zudilin’s Tweak of the Beukers ζ(2) integral to get the Catalan constant

The inspiration for our tweaks came from Wadim Zudilin’s brilliant discovery [Zu1] that the famous

Catalan constant, that may be defined by the innocent-looking alternating series of the reciprocals

of the odd perfect-squares

C := 1− 1

32
+

1

52
− 1

72
+ . . . =

∞
∑

n=0

(−1)n

(2n+ 1)2
,
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can be written as the double integral

1

8

∫ 1

0

∫ 1

0

x− 1
2 (1− y)−

1
2

1− xy
dx dy .

This lead him to consider the sequence of Beukers-type double-integrals

I(n) =

∫ 1

0

∫ 1

0

x− 1
2 (1− y)−

1
2

1− xy
·
(

x(1− x)y(1− y)

1− xy

)n

dx dy .

Using the Zeilberger algorithm, Zudilin derived a three term recurrence for I(n) leading to good

diophantine approximations to the Catalan constant, alas not good enough to prove irrationality.

This was elaborated and extended by Yu. V. Nesterenko [N]. See also [Zu2].

Using the multivariable Almkvist-Zeilberger algorithm we can derive the recurrence much faster.

Using Koutschan’s package [K], it is yet faster.

Our Tweaks

Inspired by Zudilin’s Beukers-like integral for the Catalan constant, we decided to use our efficient

tools for quickly manufacturing recurrences.

We systematically investigated the following families.

Generalizing the Alladi-Robinson-Like Integral for log 2

Alladi and Robinson [AR] gave a Beukers-style new proof of the irrationality of log 2 using the

elementary fact that

log 2 =

∫ 1

0

1

1 + x
dx ,

and more generally,
1

c
log(1 + c) =

∫ 1

0

1

1 + cx
dx .

They used the sequence of integrals

I(n) :=

∫ 1

0

1

1 + cx

(

x(1− x)

1 + cx

)n

dx ,

and proved that for a wide range of choices of rational c, this leads to irrationality proofs and

irrationality measures (see also [ZeZu1]).

Our generalized version is the three-parameter family of constants

I1(a, b, c) :=
1

B(1 + a, 1 + b)

∫ 1

0

xa(1− x)b

1 + cx
dx

10



that is easily seen to equal 2F1(1, a+ 1; a+ b+ 2;−c).

We use the sequence of integrals

I1(a, b, c)(n) :=
1

B(1 + a, 1 + b)

∫ 1

0

xa(1− x)b

1 + cx
·
(

x(1− x)

1 + cx

)n

dx .

Using the (original!) Almkvist-Zeilberger algorithm [AlZ], implemented in the Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt ,

we immediately get a second-order recurrence that can be gotten by typing ‘OpeL(a,b,c,n,N);’

in the Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt .

This enabled us to conduct a systematic search, and we found many cases of 2F1 evaluations that

lead to irrationality proofs, i.e. for which the δ mentioned above is positive. Many of them

turned out to be (conjecturally) expressible in terms of algebraic numbers and/or logarithms of

rational numbers, hence proving them irrational is not that exciting, but we have quite a few

not-yet-identified (and inequivalent) cases. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog1.txt ,

for many examples. Whenever Maple was able to (conjecturally) identify the constants explicitly,

it is mentioned. If nothing is mentioned then these are potentially explicit constants, expressible as

a hypergeometric series 2F1, for which this would be the first irrationality proof, once the details

are filled-in.

We also considered the four-parameter family of constants

I ′1(a, b, c, d) :=

∫ 1

0
xa(1−x)b

(1+cx)d+1 dx
∫ 1

0
xa(1−x)b

(1+cx)d
dx

,

and, using the more general recurrence, also obtained using the Almkvist-Zeilberger algorithm (to

see it type ‘OpeLg(a,b,c,d,n,Sn);’ in GenBeukersLog.txt), found many candidates for irrational-

ity proofs that Maple was unable to identify. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog2.txt .

Generalizing the Beukers Integral for ζ(2)

Define

I2(a1, a2, b1, b2)(n) =
1

B(1− a1, 1− a2)B(1− b1, 1− b2)
·

∫ 1

0

∫ 1

0

x−a1(1− x)−a2y−b1(1− y)−b2

1− xy
·
(

x(1− x)y(1− y)

1− xy

)n

dx dy ,

11



that happens to satisfy a linear-recurrence equation of second order, yielding Diophantine approx-

imations to the constant I2(a1, a2, b1, b2)(0), let’s call it C2(a1, a2, b1, b2)

C2(a1, a2, b1, b2) =
1

B(1− a1, 1− a2)B(1− b1, 1− b2)
·
∫ 1

0

∫ 1

0

x−a1(1− x)−a2y−b1(1− y)−b2

1− xy
dx dy .

It is readily seen that

C2(a1, a2, b1, b2) = 3F2

(

1 , 1− a1 , −b1 + 1

2− a1 − a2 , 2− b1 − b2
; 1

)

.

Most choices of random a1, a2, b1, b2 yield disappointing, negative δ’s, just like C2(
1
2 , 0, 0,

1
2 ) (alias

8 times the Catalan constant), but a systematic search yielded several hundred candidates that

produce positive δ’s and hence would produce irrationality proofs. Alas, many of them were con-

jecturally equivalent to each other via a fractional-linear transformation with integer coefficients,

C → a+bC
c+dC , with a, b, c, d integers, hence the facts that they are irrational are equivalent. Never-

theless we found quite a few that are (conjecturally) not equivalent to each other. Modulo filling-in

some details, they lead to irrationality proofs. Amongst them some were (conjecturally) identified

by Maple to be either algebraic, or logarithms of rational numbers, for which irrationality proofs

exist for thousands of years (in case of
√
2 and

√
3 etc.), or a few hundred years (in case of log 2,

etc.).

But some of them Maple was unable to identify, so potentially our (sketches) of proofs would be

the first irrationality proofs.

Beukers ζ(2) Tweaks That produced Irrationality Proofs with Identified Constants

Denominator 2

We first searched for C2(a1, a2, b1, b2) where the parameters a1, a2, b1, b2 have denominator 2, there

were quite a few of them, but they were all conjecturally equivalent to each other. Here is one of

them:

• C2(0, 0,
1
2 , 0) = 3F2(1, 1, 1/2; 2, 3/2; 1), alias 2 log 2.

Denominator 3

There were also quite a few where the parameters a1, a2, b1, b2 have denominator 3, but again they

were all equivalent to each other, featuring π
√
3. Here is one of them.

• C2(0, 0,
1
3 ,− 2

3 ) = 3F2(1, 1, 2/3; 2, 7/3; 1), alias (conjecturally) −6 + 4π
√
3/3.

Denominator 4

There were also quite a few where the parameters a1, a2, b1, b2 have denominator 4, but again they

were all equivalent to each other, featuring
√
2, yielding a new proof of the irrationality of

√
2 (for

what it is worth). Here is one of them.
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• C2(− 3
4 ,− 3

4 ,− 1
4 ,− 3

4 ) = 3F2(1, 7/4, 5/4; 7/2, 3; 1), alias (conjecturally) −240 + 512
3

√
2.

Denominator 5

There were also quite a few where the parameters a1, a2, b1, b2 have denominator 5, but again they

were all equivalent to each other, featuring
√
5, yielding a new proof of the irrationality of

√
5 (for

what it is worth). Here is one of them.

• C2(− 4
5 ,− 4

5 ,− 2
5 ,− 3

5 ) = 3F2(1, 9/5, 7/5; 18/5, 3; 1), alias (conjecturally) − 845
2 + 2275

12

√
5

Denominator 6 with identified constants

We found two equivalence classes where the parameters a1, a2, b1, b2 have denominator 6, for which

the constants were identified. Here are one from each class.

• C2(−5/6,−5/6,−1/2,−1/2) = 3F2(1, 11/6, 3/2; 11/3, 3; 1), alias (conjecturally) − 1344
5 + 16384

√
3

105

• C2(−5/6,−5/6,−1/3,−2/3) = 3F2(1, 11/6, 4/3; 11/3, 3; 1), alias (conjecturally)
972 22/3

5 − 1536
5

denominator 7 with identified constants

We found two cases where the parameters a1, a2, b1, b2 have denominator 7, for which the constants

were identified.

• C2(−6/7,−6/7,−4/7,−3/7) = 3F2(1, 13/7, 11/7; 26/7, 3; 1), alias (conjecturally) the positive root

of 13824x3 − 2757888x2 − 10737789048x+ 16108505539 = 0 .

• C2(−6/7,−1/7, 4/7, 2/7) = 3F2(1, 13/7, 3/7; 3, 8/7; 1), alias (conjecturally) the positive root of

2299968x3 + 7074144x2 − 11234916x− 12663217 = 0

Beukers ζ(2) Tweaks That produced Irrationality Proofs with Not-Yet-Identified Con-

stants (and Hence Candidates for First Irrationality Proofs)

For the following constants, Maple was unable to identify, and we have potentially the first irra-

tionality proofs of these constants.

Denominator 6 with not yet identified constants

We found two cases (up to equivalence):

• C2(0,−1/2, 1/6,−1/2) = 3F2(1, 1, 5/6; 5/2, 7/3; 1)

While Maple was unable to identify this constant, Mathematica came up with −24 − 81
√
πΓ(7/3)

Γ(−1/6) .

• C2(−2/3,−1/2, 1/2,−1/2) = 3F2(1, 5/3, 1/2; 19/6, 2; 1)

While Maple was unable to identify this constant, Mathematica came up with 13
2 − 6Γ(19/6)√

πΓ(8/3)
.
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Denominator 7 with not yet identified constants

We found six cases (up to equivalence):

• C2(−6/7,−6/7,−4/7,−5/7) = 3F2(1, 13/7, 11/7; 26/7, 23/7; 1)

• C2(−6/7,−5/7,−3/7,−5/7) = 3F2(1, 13/7, 10/7; 25/7, 22/7; 1)

• C2(−6/7,−5/7,−2/7,−1/7) = 3F2(1, 13/7, 9/7; 25/7, 17/7; 1)

• C2(−6/7,−4/7,−1/7,−1/7) = 3F2(1, 13/7, 8/7; 24/7, 16/7; 1)

• C2(−6/7,−3/7,−5/7,−3/7) = 3F2(1, 13/7, 12/7; 23/7, 22/7; 1)

• C2(−5/7,−3/7,−4/7,−2/7) = 3F2(1, 12/7, 11/7; 22/7, 20/7; 1)

For each of them, to get the corresponding theorem and proof, use procedure TheoremZ2 in the

Maple pacgage GenBeukersZeta2.txt.

To get a statement and full proof (modulo a divisibility lemma) type , in GenBeukersZeta2.txt

TheoremZ2(a1,a2,b1,b2,K,0):

with K at least 2000. For example, for the last constant in the above list 3F2(1, 12/7, 11/7; 22/7, 20/7; 1),

type

TheoremZ2( -5/7, -3/7, -4/7, -2/7 ,3000,0):

For more details (the recurrences, the estimated irrationality measures, the initial conditions) see

the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2g.txt .

Generalizing the Beukers Integral for ζ(3)

The natural extension would be the six-parameter family (but now we make the exponents positive)

1

B(1 + a1, 1 + a2)B(1 + b1, 1 + b2)B(1 + c1, 1 + c2)
·

∫ 1

0

∫ 1

0

∫ 1

0

xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

1− z + xyz
·
(

x(1− x)y(1− y)z(1− z)

1− z + xyz

)n

dx dy dz .

However, for arbitrary a1, a2, b1, b2, c1, c2 the recurrence is third order. (Wadim Zudilin pointed

out that this may be related to the work of Rhin and Viola in [RV]).

Also, empirically, we did not find many promising cases. Instead, let’s define

J3(a1, a2, b1, b2, c1, c2; e)(n)

14



∫ 1

0

∫ 1

0

∫ 1

0

xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

(1− z + xyz)e
·
(

x(1− x)y(1− y)z(1− z)

1− z + xyz

)n

dx dy dz .

and

I3(a1, a2, b1, b2, c1, c2; e)(n) :=
J3(a1, a2, b1, b2, c1, c2; e+ 1)(n)

J3(a1, a2, b1, b2, c1, c2; e)(0)

The family of constants that we hope to prove irrationality is the seven-parameter:

I3(a1, a2, b1, b2, c1, c2; e)(0) .

=

∫ 1

0

∫ 1

0

∫ 1

0
xa1 (1−x)a2yb1 (1−y)b2zc1 (1−z)c2

(1−z+xyz)e+1 dx dy dz
∫ 1

0

∫ 1

0

∫ 1

0
xa1 (1−x)a2yb1 (1−y)b2zc1 (1−z)c2

(1−z+xyz)e dx dy dz
.

Of course, for this more general, 7-parameter, family, there is no second-order recurrence, but rather

a third-order one. But to our delight, we found a five-parameter family, let’s call it

K(a, b, c, d, e)(n) := I3(b, c, e, a, a, c, d)(n) .

Spelled-out, our five-parameter family of constants is

K(a, b, c, d, e)(0) =

∫ 1

0

∫ 1

0

∫ 1

0
xb(1−x)cye(1−y)aza(1−z)c

(1−z+xyz)d+1 dx dy dz
∫ 1

0

∫ 1

0

∫ 1

0
xb(1−x)cye(1−y)aza(1−z)c

(1−z+xyz)d
dx dy dz

.

Now we found (see the section on finding recurrences below) a general second-order recurrence,

that is too complicated to display here in full generality, but can be seen by typing

OPEZ3(a,b,c,d,e,n,Sn);

In the Maple package GenBeukersZeta3.txt. This enabled us, for each specific, numeric specializa-

tion of the parameters a, b, c, d, e to quickly find the relevant recurrence, and systematically search

for those that give positive δ. Once again, many of them turned out to be (conjecturally) equivalent

to each other.

Denominator 2:

We only found one class, up to equivalence, all related to log 2. One of them is

K(0, 0, 0, 1/2, 1/2) = I3(0, 0, 1/2, 0, 0, 0, 1/2) ,

that is not that exciting since it is (conjecturally) equal to − 2−4 log(2)
3−4 log(2) .

For details, type TheoremZ3(0,0,0,1/2,1/2,3000,0); in GenBeukersZeta3.txt .
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Denominator 3:

We found three inequivalent classes, none of them Maple was able to identify.

K(0, 0, 0, 1/3, 2/3) = I3(0, 0, 2/3, 0, 0, 0, 1/3) ,

for details, type TheoremZ3(0,0,0,1/3,2/3,3000,0); in GenBeukersZeta3.txt.

K(0, 0, 0, 2/3, 1/3) = I3(0, 0, 1/3, 0, 0, 0, 2/3) ,

for details, type TheoremZ3(0,0,0,2/3,1/3,3000,0); in GenBeukersZeta3.txt.

K(0, 1/3, 2/3, 1/3, 2/3) = I3(0, 0, 1/3, 0, 0, 0, 2/3) ,

for details, type TheoremZ3(0,1/3,2/3,1/3,2/3,3000,0); in GenBeukersZeta3.txt,

These three constants are candidates for ‘first-ever-irrationality proof’.

Denominator 4: We only found one family, all expressible in terms of log 2. Here is one of them.

For example

K(0, 1/2, 0, 1/4, 3/4) = I3(1/2, 0, 3/4, 0, 0, 0, 1/4) ,

that, conjecturally equals −−30+45 log(2)
−11+15 log(2) .

For details, type TheoremZ3(0,1/2,0,1/4,3/4,3000,0); in GenBeukersZeta3.txt.

Denominator 5: We only found one family, up to equivalence, but Maple was unable to identify

the constant. So it is potentially the first irrationality proof of that constant

K(0, 1/5, 0, 3/5, 2/5) = I3(1/5, 0, 2/5, 0, 0, 0, 3/5) .

For details, type TheoremZ3(0,1/5,0,3/5,2/5,3000,0); in GenBeukersZeta3.txt.

Denominator 6: We found three families, up to equivalence, none of which Maple was able to

identify. Once again, these are candidates for first-ever irrationality proofs for these constants.

K(0, 1/2, 1/2, 1/3, 1/6) = I3(1/2, 1/2, 1/6, 0, 0, 1/2, 1/3) .

For details, type TheoremZ3(0,1/2,1/2,1/3,1/6,3000,0); in GenBeukersZeta3.txt.

K(0, 1/2, 1/2, 1/6, 1/3) = I3(1/2, 1/2, 1/3, 0, 0, 1/2, 1/6) .

For details, type TheoremZ3(0,1/2,1/2,1/6,1/3,3000,0); in GenBeukersZeta3.txt.
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K(1/3, 0, 2/3, 1/2, 5/6) = I3(0, 2/3, 5/6, 1/3, 1/3, 2/3, 1/2) .

For details, type TheoremZ3(1/3,0,2/3,1/2,5/6,3000,0); in GenBeukersZeta3.txt.

Denominator 7: We found five families, up to equivalence, none of which Maple was able to

identify. Once again, these are candidates for first-ever irrationality proofs for these constants.

K(1/7, 0, 2/7, 3/7, 4/7) = I3(0, 2/7, 4/7, 1/7, 1/7, 2/7, 3/7) .

For details, type TheoremZ3(1/7,0,2/7,3/7,4/7,3000,0); in GenBeukersZeta3.txt.

K(1/7, 0, 2/7, 5/7, 3/7) = I3(0, 2/7, 3/7, 1/7, 1/7, 2/7, 5/7) .

For details, type TheoremZ3(1/7,0,2/7,5/7,3/7,3000,0); in GenBeukersZeta3.txt.

K(1/7, 0, 3/7, 4/7, 5/7) = I3(0, 3/7, 5/7, 1/7, 1/7, 3/7, 4/7) .

For details, type TheoremZ3(1/7,0,3/7,4/7,5/7,3000,0); in GenBeukersZeta3.txt.

K(1/7, 0, 4/7, 2/7, 5/7) = I3(0, 4/7, 5/7, 1/7, 1/7, 4/7, 2/7) .

For details, type TheoremZ3(1/7,0,4/7,2/7,5/7,3000,0); in GenBeukersZeta3.txt.

K(2/7, 0, 3/7, 4/7, 5/7) = I3(0, 3/7, 5/7, 2/7, 2/7, 3/7, 4/7) .

For details, type TheoremZ3(2/7,0,3/7,4/7,5/7,3000,0); in GenBeukersZeta3.txt.

If you don’t have Maple, you can look at the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta3All.txt ,

that gives detailed sketches of irrationality proofs of all the above constants, some with conjectured

integer-ating factors.

Guessing an INTEGER-ating factor

In the original Beukers cases the integer-ating factor was easy to conjecture, and even to prove. For

ζ(2) it was lcm(1 . . . n)2, and for ζ(3) it was lcm(1 . . . n)3. For the Alladi-Robinson case of log 2 it

was even simpler, lcm(1 . . . n).

But in other cases it is much more complicated. A natural ‘atomic’ object is, given a modulo M,

a subset C of {0, ...,M − 1}, rational numbers e1, e2 between 0 and 1, rational numbers e3, e4, the
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following quantity, for positive integers n

Pp(e1, e2, e3, e4, C,M ;n) :=
∏

p

p ,

where p ranges over all primes such that (let {a} be the fractional part of a, i.e. a− ⌊a⌋)

• e1 < {n/p} < e2

• e3 < p/n < e4

• p mod M ∈ C

Using the prime number theorem, it follows (see e.g. [Zu2]) that

lim
n→∞

logPp(e1, e2, e3, e4, C,M ;n)

n
,

can be evaluated exactly, in terms of the function Ψ(x) = Γ′(x)
Γ(x) (see procedure PpGlimit in the

Maple packages) thereby giving an exact value for the quantity δ whose positivity implies irra-

tionality.

Of course, one still needs to rigorously prove that the conjectured integer-ating factor is indeed

correct.

Looking under the hood: On Recurrence Equations

For ‘secrets from the kitchen’ on how we found the second-order, four-parameter recurrence oper-

ator

OPEZ2(a1,a2,b1,b2,n,N) in the Maple package GenBeukersZeta2.txt, that was the engine driv-

ing the ζ(2) tweaks, and more impressively, the five-parameter second-order recurrence operator

OPEZ3(a,b,c,d,e,n,N) in the Maple package GenBeukersZeta3.txt, that was the engine driving

the ζ(3) tweaks, the reader is referred to the stand-alone appendix available from the following url:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/beukersAppendix.pdf .

Other Variations on Apéry’s theme

Other attempts to use Apéry’s brilliant insight are [Ze2][Ze3][ZeZu1]. Recently Marc Chamberland

and Armin Straub [CS] explored other fascinating aspects of the Apéry numbers, not related to

irrationality.

Conclusion and Future Work

We believe that symbolic computational methods have great potential in irrationality proofs, in

particular, and number theory in general. In this article we confined attention to approximating

sequences that arise from second-order recurrences. The problem with higher order recurrences
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is that one gets linear combinations with rational coefficients of several constants, but if you can

get two different such sequences coming from third-order recurrences, both featuring the same two

constants, then the present method may be applicable. More generally if you have a k-th order

recurrences, you need k − 1 different integrals.

The general methodology of this article can be called Combinatorial Number Theory, but not in

the usual sense, but rather as an analog of Combinatorial Chemistry, where one tries out many

potential chemical compounds, most of them useless, but since computers are so fast, we can afford

to generate lots of cases and pick the wheat from the chaff.

Encore: Hypergeometric challenges

As a tangent, we (or rather Maple) discovered many exact 3F2(1) evaluations. Recall that the

Zeilberger algorithm can prove hypergemoetric identities only if there is at least one free parameter.

For a specific 3F2(a1 a2 a3 ; b1 b2; 1), with numeric parameters, it is useless. Of course, it is sometimes

possible to introduce such a parameter in order to conjecture a general identity, valid for ‘infinitely’

many n, and then specialize n to a specific value, but this remains an art rather than a science.

The output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2f.txt

contains many such conjectured evaluations, (very possibly many of them are equivalent via a

hypergeometric transformation rule) and we challenge Wadim Zudilin, the birthday boy, or anyone

else, to prove them.

Happy Ending

The birthday boy brilliantly met the challenges! See his brilliant note [Zu3].
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