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1 Introduction

To introduce the algebraic analysis approach to linear systems over Ore algebras,
we use explicit examples. The model of a stirred tank studied in [32] on page 7 is
defined by the following mass balance equations

d V (t)

dt
= −k

√
V (t)

S
+ F1(t) + F2(t),

d (c(t)V (t))

dt
= −c(t) k

√
V (t)

S
+ c1 F1(t) + c2 F2(t),

where F1 and F2 denote the flow rates of two incoming flows feeding the tank, c1
and c2 two constant concentrations of dissolved materials, c the concentration in the
tank, V the volume, k an experimental constant, and S the constant cross-sectional
area. The algebraic analysis approach can only handle linear systems. See [7] for a
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first attempt to extend the algebraic analysis approach to particular classes of non-
linear systems. We refer to [35] for the use of differential elimination techniques for
studying this non linear system. If V0 is a constant volume, c0 a constant concentra-
tion, and

F10 :=
(c2 − c0)
(c2 − c1)

k

√
V0
S
, F20 :=

(c0 − c1)
(c2 − c1)

k

√
V0
S
,

V (t) := V0 + x1(t), c(t) := c0 + x2(t),

F1(t) := F10 + u1(t), F2(t) := F20 + u2(t),

then the linearized model around the steady-state equilibrium is defined by
ẋ1(t) = −

1

2 θ
x1(t) + u1(t) + u2(t),

ẋ2(t) = −
1

θ
x2(t) +

(
c1 − c0
V0

)
u1(t) +

(
c2 − c0
V0

)
u2(t),

(1)

with the notation θ := V0/F0 (the holdup time of the tank), where F0 := k
√
V0/S.

See pages 8-9 of [32]. The linear OD system (1) can then be studied by means of
the standard analysis and synthesis techniques developed for linear OD systems.

Now, if a transport delay of amplitude τ > 0 occurs in the pipe, then we obtain
the following linear differential time-delay (DTD) system:

ẋ1(t) = −
1

2 θ
x1(t) + u1(t) + u2(t),

ẋ2(t) = −
1

θ
x2(t) +

(
c1 − c0
V0

)
u1(t− τ) +

(
c2 − c0
V0

)
u2(t− τ).

(2)

For more details, see pages 449-451 of [32]. Then, (2) can be studied by means of
methods dedicated to linear DTD systems.

Following [32], if the valve settings are commanded by a process control com-
puter which can only be changed at discrete instants and remain constant in between,
the following discrete-time model of (1) can then be derived
x1(n+ 1) = e−

∆
2 θ x1(n) + 2 θ (1− e− ∆

2 θ ) (u1(n) + u2(n)),

x2(n+ 1) = e−
∆
θ x2(n) +

θ (1− e−∆θ )
V0

((c1 − c0)u1(n) + (c2 − c0)u2(n)),
(3)

where ∆ is the constant length of time intervals. For more details, see page 449
of [32]. Again, (3) can then be studied by means of standard techniques developed
for linear discrete-time systems.

As shown above, a physical system can be modeled by means of different systems
of functional equations, namely, systems whose unknowns are functions (e.g., OD
systems, DTD systems, discrete-time systems). Moreover, the “same” system can be
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defined by means of different representations (e.g., state-space, input-output, poly-
nomial, behaviors, geometric, systems over a ring, implicit, . . . representations).
These representations are defined by different numbers of unknowns and equations.
Linear systems are usually studied by means of dedicated mathematical methods
which usually depend on the representations. The equivalences between different
representations and different formulations of system-theoretic properties (e.g., con-
trollability à la Kalman, controllability for polynomial systems, controllability à la
Willems) are known for certain classes of linear functional systems.

We can wonder whether or not a unique mathematical approach to linear systems
exists which satisfies the following two important requirements:

(a) The approach can handle the standard classes of linear functional systems studied
in control theory by means of common mathematical concepts, methods, theo-
rems, algorithms, and implementations.

(b) The approach does not depend on particular representations of the linear systems.

The goal of this paper is to show that the algebraic analysis approach satisfies
these two points. Algebraic analysis (also called D-module theory) is a mathemat-
ical theory developed by B. Malgrange, J. Bernstein, M. Sato and his school in the
sixties to study linear systems of partial differential (PD) equations by means of
module theory, homological algebra, and sheaf theory (see [25, 28, 40] and the ref-
erences therein). In the nineties, algebraic analysis techniques were introduced in
mathematical systems theory and control theory by U. Oberst, M. Fliess, and J.-
F. Pommaret. For more details, see [21,23,43,45,46,57] and the references therein.

Within the algebraic version of algebraic analysis, a linear system is studied by
means of a finitely presented left module M [52] over a ring D of functional oper-
ators, and its F-solutions are defined by the homomorphisms (namely, the left D-
linear maps) from M to F , where F is a left D-module. We recall that a module is
an algebraic structure which is defined by the same properties as the ones for a vec-
tor space but its scalars belong to a ring and not a field. Equivalent representations
of a linear system yield isomorphic modules. These isomorphic modules are finitely
presented by the different presentations, i.e., by the different matrices of functional
operators defined by these representations. Hence, up to isomorphism, a linear sys-
tem defines uniquely a finitely presented module. Structural (built-in) properties of
linear systems, i.e., properties which do not depend on the representation of the sys-
tem, then correspond to module properties (e.g., torsion elements, torsion-freeness,
projectiveness, freeness). To study these module properties, we use homological
algebra methods since they depend only on the underlying modules (up to isomor-
phism) and not on the presentations of the modules, i.e., not on the representations
of the linear systems. Therefore, we have a way to study structural properties of
linear systems independently of their representations. A second benefit of using ho-
mological algebra techniques is that large classes of linear functional systems can be
studied by means of the same techniques, results, and algorithms since the standard
rings of functional operators share the same properties. Only the “arithmetic” of the
functional operators can be different. Based on Gröbner or Janet basis techniques
for classes of noncommutative polynomial rings of functional operators, effective
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studies of module theory and homological algebra have recently been developed
(see [9,12,47,51] and the references therein). Dedicated symbolic packages such as
OREMODULES, OREMORPHISMS and CLIPS have been developed [10, 13, 58].

The purpose of this paper is two-fold. We first give a brief overview of the alge-
braic analysis approach to linear systems defined over Ore algebras. We then show
how a recent implementation of Gröbner bases for large classes of Ore algebras in
a Mathematica package called HOLONOMICFUNCTIONS [29,30] can be used to
extend the classes of linear functional systems we can effectively study within the
algebraic analysis approach. In particular, using the recent OREALGEBRAICANAL-
YSIS package, we can now handle generic linearizations of explicit nonlinear func-
tional systems or linear systems containing transcendental function (e.g., sin, cos,
tanh) or special function coefficients (e.g., Airy or Bessel functions). These classes
could not be studied by the OREMODULES, OREMORPHISMS or CLIP packages.

The paper is organized as follows. In Section 2, we explain that standard lin-
ear functional systems encountered in control theory can be studied by means of
a polynomial approach over Ore algebras of functional operators, i.e., over a cer-
tain class of noncommutative polynomial rings. In Section 3, we shortly explain the
concept of a Gröbner basis for left ideals and left modules over certain Ore alge-
bras, and give algorithms to compute kernel and left/right inverses of matrices with
entries in these Ore algebras. In Section 4, we introduce the algebraic analysis ap-
proach to linear systems theory and, using homological algebra techniques, we ex-
plain that this approach is an intrinsic polynomial approach to linear systems theory
and we characterize standard system-theoretic properties in terms of module prop-
erties and homological algebra concepts that are shown to be computable. Finally,
in Section 5, these results are illustrated on explicit examples which are studied by
means of the OREALGEBRAICANALYSIS package. This package is based on the
Mathematica package HOLONOMICFUNCTIONS which contains Gröbner basis
techniques for general classes of Ore algebras.

2 Linear systems over Ore algebras

In this section, we introduce the concept of a skew polynomial ring, an Ore exten-
sion and an Ore algebra [16] which will play important roles in what follows. To
motivate the abstract definitions, let us start with standard examples of functional
operators. In his treatises on differential equations, G. Boole used the idea of repre-
senting a linear OD equation

∑r
i=0 ai y

(i)(t) = 0, where ai ∈ R, by means of the
operator P :=

∑r
i=0 ai

di

dti , where d
dt y(t) := y(1)(t) = ẏ(t) is the first derivative of

the function y. Note that di

dti is the ith composition of the operator d
dt . If the compo-

sition of operators is simply denoted by the standard product, we have di

dti =
(
d
dt

)i
.

Hence, P can be rewritten as the polynomial P =
∑r
i=0 ai ∂

i in ∂ := d
dt with coef-

ficients inR. It is important to note that the element ai ∈ R in the expression of P is
seen as the multiplication operator y 7−→ ai y, and ai ∂i stands for the composition
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of the two operators ai and ∂i. As understood by G. Boole, the set of OD operators
forms the commutative polynomial ringR[∂]. Algebraic techniques (e.g., Euclidean
division) can then be used to study linear OD equations with constant coefficients.

More generally, ifA is a differential ring, namely a ring equipped with a deriva-
tion d

dt : A −→ A satisfying the additivity condition and Leibniz’s rule, namely,

∀ a1, a2 ∈ A,
d

dt
(a1 + a2) =

da1
dt

+
da2
dt

,
d

dt
(a1 a2) =

da1
dt

a2 + a1
da2
dt

,

such as, for instance, the ring (resp., field) k[t] (resp., k(t)) of polynomials (resp.,
rational functions) in t with coefficients in a field k (e.g., k = Q,R,C) or C∞(R),
then we can define the set of all the OD operators of the form

∑r
i=0 ai ∂

i with
ai ∈ A. This set inherits a ring structure if the composition of OD operators is still
an OD operator, i.e., if we have m∑

j=0

bj ∂
j

 (
n∑
i=0

ai ∂
i

)
=

l∑
k=0

ck ∂
k, (4)

for a certain l and for some ck ∈ A. In particular, such an identity should hold for
m = 1 and n = 0, i.e., the composition of the two operators b1 ∂ and a0 has to be an
OD operator. Since operators are understood by their actions on functions, we get

∀ y ∈ A, (b1 ∂ a0) y = b1 ∂ (a0 y) = b1
d

dt
(a0 y) = b1

(
a0
dy

dt
+
da0
dt

y

)
=

(
b1

(
a0 ∂ +

da0
dt

))
y.

Hence, on the OD operator level, we have the following commutation rule:

∀ a ∈ A, ∂ a = a ∂ + ȧ. (5)

It can be shown below that this commutation rule is enough to define a ring structure
on the set of all the OD operators with coefficients in A. Note that the above com-
mutation rule shows that this ring is usually noncommutative apart from the case
where ȧ = 0 for all a ∈ A, i.e., the case whereA is a ring of constants.

If we consider the case of a time-delay operator S defined by S y(t) = y(t− h),
where h > 0, then to understand S a as an operator, where a is an element of a
difference ring A of functions, namely, a commutative ring A of functions of t
equipped with the endomorphism a(t) ∈ A 7−→ a(t− h) ∈ A, we have to apply it
to a function y. We get

(S a(t)) y(t) = S (a(t) y(t)) = a(t− h) y(t− h) = (a(t− h)S) y(t),

i.e., on the operator level, we have the following commutation rule:

S a(t) = a(t− h)S. (6)



6 T. Cluzeau, C. Koutschan, A. Quadrat, M. Tõnso

We note that in (5) and (6) the “degree” in ∂ or in S is 1 in both sides of the
equalities. More generally, we can consider an operator ∂ which satisfies

∀ a ∈ A, ∂ a = σ ∂ + δ,

where 0 6= σ, δ ∈ A, so that both sides of the above expression have degree 1 in ∂.
Clearly, σ and δ depend on a, i.e., σ(a) and δ(a). If we want to define a ring formed
by elements which can uniquely be represented as

∑r
i=0 ai ∂

i, we must have

∀ a1, a2 ∈ A, ∂ (a1 + a2) = σ(a1 + a2) ∂ + δ(a1 + a2)

= ∂ a1 + ∂ a2 = σ(a1) ∂ + δ(a1) + σ(a2) ∂ + δ(a2)

= (σ(a1) + σ(a2)) ∂ + δ(a1) + δ(a2),

which yields the following identities:

σ(a1 + a2) = σ(a1) + σ(a2), δ(a1 + a2) = δ(a1) + δ(a2).

Similarly, using the associativity of operators, we obtain

∀ a1, a2 ∈ A, ∂ (a1 a2) = σ(a1 a2) ∂ + δ(a1 a2)

= (∂ a1) a2 = (σ(a1) ∂ + δ(a1)) a2

= σ(a1) (σ(a2) ∂ + δ(a2)) + δ(a1) a2

= σ(a1)σ(a2) ∂ + σ(a1) δ(a2) + δ(a1) a2,

which yields the following identities:

σ(a1 a2) = σ(a1)σ(a2), δ(a1 a2) = σ(a1) δ(a2) + δ(a1) a2.

We also have that ∂ = ∂ 1 = σ(1) ∂ + δ(1), which yields:

σ(1) = 1, δ(1) = 0.

The conditions on σ show that σ is an endomorphism of the ringA and δ is called
a σ-derivation (if σ = idA, we find again the above definition of a derivation).

The concept of an Ore extension of a ring A was introduced by Ore [44] in
1933 to develop a unified mathematical framework to represent linear functional
operators such as differential operators, difference and shift operators, q-shift and
q-differential operators, and many more. Nowadays, this concept is widely used
to state results and algorithms about linear functional operators in a concise and
general form. For applications of this framework, for instance, to the problem of
factoring operators or creative telescoping, see [4, 8] and the references therein.

Definition 1 ([16]). Let A be a ring. An Ore extension O := A[∂;σ, δ] of A is
the noncommutative ring formed by all polynomials of the form

∑n
i=0 ai ∂

i, where
n ∈ N and ai ∈ A, obeying the following commutation rule

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a), (7)
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where σ is an endomorphism ofA, namely, σ : A −→ A satisfies

∀ a, b ∈ A,


σ(1) = 1,

σ(a+ b) = σ(a) + σ(b),

σ(a b) = σ(a)σ(b),

and δ is a σ-derivation ofA, namely, δ : A −→ A satisfies:

∀ a, b ∈ A,

{
δ(a+ b) = δ(a) + δ(b),

δ(a b) = σ(a) δ(b) + δ(a) b.
(8)

The Ore extensionA[∂;σ, δ] is also called a skew polynomial ring.

Let O := A[∂;σ, δ] be a skew polynomial ring, P :=
∑n
i=0 ai ∂

i ∈ O, where
an 6= 0, and Q :=

∑m
i=0 bi ∂

i ∈ O, where bm 6= 0. If A is a domain, i.e., A does
not contain non-trivial zero divisors, then we have

P Q = (an ∂
n + · · · ) (bm ∂m + · · · ) = an σ

n(bm) ∂n+m + · · · ,

where · · · represents lower degree terms. Moreover, if σ is injective, we can define
the degree of P to be n and the degree of Q to be m since we have:

∀ P, Q ∈ O, deg∂(P Q) = deg∂(P ) + deg∂(Q).

A skew polynomial ring A[∂;σ, δ] has the structure of an A − A-bimodule,
namely,O has a left module structure defined by

∀ a ∈ A, ∀ P =

r∑
i=0

ai ∂
i ∈ O : aP =

r∑
i=0

(a ai) ∂
i,

and a rightA-module structure defined by

∀ a ∈ A, ∀ P =

r∑
i=0

ai ∂
i ∈ O : P a =

r∑
i=0

ai ∂
i a,

and they satisfy the following associativity condition:

∀ a1, a2 ∈ A, ∀ P ∈ O, (a1 P ) a2 = a1 (P a2).

Example 1. Let us give a few examples of skew polynomial rings.

(a) If (A, δ) is a differential ring, i.e., A is a ring and δ is a derivation of A,
i.e., δ satisfies (8) with σ = idA, then we can define the skew polynomial
ring A[∂; idA, δ] of OD operators with coefficients in A. Then, (7) yields
(5). For instance, if we consider again (1), then we can define the algebra
O := Q(θ, c0, c1, c2, V0)[∂; idA, δ] of OD operators with coefficients in the
field A := Q(θ, c0, c1, c2, V0) of rational functions in the system parameters
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θ, c0, c1, c2, and V0, where δ := d
dt is the trivial derivation of A, i.e., δ(a) = 0

for all a ∈ A. Thus, (5) implies that ∂ a = a ∂ for all a ∈ A, which shows thatO
is a commutative polynomial ring. Then, (1) can be rewritten as Rη = 0, where:

R :=

∂ +
1

2 θ
0 −1 −1

0 ∂ +
1

θ
−c1 − c0

V0
−c2 − c0

V0

 ∈ O2×4, η :=


x1(t)

x2(t)

u1(t)

u2(t)

 .

If one of the parameters is now a smooth function of t, then δ is no more the trivial
derivation of A := C∞(R), and thus O is then a noncommutative polynomial
ring in ∂ with coefficients inA.
A simple example of a noncommutative polynomial ring of OD operators is given
by O := R[x][∂; id, δ], where δ := d

dx is the standard derivation on R[x]. The
error function erf(x) := 2√

π

∫ x
0
e−t

2

dt satisfies the following ODE:(
∂2 + 2x ∂

)
erf(x) = 0.

(b) If we consider the algebra A := Q(θ, c0, c1, c2, V0, ∆, n) and the endomor-
phism σ(a(n)) := a(n + 1) of A, then we can define the skew polynomial ring
O := A[S;σ, 0] of forward shift operators, which encodes the commutation rule
S a(n) = a(n+ 1)S for a ∈ A. Then, (3) can be written as Rη = 0, where:

R :=

(
S − e− ∆

2 θ 0 −2 θ (1− e− ∆
2 θ ) −2 θ (1− e− ∆

2 θ )

0 S − e−∆θ −α (c1 − c0) −α (c2 − c0)

)
∈ O2×4,

α :=
θ (1− e−∆θ )

V0
, η := (x1(n) x2(n) u1(n) u2(n))

T
.

Since no entry ofR is a (rational) function of n, we can only consider the algebra
A := Q(θ, c0, c1, c2, V0, ∆) and σ = idA. We then get S a = aS for all a ∈ A,
i.e., the ring of shift operators with constant coefficients is commutative.
A simple example of a noncommutative polynomial ring of shift operators is
Q[n][S;σ, 0], where σ(a(n)) = a(n + 1) for all a ∈ Q[n]. The Gamma func-
tion Γ (z) :=

∫ +∞
0

tz−1 e−t dt for <(z) > 0 satisfies the following recurrence
relation:

(S − n)Γ (n) = 0.

(c) Similarly as the previous case, if h ∈ R>0 andA is a difference ring of functions
of t with σ(a(t)) = a(t − h) for all a ∈ A as an endomorphism, then we can
define the ringO := A[S;σ, 0] of TD operators in S with coefficients in A. We
then have S a(t) = a(t− h)S, which is exactly (6).

(d) If we want to reformulate (2) within the language of Ore extensions, we have to
define the ring of DTD operators. To do that, we can first consider a difference-
differential ring (A, σ, δ) and the skew polynomial ring B := A[∂; idA, δ] de-
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fined in (a) and then define the Ore extension O := B[S;σ, 0] of B, where σ
is the endomorphism of B defined by σ(a(t)) = a(t − h) for all a ∈ A and
σ(∂) = ∂ so that σ(

∑r
i=0 ai(t) ∂

i) =
∑r
i=0 ai(t− h) ∂i. In particular, we have

S ∂ = σ(∂)S = ∂ S, i.e., the two operators ∂ and S commute. This last identity
encodes the following identity:

(∂ S)(y(t)) = ∂(y(t− h)) = ẏ(t− h) = (S ∂)(y(t)). (9)

Then, (2) can be rewritten as Rη = 0, where:

R :=

∂ +
1

2 θ
0 −1 −1

0 ∂ +
1

θ
− (c1 − c0)

V0
S − (c2 − c0)

V0
S

 ∈ O2×4,

η := (x1(t) x2(t) u1(t) u2(t))
T
.

(e) If we consider the difference (resp., divided difference) operator

a(t) 7−→ a(t+ 1)− a(t)
(

resp., a(t) 7−→ a(t)− a(t0)
t− t0

)
,

for a fixed t0 ∈ R and for all a belonging to a field A of real-valued functions
of t, then we can form the skew polynomial ring A[∂;σ, δ] of difference (resp.,
divided difference) operators with coefficients inA by respectively considering:

∀ a ∈ A,

{
σ(a(t)) = a(t+ 1),

δ(a(t)) = a(t+ 1)− a(t),


σ(a(t)) = a(t0),

δ(a(t)) =
a(t)− a(t0)

t− t0
.

If A is a (skew) field, then the right Euclidean division can be performed, i.e.,
the algebra O is a right Euclidean domain, and thus a principal left ideal domain,
namely, every left ideal of O is finitely generated (see, e.g., [4, 16]). Finally, if σ is
also invertible, i.e., is an automorphism of A, then the left Euclidean division can
also be performed, i.e., O is a left Euclidean domain, and thus a principal right
ideal domain. More details on skew polynomial rings can be found in [16]. A left
and right Euclidean domain is simply called a Euclidean domain.

Theorem 1 ([16]). Let D := A[∂;σ, δ] be a left skew polynomial ring over a ring
A. Then, we have:

(a) If A is a domain, i.e., A does not have non-trivial zero divisors, and σ is an
injective endomorphism ofA, then D is a domain.

(b) If A is a left Ore domain, i.e., a domain A which satisfies the left Ore property
which states that for a1, a2 ∈ A \ {0}, there exist b1, b2 ∈ A \ {0} such that
b1 a1 = b2 a2, and α is injective, then D is a left Ore domain.

(c) If A is a left (resp., right) noetherian ring, i.e., every left (resp., right) ideal of
A is finitely generated, and α is an automorphism of A, then D is a left (right)
noetherian ring. Moreover, ifA is a domain, then D is a left Ore domain.
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As shown in (d) of Example 1, we can iterate the construction of an Ore extension
to obtain a multivariate noncommutative polynomial ring:

A[∂1;σ1, δ1] · · · [∂m;σm, δm] := (· · · ((A[∂1;σ1, δ1])[∂2;σ2, δ2]) · · · )[∂m;σm, δm].

If B := A[∂1;σ1, δ1] · · · [∂m−1;σm−1, δm−1], then O := B[∂m;σm, δm], where
σm is an endomorphism ofB and δm is a σm-derivation ofB. In particular, we get:

∀ i = 1, . . . ,m− 1, ∀ a ∈ A,

{
∂m ∂i = σm(∂i) ∂m + δm(∂i),

∂m a = σm(a) ∂m + δm(a).

Similarly, we have:

1 6 i < j 6 m, ∀ a ∈ A,

{
∂j ∂i = σj(∂i) ∂j + δj(∂i)

∂j a = σj(a) ∂j + δj(a).
(10)

If we want that ∂j commutes with ∂i, σj and δj must satisfy the conditions:

1 6 i < j 6 m, σj(∂i) = ∂i, δj(∂i) = 0. (11)

Moreover, let us assume that σj(A) ⊆ A and δj(A) ⊆ A. Then, we have:

∂j (∂i a) = ∂j(σi(a) ∂i + δi(a))

= σj(σi(a) ∂i) ∂j + δj(σi(a) ∂i) + σj(δi(a)) ∂j + δj(δi(a))

= σj(σi(a))σj(∂i) ∂j + σj(σi(a)) δj(∂i) + δj(σi(a)) ∂i

+ σj(δi(a)) ∂j + δj(δi(a))

Using (11), the above identity reduces to:

∂j (∂i a) = σj(σi(a)) ∂i ∂j + δj(σi(a)) ∂i + σj(δi(a)) ∂j + δj(δi(a)).

Since σj(a) ∈ A and δj(a) ∈ A, we also have:

∂i (∂j a) = ∂i(σj(a) ∂j + δj(a))

= σi(σj(a)) ∂i ∂j + δi(σj(a)) ∂j + σi(δj(a)) ∂i + δi(δj(a)).

If we have σj(σi(a)) = σi(σj(a)), δj(σi(a)) = σi(δj(a)), σj(δi(a)) = δi(σj(a)),
and δj(δi(a)) = δi(δj(a)) for all a ∈ A, then we get ∂j ∂i a = ∂i ∂j a for all a ∈ A.

Definition 2. Let k be a field. If A is a k-algebra, then an Ore extension of A of
the form A[∂1;σ1, δ1] · · · [∂m;σm, δm] is called an Ore algebra if σj(A) ⊆ A and
δj(A) ⊆ A for j = 1, . . . ,m, and:
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1 6 i < j 6 m, σj(∂i) = ∂i, δj(∂i) = 0,

1 6 i, j 6 m, i 6= j,


(σj ◦ σi)|A = (σi ◦ σj)|A,
(δj ◦ σi)|A = (σi ◦ δj)|A,
(δj ◦ δi)|A = (δi ◦ δj)|A.

We then have ∂j ∂i a = ∂i ∂j a for 1 6 i < j 6 m and for all a ∈ A.
Finally, an Ore algebra A[∂1;σ1, δ1] · · · [∂m;σm, δm] with A := k[x1, . . . , xn]

(resp.,A := k(x1, . . . , xn)) is called a polynomial (resp., rational) Ore algebra.

Remark 1. In Definition 2, the numbers m and n can be different. For instance,
considering again (d) of Example 1, i.e., the Ore algebraO := A[∂; idA, δ][S;σ, 0],
where, for instance,A := k[t], then we have m = 2 and n = 1.

If O := A[∂1;σ1, δ1] · · · [∂m;σm, δm] is an Ore extension of a ring A, then
P ∈ O can be expressed as P =

∑
06|ν|6r pν ∂

ν , where r ∈ N, pν ∈ A, ν :=

(ν1 . . . νm)T ∈ Nm, |ν| := ν1 + · · ·+ νm, and ∂ν := ∂ν11 · · · ∂νmm .

Example 2.(a) If A := k[x1, . . . , xn] (resp. A := k(x1, . . . , xn)), then the Ore
algebraO := A[∂1;σ1, δ1] · · · [∂n;σn, δn], where σi := id and δi := ∂

∂xi
for i =

1, . . . , n, is called the polynomial (resp., rational) Weyl algebra of PD operators
with coefficients inA. It is denoted by An(k) (resp., Bn(k)).

(b) We can combine the two skew polynomial algebras defined in (a) and (b) of Ex-
ample 1 to obtain the Ore algebra O := Q(n, t)[∂; id, δ][S;σ, 0] of differential-
shift operators with coefficients in Q(n, t). The Bessel function of the first kind
Jn(t) satisfies the following functional equation:

d

dt
Jn(t) = n t−1 Jn(t)− Jn+1(t).

This equation can be rewritten as P Jn(t) = 0, where P := ∂ +S − n t−1 ∈ O.
(c) IfA is a k-algebra equipped with the following endomorphisms

∀ a ∈ A, σk(a(i1, . . . , in)) := a(i1, . . . , ik + 1, . . . , in), k = 1, . . . n,

(e.g., A := k[i1, . . . , in], k(i1, . . . , in), or the algebra of real-valued sequences
in (i1, . . . , in) ∈ Zn), then A[S1;σ1, 0] · · · [Sn;σn, 0] is the Ore algebra of
multi-shift operators with coefficients inA.

(d) The ring of differential time-varying delay operators with S y(t) = y(t− h(t)),
where h is a smooth function satisfying h(t) < t for all t larger than or equal to
a certain T > 0, does not usually form an Ore algebra since we have

(∂ S)(y(t)) = ∂ y(t− h(t)) = (1− ḣ(t)) ẏ(t− h(t)) = (1− ḣ(t)) (S ∂)(y(t)),

i.e., ∂ S = (1− ḣ)S ∂. It is an Ore algebra if and only if h is a constant function
and we find then again (9). In [50], it is shown that the ring of differential time-
varying delay operators can be defined as an Ore extension and its properties are
studied in terms of the function h.
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For more examples of Ore algebras of functional operators and their uses in com-
binatorics and in the study of special functions, see [11] and the references therein.

Theorem 1 can be used to prove that the Ore algebras defined in Example 2 are
both left and right noetherian domains. We say that they are noetherian domains.

Finally, let us introduce the concept of an involution of a ring which will be used
in Sections 3.2 and 4.2.

Definition 3. LetO be an Ore algebra over a base field k. An involution ofO is an
anti-automorphism of order two ofO, i.e., a k-linear map θ : O −→ O satisfying:

∀P1, P2 ∈ O, θ(P1 P2) = θ(P2) θ(P1), θ ◦ θ = idO.

Let us give a few examples of involutions.

Example 3.(a) IfO is a commutative ring (e.g.,O := k[x1, . . . , xn]), then θ = idO
is an involution ofO.

(b) LetO := An(k) the polynomial Weyl algebra over k. Then, an involution ofO
is defined by θ(xi) := xi and θ(∂i) := −∂i for i = 1, . . . , n. More generally,
ifO := A[∂1; id, δ1] · · · [∂n; id, δn] is a ring of PD operators with coefficients in
the differential ring (A, {δ1, . . . , δn}), where δi := ∂

∂xi
for i = 1, . . . , n, then

an involution θ ofO is defined by:

∀ a ∈ A, θ(a) := a, θ(∂i) := −∂i, i = 1, . . . , n.

(c) Let O := k(n)[S;σ, 0] be the skew polynomial ring of forward shift operators
considered in (b) of Example 1. Then, an involution of O can be defined by
θ(n) := −n and θ(S) := −S.

(d) Let O := k[t][∂; id, δ][S;σ, 0] be the Ore algebra of differential time-delay op-
erators defined by δ := d

dt , and σ(a(t)) := a(t − 1), where a ∈ k[t]. Then, an
involution ofO can be defined by θ(t) := −t, θ(∂) := ∂, and θ(S) := S.

3 Gröbner basis techniques

In Section 2, we explain how standard linear functional systems can be defined by
means of matrices of functional operators, i.e., by means of matrices with entries in
noncommutative polynomial rings such as skew polynomial rings, Ore extensions,
or Ore algebras. The idea of studying linear functional systems by means of the
algebraic properties of their representations is well-developed in the polynomial ap-
proach [27]. If the ring of functional operators is a Euclidean domain, then Smith
normal forms [27] can be extended to this noncommutative framework by consid-
ering the so-called Jacobson normal forms. For more details, implementations, and
applications of Jacobson normal forms, see [38] and the references therein. If the
ring of functional operators is not a Euclidean domain (e.g., if the ring is usually
defined by more than one functional operators), then such normal forms do not ex-
ist. But the Euclidean algorithm of multivariate (noncommutative) polynomials can
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still be used if the set of monomials appearing in the polynomials can be ordered
in a particular way. This idea yields the concept of a Gröbner basis for a set of
polynomials (i.e., for an ideal) or for a matrix (i.e., for a module).

In the next sections, we will state algorithms for the study of built-in properties of
linear functional systems. These algorithms will be based on elimination techniques
such as Gröbner basis techniques over noncommutative Ore algebras. Before doing
so, we first motivate their uses by an explicit example.

Example 4. In fluid mechanics, Stokes equations, which describe the flow of a vis-
cous and incompressible fluid at low Reynolds number, are defined by{

−ν ∆u+ c u+∇ p = 0,

∇ . u = 0,

where u ∈ Rn is the velocity, p the pressure, ν the viscosity, and c the reaction
coefficient. For simplicity reasons, let us consider the special case n = 2, i.e.

E1 := −ν (∂2x u1 + ∂2y u1) + c u1 + ∂x p = 0,

E2 := −ν (∂2x u2 + ∂2y u2) + c u2 + ∂y p = 0,

E3 := ∂x u1 + ∂y u2 = 0,

(12)

with the standard notations ∂x := ∂
∂x and ∂y := ∂

∂y .
We can wonder if the pressure p satisfies a system of PDEs by itself, i.e., if the

components u1 and u2 of the speed can be eliminated from the equations of (12) to
get PDEs only on p. Differentiating E1 (resp., E2) with respect to x (resp., y), we
first obtain: {

∂xE1 = −ν ∂x (∂2x u1 + ∂2y u1) + c ∂x u1 + ∂2x p = 0,

∂y E2 = −ν ∂y (∂2x u2 + ∂2y u2) + c ∂y u2 + ∂2y p = 0.

Similarly, we have:{
ν (∂2xE3 + ∂2y E3) = ν ∂x (∂

2
x u1 + ∂2y u1) + ν ∂y (∂

2
x u2 + ∂2y u2) = 0,

−cE3 = −c (∂x u1 + ∂y u2) = 0.

Adding all the new differential consequences of the equations of (12), we get

∂xE1 + ∂y E2 + ν (∂2xE3 + ∂2y E3)− cE3 = ∂2x p+ ∂2y p = 0,

i.e., (12) yields ∆p = 0, where ∆ := ∂2x + ∂2y is the Laplacian operator. This is an
important result in hydrodynamics: the pressure must satisfy ∆p = 0.

Gröbner basis techniques can be used for automatically eliminating (if possible)
fixed unknowns. To do that, we first have to recast the above computations within
a polynomial framework. Let us first consider the commutative polynomial ring
D := Q(ν, c) [∂x, ∂y] of PD operators in ∂x and ∂y with coefficients in Q(ν, c).
The operators ∂x and ∂y commute, i.e., ∂x ∂y = ∂y ∂x, because of Schwarz’s
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theorem and (12) has only constant coefficients. An element P ∈ D is of the
form P =

∑
06µx+µy6r

aµ ∂
µx
x ∂

µy
y ∈ D, where r ∈ N, aµ ∈ Q(ν, c), and

µ := (µx µy)
T ∈ N2. Then, (12) can be rewritten as Rη = 0, where:

R :=

−ν ∆+ c 0 ∂x

0 −ν ∆+ c ∂y

∂x ∂y 0

 ∈ D3×3, η :=

u1

u2

p

 .

Then, the above computations correspond to the following matrix computations

(∂x ∂y ν ∆− c)

E1

E2

E3

 = ((∂x ∂y ν ∆− c)R)

u1

u2

p

 = ∆p

and using the fact that ∆p = (0 0 ∆) η, we obtain:

(0 0 ∆) = (∂x ∂y ν ∆− c)R ∈ D1×3R := {µR | µ ∈ D1×3}.

We note that the D-submodule D1×3R of D1×3 is formed by all the D-linear
combinations of the rows of R. These combinations correspond to all the linear dif-
ferential consequences of the equations of (12). Within the operator framework, the
fact that the pressure satisfies ∆p = 0 can be rewritten as (0 0 ∆) ∈ D1×3R.

If R ∈ Dq×p, then the (left) D-submodule L := D1×q R of D1×p is gener-
ated by the rows of R. If D is a (noncommutative) polynomial ring, then a Gröbner
basis of L is another set of generators of L, i.e., we have L = D1×q′ R′ for a cer-
tain matrix R′ ∈ Dq′×p, for which the so-called membership problem can easily
be checked. The membership problem aims at deciding whether or not λ ∈ D1×p

belongs to D1×q R. If D is a commutative polynomial ring with coefficients in a
computable field, then Buchberger’s algorithm [5] computes a Gröbner basis for a
fixed monomial order. This result can be extended for some classes of noncommuta-
tive polynomial rings where the algorithm is proved to terminate. If a Gröbner basis
R′ of L is known, then we can reduce any λ ∈ D1×p with respect to this Gröbner
basis in a unique way, i.e., there exists a unique λ ∈ D1×p, called the normal form
of λ, such that λ = λ+µ′R′ for a certain µ′ ∈ D1×q′ . Hence, we obtain that λ ∈ L
if and only if we have λ = 0.

In the next sections, we first define the concept of a Gröbner basis for a finitely
generated left ideal and then for a finitely generated left module.
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3.1 Gröbner bases for ideals over Ore algebras

We first explain the basics of Gröbner bases using the standard commutative setting,
i.e., for the case of a polynomial ring in several commuting variables, and then
shortly explain how the theory can be extended to noncommutative Ore algebras.

Let x := x1, . . . , xn be a collection of variables, and let us denote by k[x] the
ring of multivariate polynomials in x1, . . . , xn with coefficients in the field k. For
α ∈ Nn, we define the monomial xα := xα1

1 · · ·xαnn . Unlike for univariate polyno-
mials, there is no natural ordering of the monomials xα in a multivariate polynomial∑
α∈Nn cα x

α. This is the reason for introducing the notion of monomial order, that
is a total order ≺ on the set {xα | α ∈ Nn} of x-monomials, namely an order ≺
which is total (i.e., we have either xα ≺ xβ or xβ ≺ xα for all α, β ∈ Nn, α 6= β).

Definition 4. A monomial order on the set {xα | α ∈ Nn} of x-monomials is
called admissible if it satisfies the following conditions:

(a) 1 ≺ xα ∀ α ∈ Nn \ {(0, . . . , 0)},
(b) xα ≺ xβ =⇒ xα xγ ≺ xβ xγ ∀ α, β, γ ∈ Nn.

It follows that the set of monomials is well-founded with respect to any admis-
sible monomial order, i.e., that each strictly decreasing sequence of monomials is
finite. This is a crucial property for proving the termination of Buchberger’s algo-
rithm which computes a Gröbner basis of a polynomial ideal.

Example 5. We identify a monomial xα with the multi-index α ∈ Nn.

(a) The lexicographic order on x-monomials is defined by α ≺lex β whenever the
first nonzero entry of β−α is positive. For instance, if we considerQ[x1, x2, x3],
then we have:

1 ≺lex x3 ≺lex x
2
3 ≺lex x2 ≺lex x2 x3 ≺lex x

2
2 ≺lex x1 ≺lex x1 x3

≺lex x1 x2 ≺lex x
2
1.

(b) The total degree order (also called degree reverse lexicographic order or graded
reverse lexicographic order) on x-monomials is defined by α ≺tdeg β whenever
|α| < |β| or if we have |α| = |β|, then the last nonzero entry of β−α is negative.
It is also denoted ≺degrevlex. For instance, if we considerQ[x1, x2, x3], then we
have:

1 ≺tdeg x3 ≺tdeg x2 ≺tdeg x1 ≺tdeg x
2
3 ≺tdeg x2 x3 ≺tdeg x1 x3

≺tdeg x
2
2 ≺tdeg x1 x2 ≺tdeg x

2
1.

(c) Let x := x1, . . . , xn and y := y1, . . . , ym be two collections of variables. As-
sume that an admissible monomial order≺X (resp.,≺Y ) on x-monomials (resp.,
on y-monomials) is given. An elimination order is then defined by

u v ≺ w t ⇐⇒ u ≺X w or u = w and v ≺Y t,
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where u, w (resp., v, t) are x-monomials (resp., y-monomials). An elimination
order serves to eliminate the xi’s. The elimination order, which will be used in
what follows, is the one induced by the total degree orders on x-monomials and
y-monomials. This is a very common order called lexdeg. For instance, if we
consider Q[x1, x2, x3], x = x1, x2, y = x3, ≺X=≺tdeg and ≺Y=≺tdeg, then
we have:

1 ≺lexdeg x3 ≺lexdeg x
2
3 ≺lexdeg x2 ≺lexdeg x2 x3 ≺lexdeg x1 ≺lexdeg x1 x3

≺lexdeg x
2
2 ≺lexdeg x1 x2 ≺lexdeg x

2
1.

Definition 5. Let P ∈ k[x] \ {0} and ≺ be an admissible monomial order. We can
then define:

• The leading monomial lm≺(P ) of P to be the≺-maximal monomial that appears
in P with nonzero coefficient.

• The leading coefficient lc≺(P ) of P to be the coefficient of lm≺(P ).
• The leading term lt≺(P ) of P to be the product lc≺(P ) lm≺(P ).

When no confusion can arise, we skip the explicit mentioning of the monomial
order in the subscripts. Hence, we can write P = lc(P ) lm(P ) + Q = lt(P ) + Q,
where all monomials in the expanded expression of Q are strictly smaller (with
respect to the chosen monomial order) than lm(P ).

Next, the concept of polynomial reduction is introduced, also called multivariate
polynomial division, as it generalizes Euclidean division of univariate polynomials.
For this purpose, we fix an admissible monomial order≺ and use it in the following
without any explicit mentioning. For nonzero polynomials P, Q ∈ k[x], one says
that P is reducible by Q if lm(P ) is divisible by lm(Q). In other words, one can
reduce P with respect to Q, and the result of the reduction is denoted by

red≺(P, Q) = red(P, Q) := P − lt(P )

lt(Q)
Q.

It is important to notice that red(P, Q) = 0 or lm
(
red(P, Q)

)
≺ lm(P ). If

G := {G1, . . . , Gs} ⊆ k[x] \ {0} is a set of polynomials, then red(P, G) denotes
a polynomial obtained by iteratively reducing P with some elements of G until no
such reduction is possible any more, i.e., the result is irreducible with respect to
all elements of G. Note that red(P, G) is usually not uniquely defined since it may
depend on the choice of the polynomial Gi that is used in a certain reduction step as
demonstrated in the following example.

Example 6. Let us considerQ[x1, x2] endowed with a total degree order (see (b) of
Example 4). Choosing G := {G1, G2}withG1 := x1 x2−1 andG2 := x21+x2+1,
the monomial x21 x2 can be reduced in two different ways yielding the two different
irreducible polynomials x21 x2 − x1G1 = x1 and x21 x2 − x2G2 = −x22 − x2.

Definition 6. Let 〈G〉 denote the ideal generated by G1, . . . , Gs ∈ k[x], i.e.:

〈G〉 =
〈
G1, . . . , Gs

〉
:=
{
P1G1 + · · ·+ PsGs | P1, . . . , Ps ∈ k[x]

}
.
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Then, G is called a Gröbner basis with respect to the admissible monomial order ≺
if and only if one of the following equivalent statements holds:

(a) P ∈ 〈G〉 if and only if red≺(P, G) = 0.
(b) red≺(P, G) is unique for any P ∈ k[x].
(c) If P ∈ 〈G〉 \ {0} then there exists Gi ∈ G such that lm≺(Gi) divides lm≺(P ).
(d)
〈{

lm≺(P ) | P ∈ 〈G〉 \ {0}
}〉

=
〈
lm≺(G1), . . . , lm≺(Gs)

〉
.

Condition (a) highlights one of the most important applications of Gröbner bases,
namely the algorithmic decision of the ideal membership problem, i.e., given
P, G1, . . . , Gs ∈ k[x] decide whether P ∈ 〈G1, . . . , Gs〉. Having a Gröbner ba-
sis at hand, this problem is solved by reducing P and checking whether the final
reduction, called the normal form of P , is zero.

Example 7. We consider again Example 6 where we now set G := {G1, G2, G3},
where G3 := x22 + x1 + x2. Since G3 = x2G2 − x1G1, we have 〈G〉 = 〈G1, G2〉.
We claim that G is a Gröbner basis (see below for an algorithm which computes
a Gröbner basis). Now, the monomial x21 x2 reduces to x1 since the polynomial
−x22−x2 = red(x21 x2, G2) is now reducible byG3 yielding red(−x22−x2, G3) =
x1. No further reductions can be done. Hence, we obtain x21 x2 6∈ 〈G〉.

Let us now shortly explain the principle of Buchberger’s algorithm for computing
a Gröbner basis of a polynomial ideal. Let lcm(m1,m2) denote the least common
multiple of the two monomials m1 and m2. Buchberger’s algorithm is based on the
computation of the so-called S-polynomials.

Definition 7. Given P, Q ∈ k[x] \ {0} and a monomial order ≺, we can define the
S-polynomial S(P, Q) by:

S(P, Q) :=
lcm(lm(P ), lm(Q))

lt(P )
P − lcm(lm(P ), lm(Q))

lt(Q)
Q.

Given a finite set {P1, . . . , Pr} of elements of k[x] and an admissible monomial
order≺ on x-monomials, Buchberger’s algorithm, which computes a Gröbner basis
G := {Q1, . . . , Qs} of the ideal 〈P1, . . . , Pr〉 of k[x], can be sketched as follows:

(a) Set G := {P1, . . . , Pr} and let P be the set of pairs of distinct elements of G;
(b) While P 6= ∅, do:

• Choose (Pi, Pj) ∈ P and remove it from P;
• Compute S(Pi, Pj) and its reduction Rij := red≺(S(Pi, Pj), G) by G;
• If Rij 6= 0, then:

– Add {(P, Rij) | P ∈ G} to P;
– Add Rij to G;

(c) Return G.

One can prove that the latter process terminates with a Gröbner basis G of the
ideal 〈P1, . . . , Pr〉. For more details, we refer to [5,17,24,26]. While an ideal admits
many different Gröbner bases with respect to the same monomial order, one can
achieve uniqueness by means of the following definition.
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Definition 8. A Gröbner basis G := {G1, . . . , Gs} is said to be reduced if it satisfies
the following two conditions:

• lc(Gi) = 1 for i = 1, . . . , s.
• Each monomial in Gi is irreducible with respect to G \ {Gi} for all i = 1, . . . , s.

Example 8. The Gröbner basis in Example 7 is a reduced one.

Remark 2. For an ideal of k[x] defined by a finite set of generators and a given
monomial order ≺, one can compute a Gröbner basis, using, e.g., Buchberger’s
algorithm [5]. Algorithms for computing Gröbner bases are implemented in most
of the computer algebra systems such as Maple, Mathematica, and Magma,
or in dedicated computer algebra systems such as Singular and Macaulay2.
However, in practice, such computations can be very costly, and it is still a topic of
ongoing research to design faster algorithms for computing Gröbner bases. See the
recent survey article [19] and the references therein.

Let us shortly state a few applications of Gröbner bases. Using the concept of a
reduced Gröbner basis, we obtain a procedure to test whether or not two ideals of
a commutative polynomial ring over a field, defined by different sets of generators,
are equal: we check whether or not they have the same reduced Gröbner basis.

Solving a system of polynomial equations is an important application of Gröbner
bases. For this purpose, we use the lexicographic order (see (a) of Example 5) which
leads to a reduced Gröbner basis of a special form called “triangular” form. This
means that some of the polynomials of the Gröbner basis depend only on certain
variables, which simplifies the process of finding all solutions of the original system.

Example 9. Let G1, G2 ∈ Q[x1, x2] be as in Example 6 but now endowed with the
lexicographic order (see (a) of Example 5). Then, {x32 + x22 + 1, x1 + x22 + x2} is
a Gröbner basis with respect to this monomial order. Note that this Gröbner basis
has a triangular form: the first element depends only on x2. The solutions of the
polynomial system G1 = G2 = 0 can be obtained by first solving x32 + x22 + 1 = 0
and then plugging the solutions for x2 into x1 = −(x22 + x2).

Gröbner basis techniques can also be used to develop an elimination theory. Let
us state a standard problem for ideals: if I ⊆ k[x] is an ideal and y is a subset of x,
then compute generators for the ideal I∩k[y]. To do that, we use the monomial order
defined in (c) of Example 5. As explained in Section 4, elimination techniques play
an important role in the effective study of module theory and homological algebra.

Example 10. If we consider again Example 9, we can check that we have:

〈G1, G2〉 ∩Q[x2] = 〈x32 + x22 + 1〉.

The theory of Gröbner bases has been extended to noncommutative polynomial
rings. See the work of Bergman [3] for a very general and theoretic approach. A
more algorithmically oriented but less general approach was presented in [26]. It
only considers the so-called rings of solvable type (see also [31]). However, for our
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purposes, the latter suffices as most of the Ore algebras of interest are of solvable
type. In this setting, again Buchberger’s algorithm can be used to compute Gröbner
bases, with only slight modifications due to noncommutativity.

Theorem 2 ([11, 31]). Let k be a field, A := k[x1, . . . , xn] the polynomial ring
with coefficients in k, and O := A[∂1;σ1, δ1] · · · [∂m;σm, δm] a polynomial Ore
algebra satisfying the following conditions

σi(xj) = aij xj + bij , δi(xj) = cij , 1 6 i 6 m, 1 6 j 6 n,

for certain aij ∈ k \ {0}, bij ∈ k, and cij ∈ A. Let ≺ be an admissible monomial
order on the following set of monomials:

Mon(O) := {xα1
1 · · · xαmm ∂ν11 · · · ∂νnn | (α1, . . . , αm) ∈ Nm, (ν1, . . . , νn) ∈ Nn}.

If the ≺-greatest term u in each non-zero cij satisfies u ≺ xj ∂i, then given a set
of noncommutative polynomials in O, a noncommutative version of Buchberger’s
algorithm terminates for this admissible monomial order and its result is a Gröbner
basis with respect to this order.

For more general results, we refer the reader to [26, 31, 37]. In particular, for the
Weyl algebra An(Q) (see (c) of Example 3), the existence of Gröbner bases and the
generalization of Buchberger’s algorithm have been studied, e.g., in [36, 39, 53].

Example 11. Let us considerO := B2(Q) and the following linear PD system:{
∂21 y = 0,

x1 ∂2 y + x2 y = 0.
(13)

Applying ∂1 to the second equation of (13), we get x1 ∂1 ∂2 y+ ∂2 y+x2 ∂1 y = 0.
Applying again ∂1 to the equation then yields x1 ∂21 ∂2 y + 2 ∂1 ∂2 y + x2 ∂

2
1 y = 0

and using (13), we get ∂1 ∂2 y = 0, and thus ∂2 y + x2 ∂1 y = 0. Eliminating
∂2 y from the last equation by means of the second equation of (13), we obtain
x1 ∂1 y − y = 0. If we now apply ∂2 to the latter equation and use ∂1 ∂2 y = 0, we
obtain ∂2 y = 0, which by substitution in the second equation of (13) gives y = 0.
The solution of (13) is then y = 0, a fact which is not obvious from (13). The
computation of a Gröbner basis for the leftO-ideal I := O ∂21 +O (x1 ∂2+x2) for
the total degree order follows the same line and yields I = O.

3.2 Gröbner bases for modules over Ore algebras

We now explain how we can extend the concept of a Gröbner basis from finitely
generated left ideals to finitely generated left modules over an Ore algebra O. Let
us first state again the definition of a module.
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Definition 9. Let D be a noncommutative ring. A left D-module M is an abelian
group (M, +) equipped with a scalar multiplication

D ×M −→ M

(d, m) 7−→ dm,

which satisfies the following properties

(a) d1 (m1 +m2) = d1m1 + d1m2,
(b) (d1 + d2)m1 = d1m1 + d2m1,
(c) (d2 d1)m1 = d2 (d1m1),
(d) 1m1 = m1,

for all d1, d2 ∈ D and for all m1, m2 ∈M .

Remark 3. The definition of a left D-module is similar to the one of a vector space
but where the scalars belong to a noncommutative ring D and not to a (skew) field
(e.g.,Q,R, C) as for vector spaces.

A left D-module M is said to be finitely generated if M admits a finite set of
generators, namely there exists a finite set S := {mi}i=1,...,r of elements of M
such that for every m ∈M , there exist di ∈ D for i = 1, . . . , r such that:

m =

r∑
i=1

dimi.

S is called a set of generators of M . Similar definitions hold for right D-modules.
In what follows, we consider D to be a polynomial Ore algebraO. Let Mon(O)

be the set of monomials ofO and {fj}j=1,...,p the standard basis of the free finitely
generated left O-module O1×p := {(λ1 . . . λp) | λi ∈ O, i = 1, . . . , p}, namely
the kth component of fj is 1 if k = j and 0 otherwise. First, we extend the monomial
order≺ from Mon(O) to the set of monomials of the form u fj , where u ∈ Mon(O)
and j = 1, . . . , p, i.e., to Mon(O1×p) :=

⋃p
j=1 Mon(O) fj . This extension is also

denoted by ≺ and it has to satisfy the following two conditions:

(a) ∀ w ∈ Mon(O) : u fi ≺ v fj =⇒ w ufi ≺ w v fj .
(b) u ≺ v =⇒ u fj ≺ v fj for j = 1, . . . , p.

Without loss of generality, we let fp ≺ fp−1 ≺ · · · ≺ f1. There are two natural
extensions of a monomial order to Mon(O1×p).

Definition 10. Let≺ be an admissible monomial order on Mon(O), u, v ∈ Mon(O),
and {fj}j=1,...,p the standard basis of the leftO-moduleO1×p.

(a) The term over position order on Mon(O1×p) induced by ≺ is defined by:

u fi ≺ v fj ⇐⇒ u ≺ v or u = v and fi ≺ fj .
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(b) The position over term order on Mon(O1×p) induced by ≺ is defined by:

u fi ≺ v fj ⇐⇒ fi ≺ fj or fi = fj and u ≺ v.

Remark 4. The term over position order is of more computational value with regard
to efficiency. The position over term order can be used to eliminate components.

If an admissible monomial order on Mon(O1×p) is fixed, then leading monomi-
als and leading coefficients in O1×p are defined similarly as in the case of ideals.
Let R ∈ Oq×p and L := O1×q R be the leftO-submodule ofO1×p. Buchberger’s
algorithm carries over to L. For more details, we refer, e.g., to [18, 24].

Example 12. We consider again Example 4. Let us compute a Gröbner basis of the
O := Q(ν, c) [∂x, ∂y]-submodule L := O1×3R ofO1×3, i.e.,

(−ν ∆+ c) f1 + ∂x f3, (−ν ∆+ c) f2 + ∂y f3, ∂x f1 + ∂y f2,

for the position over term order induced by the monomial order ≺tdeg (see (b) of
Example 5). The Gröbner basis of L is then given by:

∂x f1 + ∂y f2, (−ν ∂2y + c) f1 + ν ∂x ∂y f2 + ∂x f3, ∆ f3, (−ν ∆+ c) f2 + ∂y f3.

We find again that the pressure p satisfies ∆p = 0 as shown in Example 4.

Let us shortly explain how Gröbner basis techniques can be used to compute left
kernels (syzygy module computation), left factorizations and left inverses, . . . of
matrices with entries inO. For more details, we refer to [9].

Algorithm 1 Computation of the left kernel of R ∈ Oq×p, i.e., find S ∈ Or×q

such that kerO(.R) := {λ ∈ O1×q | λR = 0} = O1×r S := {µS | µ ∈ O1×r}.

• Input: An Ore algebra O satisfying the hypotheses of Theorem 2 and a finitely
generated leftO-submodule L := O1×q R ofO1×p, where R ∈ Oq×p.

• Output: A matrix S ∈ Or×q such that kerO(.R) = O1×r S.

(a) Introduce the indeterminates η1, . . . , ηp, ζ1, . . . , ζq overO and define the set:

P :=


p∑
j=1

Rij ηj − ζi | i = 1, . . . , q

 .

(b) Compute a Gröbner basis G of P in the free leftO-module generated by the ηj’s
and the ζi’s for j = 1, . . . , p and i = 1, . . . , q, namely,

⊕p
j=1O ηj⊕

⊕q
i=1O ζi,

with respect to a term order which eliminates the ηj’s (see (c) of Example 5).
(c) Compute G ∩ (

⊕q
i=1O ζi) = {

∑q
i=1 Ski ζi | k = 1, . . . , r} by selecting the el-

ements of G containing only the ζi’s, and return S := (Sij) ∈ Or×q .

Algorithm 2 Computation of a left factorization: given two matrices R ∈ Oq×p

and R′ ∈ Oq′×p, find a matrix R′′ ∈ Oq×q′ (if it exists) satisfying R = R′′R′.
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• Input: An Ore algebra O satisfying the hypotheses of Theorem 2 and two ma-
trices R ∈ Oq×p and R′ ∈ Oq′×p.

• Output: R′′ ∈ Oq×q′ (if it exists) such that R = R′′R′ and [ ] otherwise.

(a) Introduce the indeterminates η1, . . . , ηp, ζ1, . . . , ζq′ overO and define the set:

P :=


p∑
j=1

R′ij ηj − ζi | i = 1, . . . , q′

 .

(b) Compute a Gröbner basis G of P in the free leftO-module generated by the ηj’s
and the ζi’s for j = 1, . . . , p and i = 1, . . . , q′, namely,

⊕p
j=1O ηj⊕

⊕q′

i=1O ζi
with respect to a term order which eliminates the ηj’s (see (c) of Example 5).

(c) Define the following set:

Q :=


p∑
j=1

Rkj ηj | k = 1, . . . , q

 .

(d) Compute the reduction Hi of each element Qi of Q by G.
(e) If one of the Hi’s contains ηj , i.e., if the normal form of Qi contains not only

ζi’s, then return [ ], else return R′′ := (R′′ij) ∈ Oq×q′ , where Hi =
∑q′

j=1R
′′
ij ζj

for i = 1, . . . , q.

Algorithm 3 Computation of a left inverse: given a matrix R ∈ Oq×p, find (if it
exists) a left inverse S ∈ Op×q of R overO, namely S R = Ip.

• Input: An Ore algebraO satisfying the hypotheses of Theorem 2 andR ∈ Oq×p.
• Output: A matrix S ∈ Op×q such that S R = Ip if S exists and [ ] otherwise.

(a) Introduce the indeterminates η1, . . . , ηp, ζ1, . . . , ζq overO and define the set:

P :=


p∑
j=1

Rij ηj − ζi | i = 1, . . . , q

 .

(b) Compute a Gröbner basis G of P in the free leftO-module generated by the ηj’s
and the ζi’s for j = 1, . . . , p and i = 1, . . . , q, namely,

⊕p
j=1O ηj⊕

⊕q
i=1O ζi,

with respect to a term order which eliminates the ηj’s (see (c) of Example 5).
(c) Remove from G the elements which do not contain any ηi and call H this new

set.
(d) WriteH in the form Q1 (η1 . . . ηp)

T −Q2 (ζ1 . . . ζq)
T , where Q1 and Q2 are

two matrices with entries inO.
(e) If Q1 is invertible overO, then return S := Q−11 Q2 ∈ Op×q , else return [ ].

Right analogues of the above algorithms (i.e., computation of right kernels, right
factorizations, and right inverses) can be obtained by considering an involution of
the Ore algebraO (see Definition 3). For instance, the computation of a right inverse
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of a matrix R ∈ Oq×p over an Ore algebra can be done by applying Algorithm 3 to
the matrix θ(R) := (θ(Rij))

T ∈ Op×q (obtained by applying an involution θ ofO
to each entry Rij of R and then transposing the result) and applying the involution
to the left inverse T ∈ Oq×p of θ(R) to get S := θ(T ) ∈ Op×q which then satisfies:

RS = θ2(R) θ(T ) = θ(T θ(R)) = θ(Iq) = Iq.

For an implementation of these algorithms in a computer algebra system, see [10].

4 Algebraic analysis approach to linear systems theory

4.1 Linear functional systems and finitely presented left modules

As explained in Section 1, we study linear functional systems of the form Rη = 0,
where R ∈ Dq×p, D is a noetherian domain (e.g., a noetherian Ore algebra O
of functional operators (see Section 2)), and η is a vector of unknown functions.
More precisely, if F is a left D-module (see Definition 9), then we can consider the
following linear system or behavior:

kerF (R.) := {η ∈ Fp | Rη = 0}.

See Example 1 for the different models of the stirred tank considered in Section 1.

Remark 5. In this framework, we can consider the following classes of systems:

• State-space/input-output representation of 1-D linear systems. Considering, e.g.,

R := (∂ In −A −B) ∈ On×(n+m), η := (x(t)T u(t)T )T ∈ Fn+m,
R := (P (∂) −Q(∂)) ∈ Oq×(q+r), η := (y(t)T u(t)T )T ∈ Fq+r,

whereO := A
[
∂; idA,

d
dt

]
is a ring of OD operators with coefficients in a differ-

ential ring A and P has full row rank (i.e., kerO(.P ) = 0), we obtain the linear
systems ẋ(t) = A(t)x(t)+B(t)u(t) and P (∂) y(t) = Q(∂)u(t). Similarly, we
can consider the Ore algebraO := A[S;σ, 0] of shift operators with coefficients
in the difference ringA and S instead of ∂ in the above matrices to get the linear
systems xk+1 = Ak xk +Bk uk and P (S) yk = Q(S)uk.

• In the first above example, if we consider the Ore algebra O := A
[
∂; idA,

d
dt

]
,

where A := B[S;σ, 0] and B is a difference ring, then we obtain the system
ẋ(t) = A(t, S)x(t) + B(t, S)u(t), called in the literature a system over ring.
Note that a general linear differential constant time-delay system is defined by
Rη = 0, where R ∈ Oq×p, η ∈ Fp and, e.g., F = C∞(R>0).

• General linear nD systems can be defined by Rη = 0, where R ∈ Oq×p andO
is, for instance, one of the Ore algebras considered in Example 2. For instance, a
simple discrete Roesser model can be defined by Rη = 0, where
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R :=

(
S1 Irh −A11 −A12 −B1

−A21 S2 Irv −A22 −B2

)
∈ O(rh+rv)×(rh+rv+m),

η := (xTh xTv uT )T , xh ∈ Frh , xv ∈ Frv , u ∈ Fm, andO is the Ore algebra
defined by (c) in Example 2. Continuous or a mixed continuous and discrete
Roesser model can be defined similarly using the other Ore algebras defined in
Example 2.

Linear systems (e.g., a linearization of a nonlinear system around a given so-
lution) can be studied within the algebraic analysis approach. The next example
explains how the generic linearization of a nonlinear system can also be studied.

Example 13. We consider the nonlinear OD system defined by

ẋ(t) = f(x(t), u(t)), (14)

where we first suppose that f = (f1 · · · fn)T , where fi is a polynomial for
i = 1, . . . , n. Let us denote X := X1, . . . , Xn and U := U1, . . . , Um. Let k be
a differential field (e.g., a field which is a differential ring), k{X,U} the differen-
tial ring formed by polynomials in a finite number of the Xi’s, Uj’s, and of their
derivatives with coefficients in k, and p the differential ideal defined by the differ-
ential polynomials Ẋi − fi(X,U) for i = 1, . . . , n, and their derivatives. Then,
we can define the ring A := k{X,U}/p formed by the differential polynomials
modulo the ideal p. If we denote by xi (resp., uj) the residue class of Xi (resp.,
Uj) in A, x := x1, . . . , xn, u := u1, . . . , um, and A = k{x, u}, then these poly-
nomials can be rewritten as polynomials in xi, uj , and the derivatives of the uj’s.
Clearly, A is a differential ring with the derivation δ := d

dt . It can be proved that
p is a prime ideal, i.e., that A is an integral domain. Thus, we can define the quo-
tient field K := Q(A) of A, i.e., the ring of fractions of A, which is a differential
field for the derivation δ. Let O := B[∂; idA, δ] be the skew polynomial ring of
OD operators with coefficients in B := A or K. The generic linearization of (14)
is then defined by Rη = 0, where R :=

(
∂ In − ∂f

∂x −
∂f
∂u

)
∈ Dn×(n+m) and

η := (dxT duT )T , and can be studied by means of the finitely presented left
O-module M := O1×(n+m)/(O1×nR). The cases of a rational, analytic or mero-
morphic function f can be studied similarly by considering the differential ring or
field B formed by the rational/analytic/meromorphic functions which satisfy (14).

Within the algebraic analysis approach to linear systems theory [9,43,47,51,57],
the linear system or behaviour is studied by means of the factor left D-module

M := D1×p/(D1×q R)

formed by the set of the residue classes π(λ) of λ ∈ D1×p modulo the left D-
submodule L := D1×q R of D1×p (i.e., π(λ) = π(λ′) if there exists µ ∈ D1×q

such that λ = λ′ + µR) and equipped with the following left D-module structure:

∀ λ, λ′ ∈ D1×p, ∀ d ∈ D, π(λ) + π(λ′) := π(λ+ λ′), d π(λ) := π(d λ).
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Remark 6. If D := O is an Ore algebra satisfying the hypotheses of Theorem 2,
then we can check if π(λ) = π(λ′) for λ, λ′ ∈ O1×p since λ− λ′ ∈ L := O1×q R
if and only if red(λ− λ′, G) = 0, where G is a Gröbner basis of L (see Section 3).

The left D-module M is said to be finitely presented and R is called a presenta-
tion matrix [52]. If {fj}j=1,...,p is the standard basis of D1×p and yj := π(fj) for
j = 1, . . . , p, then {yj}j=1,...,p is a set of generators of the left D-module M (see
Section 3.2). The generators yj’s of M satisfy non-trivial relations since we have:

p∑
j=1

Rij yj = 0, i = 1, . . . , q.

For the details of these results, see the chapter [14] of this book. Note that the yj’s
do not belong to F but are just elements of M . To speak about F-solutions of
Rη = 0, we have to consider the homomorphisms from M to F , namely the maps
f :M −→ F satisfying the following (left D-linear) condition:

∀ d1, d2 ∈ D, ∀m1, m2 ∈M, f(d1m1 + d2m2) = d1 f(m1) + d2 f(m2).

We recall that f ∈ homD(M,F) is said to be an isomorphism if f is both injec-
tive and surjective [52]. If an isomorphism exists between M and F , then we say
that M and F are isomorphic, which is denoted by M ∼= F .

A standard result of homological algebra concerning the left exactness of the
contravariant functor homD( · ,F) [52] yields the following fundamental result for
the algebraic analysis approach of linear systems theory.

Theorem 3. We have the following isomorphism of abelian groups (i.e.,Z-modules):

kerF (R.) ∼= homD(M,F). (15)

For a direct proof of Theorem 3, see the chapter [14] of this book.

Remark 7. If D is not a commutative ring, then neither kerF (R.) nor homD(M,F)
are left D-modules. For instance, if we consider D := A1(Q), R := ∂ + t−m

σ2 ∈ D
where t, m and σ are constants parameters (e.g., transcendental elements over Q),

and M := D/(DR), then η := e−
(t−m)2

2 σ2 ∈ kerF (R.), where F := C∞(R). But

R (∂ η) =

(
∂2 + ∂

(t−m)

σ2
− 1

σ2

)
η = ∂

(
∂ +

t−m
σ2

)
η − 1

σ2
η = − 1

σ2
η,

R (t η) = (t ∂ + 1) η + t
(t−m)

σ2
η = t

(
∂ +

t−m
σ2

)
η + η = η,

which shows that neither η̇ nor t η belongs to kerF (R.), i.e., kerF (R.) has no left
D-module structure. However they are abelian groups (i.e., the Z-modules) and k-
vector spaces if D is a k-algebra and k is a field included in the center of D:

Z(D) := {d ∈ D | dD = Dd}.
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If F := D, then homD(M,D) inherits a right D-module structure [47, 52].

Using the isomorphism (15), the linear system kerF (R.) depends only on M
and F . Hence, we can study its built-in properties by means of those of the modules
M and F . Note that the functional space F where the solutions are sought can be
altered and the behaviour of the solutions highly depend on it (in a similar way as
for the F-solutions of x2 + 1 = 0 for F := R orC) [43]. In what follows, we shall
suppose thatF is a rich enough functional space (i.e., is an injective cogenerator left
D-module [52]) so that F plays a similar role as the algebraic closure in algebraic
geometry. Hence, we can study the properties of kerF (R.) by means of those of M .
For the study of the role of F , we refer to [43, 57] and the references therein.

We also note that homD(M,F) depends only on the isomorphism type of M ,
i.e., if M ∼=M ′, then we have homD(M,F) ∼= homD(M

′,F). If M (resp., M ′) is
finitely presented by R ∈ Dq×p (resp., R′ ∈ Dq′×p′), then we get

kerF (R.) ∼= kerF (R
′.),

i.e., there is a 1-1 correspondence between the solutions of the first system and the
solutions of the second one. For more details and applications of this result to Serre’s
reduction, Stafford’s reduction, the decomposition problem, see [12, 14, 47] and the
references therein. Two different representationsR ∈ Dq×p andR′ ∈ Dq′×p′ of the
same linear system define two isomorphic modules:

M := D1×p/(D1×q R) ∼=M := D1×p′/(D1×q′ R′).

Homological algebra methods are developed to study modules up to isomorphism.
In particular, even if a particular representation is used, fundamental theorems in ho-
mological algebra show that the results do not depend on it. For mathematical sys-
tems theory, it is a change of paradigm since systems are usually studied by means
of their particular representations (e.g., state-space or polynomial representations).
The equivalence between the different approaches is studied below. Within the al-
gebraic analysis approach, we first define the equivalence of linear systems in terms
of isomorphic left D-modules finitely presented by these representations, and then
use mathematical methods which do only depend on the isomorphism type. For in-
stance, if the concept of controllability is a built-in property of the linear system and
not of its representation, then it should be a module property. For standard classes
of linear systems, it has been shown that certain definitions of controllability cor-
respond to the concept of a torsion-free module (for more details, see Section 4.3).
Let us introduce basic definitions of module theory [16, 34, 52].

Definition 11. Let D be a noetherian domain and M a finitely generated left D-
module.

(a) M is free if there exists r ∈ N such that M ∼= D1×r. Then, r is called the rank
of the free left D-module M and is denoted by rankD(M).

(b) M is stably free if there exist r, s ∈ N such that M ⊕ D1×s ∼= D1×r. Then,
r − s is called the rank of the stably free left D-module M .
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(c) M is projective if there exist r ∈ N and a left D-module N such that

M ⊕N ∼= D1×r,

where ⊕ denotes the direct sum of left D-modules.
(d) M is reflexive if the canonical left D-homomorphism

ε :M −→ homD(homD(M,D), D), ε(m)(f) = f(m),

for all f ∈ homD(M,D) and all m ∈M , is an isomorphism.
(e) M is torsion-free if the torsion left D-submodule t(M) of M is 0, where:

t(M) := {m ∈M | ∃ d ∈ D \ {0} : dm = 0}.

The elements of t(M) are called the torsion elements of M .
(f) M is torsion if t(M) =M , i.e., if every element of M is a torsion element.

Considering s = 0 in (b) (resp.,N := D1×s in (c)) of Definition 11, a free (resp.,
stably free) module is stably free (resp., projective). A projective module is torsion-
free since it can be embedded into a free, and thus into a torsion-free module. The
converse of these results are not usually true. In some particular cases, they can hold.

Theorem 4 ([16, 34, 49, 52]). We have the following results.

(a) If D is a principal ideal domain, i.e., every left/right ideal of the domain D is
principal (e.g., D := A

[
∂; idA,

d
dt

]
, where A := k, k(t), or kJtK[t−1] is the

field of formal Laurent power series, where k is a field of characteristic 0, or
A := k{t}[t−1] is the field of Laurent power series, where k := R, C), then
every finitely generated torsion-free left/right D-module is free.

(b) If D := k[x1, . . . , xn] is a commutative polynomial ring with coefficients in a
field k, then every finitely generated projective D-module is free (Quillen-Suslin
theorem).

(c) If D is the Weyl algebra An(k) or Bn(k), where k is a field of characteristic
0, then every finitely generated projective left/right D-module is stably free and
every finitely generated stably free left/right D-module of rank at least 2 is free
(Stafford’s theorem).

(d) If D := A
[
∂; idA,

d
dt

]
where A := kJtK is the ring of formal power series in t

and k is a field of characteristic 0, orA := k{t} is the ring of locally convergent
power series in t, where k := R or C, then every finitely generated projective
left/rightD-module is stably free and every finitely generated stably free left/right
D-module of rank at least 2 is free.

In Section 4.3, we will give a dictionary between properties of a linear functional
system and properties of the finitely presented left module associated with it.
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4.2 Basic results of homological algebra

In this section, we briefly review how to effectively check whether or not a finitely
presented left D-module M has torsion elements, is torsion-free, reflexive, or pro-
jective (see Definition 11), when D is a noetherian domain with finite global dimen-
sion [52]. To do that, let us introduce a few concepts of homological algebra [52].

Let D be a noetherian domain, R ∈ Dq×p, and M := D1×p/(D1×q R) the left
D-module finitely presented by R. If .R ∈ homD(D

1×q, D1×p) is defined by

.R : D1×q −→ D1×p

λ 7−→ λR,

then we obtain cokerD(.R) = D1×p/imD(.R) = D1×p/(D1×q R) = M . Since
D is a left noetherian ring, D1×q is a noetherian left D-module, i.e., every left D-
submodule of D1×q is finitely generated [52]. In particular, kerD(.R) is a finitely
generated left D-module, i.e., there exists a finite generator set {λi}i=1,...,r of
kerD(.R). Then, we have kerD(.R) = imD(.R2) = D1×r R2, with the notation
R2 := (λT1 . . . λTr )

T ∈ Dr×q . Let us introduce a few definitions.

Definition 12.(a) A complex of leftD-modules is a sequence of leftD-modulesMi

and D-homomorphisms di : Mi −→ Mi−1 for i ∈ Z such that di ◦ di+1 = 0,
i.e., im di+1 ⊆ ker di for all i ∈ Z. Such a complex is denoted by:

. . .
di+2 // Mi+1

di+1 // Mi
di // Mi−1

di−1 // Mi−2
di−2 // . . . (16)

(b) The defect of exactness of (16) atMi is the leftD-moduleH(Mi) := ker di/ im di+1.
(c) The complex (16) is said to be exact at Mi if H(Mi) = 0, i.e., ker di = im di+1,

and exact if H(Mi) = 0 for all i ∈ Z.
(d) An exact sequence of the form

. . .
.R3 // D1×p2 .R2 // D1×p1 .R1 // D1×p0 π // M // 0, (17)

where Ri ∈ Dpi×pi−1 and .Ri ∈ homD(D
1×pi , D1×pi−1) is defined by

(.Ri)λ = λRi for all λ ∈ D1×pi , is called a free resolution of M .

With R1 = R, we can easily check that we have the following exact sequence

0 // kerD(.R2)
i // D1×r .R2 // D1×q .R1 // D1×p π // M // 0,

where i is the canonical injection and π the canonical projection. Repeating for R2

what we did for R and so on, we get a free resolution (17) of M . If D := O is an
Ore algebra satisfying the hypotheses of Theorem 2, then Algorithm 1 can be used
to compute a free resolution of M .

Applying the left exact contravariant functor homD(·,F) [52] to the complex
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. . .
.R3 // D1×p2 .R2 // D1×p1 .R1 // D1×p0 // 0,

obtained by removing M from (17) − called a truncated free resolution of M −
and using homD(D

1×pi ,F) ∼= Fpi , we then obtain the following complex

. . . Fp2R3.oo Fp1R2.oo Fp0R1.oo 0,oo (18)

where Ri. : Fpi−1 −→ Fpi is defined by (Ri.) η = Ri η for all η ∈ Fpi−1 . The
extension Z-modules extiD(M,F) are then the defects of exactness of (18).

Theorem 5 ([52]). The defects of exactness of (18) depend only on M and F , i.e.,
they do not depend on the choice of the free resolution (17) of M . These abelian
groups are denoted by:{

ext0D(M,F) = homD(M,F) = kerF (R1.),

extiD(M,F) = kerF (Ri+1.)/ imF (Ri.), i > 1.

Theorem 5 is a fundamental result of homological algebra. It shows that the
extiD(M,F)’s do not depend on a particular representation of the linear system.

Remark 8. Let us give an interpretation of the extiD(M,F)’s. They define the ob-
structions of the solvability problem which aims at finding η ∈ Fpi−1 which satisfies
the inhomogeneous linear system Ri η = ζ for a fixed ζ ∈ Fpi . Indeed, if such an η
exists, then we have Ri+1 ζ = Ri+1 (Ri η) = 0 since kerD(.Ri) = D1×pi+1 Ri+1,
i.e., ζ ∈ kerF (Ri+1.). This condition is a necessary one for the solvability problem.
This problem is solvable if and only if the residue class of ζ in extiD(M,F) is 0, i.e.,
if and only if ζ ∈ imF (Ri.), which means that η ∈ Fpi−1 exists such that ζ = Ri η.

Remark 9. If F := D, then the extiD(M,D)’s inherit a right D-module structure.

The concept of a free resolution of a module can be extended to the concept
of a projective resolution in which projective modules are used instead of (finitely
generated) free left D-modules D1×pi [52]. The length of a projective resolution
is the number of non-zero projective modules defining this resolution. The minimal
length of the projective resolutions of a leftD-moduleM is called the left projective
dimension of M and it is denoted by lpdD(M). The left global dimension of a ring
D is the supremum of lpdD(M) for all left D-modules M and it is denoted by
lgldD(M). For more details, see [52]. Similar definitions can be given for right D-
modules. If D is a noetherian ring, i.e., a left and a right noetherian ring, a result
due to Kaplansky shows that the left and right global dimensions ofD coincide [52]
and it is then denoted by gld(D).

Example 14 ([16]). We have the following examples.

(a) If A has finite left global dimension and σ is an automorphism of A, then we
have lgld(A) 6 lgld(A[∂;σ, δ]) 6 lgld(A) + 1. Moreover, if δ = 0, then we
have lgld(A[∂;σ, δ]) = lgld(A) + 1.
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(b) If k is a field, then gld(k[x1, . . . , xn]) = n.
(c) If k is a field of characteristic 0 (e.g., k := Q,R,C), then gld(An(k)) = n and

gld(Bn(k)) = n.

Theorem 6 ([9]). LetD be a noetherian ring with finite global dimension gld(D) :=
n, M := D1×p/(D1×q R) the left D-module finitely presented by the matrix
R ∈ Dq×p, and N := Dq/(RDp) the so-called Auslander transpose of M . Then,
we have the following results:

(a) M is a torsion left D-module if and only if homD(M,D) = 0.
(b) t(M) ∼= ext1D(N,D).
(c) M is a torsion-free left D-module if and only if ext1D(N,D) = 0.
(d) M is a reflexive left D-module if and only if extiD(N,D) = 0 for i = 1, 2.
(e) M is a projective left D-module if and only if extiD(N,D) = 0 for i = 1, . . . , n.
(f) If R is a full row rank matrix, i.e., kerD(.R) = 0, then M is a projective left
D-module if and only if N ∼= ext1D(M,D) = 0, i.e., if and only if R admits a
right inverse.

Remark 10. If D := k[x1, . . . , xn], then Theorem 6 and (a) of Example 14 show
that the concepts of torsion-free, reflexive, and projective modules are instances of
a sequence of n module properties characterized by the successive vanishing of the
extiD(N,D)’s for i = 1, . . . , n. If R has full row rank and k := R or C, it can be
proved that extiD(N,D) = 0 for i = 0, . . . , r− 1 and extrD(N,D) 6= 0, if and only
if the algebraic variety defined by all the q × q minors of R has a strict complex
dimension equal to n− r. This result is a generalization of the different concepts of
coprimeness developed in the literature of multidimensional systems.

According to Theorem 6, certain module properties are characterized by the
vanishing of some of the extiD(N,D)’s. We point out that N := Dq/(RDp) is
a right D-module, and thus, it does not define a linear system. To compute the
extiD(N,D)’s, we first have to compute a free resolution of right D-modules

0 Noo Dq0κoo Dq1
Q1.oo Dq2

Q2.oo . . .
Q3.oo (19)

where Q1 := R, q0 := q, and q1 := p, then dualize it to get the following complex
of left D-modules:

0 // D1×q0 .Q1 // D1×q1 .Q2 // D1×q2 .Q3 // . . .

Then, we have extiD(N,D) = kerD(.Qi+1)/imD(.Qi) for i > 0, where we set
imD(.Q0) = 0. Since D is a left noetherian ring, the left D-module kerD(.Qi+1)

is finitely generated, and thus there exists Q′i ∈ Dq′i−1×qi such that kerD(.Qi+1) =

imD(.Q
′
i) = D1×q′i−1 Q′i, which yields extiD(N,D) = (D1×q′i−1 Q′i)/(D

1×qi−1 Qi).
If D := O is an Ore algebra satisfying the hypotheses of Theorem 2, then we can
use Algorithm 1 to compute the matrix Q′i and then Algorithm 2 to check whether
or not there exists a matrix Q′′i ∈ Dq′i−1×qi−1 such that Q′i = Q′′i Qi, i.e., to check
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whether or not D1×q′i−1 Q′i = D1×qi−1 Qi, i.e., whether or not extiD(N,D) is 0 for
i > 1. The only point that does not seem to be constructive is the use of Algorithm 1
to compute the free resolution of N since we have to compute right kernel and not
left kernel. Moreover, the computation of Gröbner bases is usually not available in
computer algebra systems for right ideals or right modules. To do that, we have to
use an involution θ of D (see Definition 3). Indeed, it can be used to turn the right
D-module structure into a left D-module structure as explained in the next lemma.

Lemma 1. Let N be a right D-module and θ an involution of D. Then, we can
define the left D-module Ñ which is equal to N as a set, endowed with the same
addition as N , and the left D-action on Ñ is defined by:

∀ d ∈ D, ∀n ∈ Ñ , d n := n θ(d).

Let M := O1×p/(O1×q R) be a left O-module finitely presented by the ma-
trix R ∈ Oq×p and let θ be an involution of O. Then, we can define the matrix
θ(R) := (θ(Rij))

T ∈ Op×q , i.e., the transpose of the matrix obtained by apply-
ing the involution θ to the matrix R component-wise. Note that we always have
R = θ2(R), i.e., a matrix S can always be written as θ(T ) for a certain matrix
T := θ(S). We now consider the leftO-module finitely presented by θ(R), namely,

Ñ := O1×q/(O1×p θ(R)). (20)

It is called the adjoint module of M . Then, one can prove that (b), (c), (d), and
(e) of Theorem 6 hold whereN is substituted by Ñ . Hence, we can use Algorithm 1
to compute a free resolution of Ñ

0 Ñoo D1×q0σoo D1×q1.θ(Q1)oo D1×q2.θ(Q2)oo . . . ,
.θ(Q3)oo

then dualizing it by applying the involution θ to get the complex of left D-modules:

0 // D1×q0 .Q1 // D1×q1 .Q2 // D1×q2 .Q3 // . . .

Then, we have extiD(N,D) = (D1×q′i−1 Q′i)/D
1×qi−1 Qi), where Q′i ∈ Dq′i−1×qi

is a matrix defined by kerD(.Qi+1) = imD(.Q
′
i). Finally, as above, using Algo-

rithm 2, we can check whether or not extiD(N,D) = 0 for i > 1. In this way, we
can effectively check the conditions of Theorem 6, and thus whether or not M has
torsion elements, is torsion-free, reflexive, or projective.

Example 15. Let us consider again Stokes equations defined in Example 4. With the
notations of Example 12, using Theorem 6, we can easily prove that the finitely
presentedO-module M := O1×3/L is torsion. Indeed, since detR 6= 0, R has full
row rank, i.e., kerO(R.) = 0, and we have the following free resolution of N

0 Noo O3κoo O3R.oo 0,oo

which, by duality, yields the following complex
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0 // O1×3 .R // O1×3 // 0,

and thus we get t(M) ∼= ext1O(N,O) ∼= ker 0/imO(.R) = O
1×3/imO(.R) = M .

If u (resp., v, p) denotes the residue class of the first (resp., second, third) element
of the standard basis ofO1×3 in M , then eliminating v and p (resp., u and p, resp.,
u and v) from (12) as shown in Example 12, we obtain:

∆ (ν ∆− c)u = 0,

∆ (ν ∆− c) v = 0,

∆ p = 0.

Hence, each generator u, v, p of M satisfies a PDE, i.e., is a torsion element.

Example 16. Let us illustrate Theorem 6 on a simple linear DTD system defined by:{
ẋ1(t) = x1(t) + x2(t− 1) + u(t),

ẋ2(t) = x1(t− 1) + x2(t) + u(t).
(21)

LetO := Q
[
∂; idQ,

d
dt

]
[δ;σ, 0] be the commutative Ore algebra of DTD operators,

where σ is defined by σ(a(t)) = a(t−1) andM := O1×3/(O1×2R) theO-module
finitely presented by the following matrix:

R :=

(
∂ − 1 −δ −1
−δ ∂ − 1 −1

)
∈ O2×3.

Let us introduce the Auslander transpose N := O2/(RO3) of M . We note that
we have N ∼= Ñ := O1×2/(O1×3RT ) because O is a commutative ring and
θ = idO. Let us explicitly compute the extiO(Ñ ,O)’s. Since gld(O) = 2 (see (b)
of Example 14), one can prove that extiO(Ñ ,O) = 0 for i > 3, a fact that we will
check again. Using Algorithm 1, we can check that Ñ admits the free resolution

0 Ñoo O2σoo O3.RToo O
.QT2oo 0,oo

whereQT2 := (1 1 ∂−1−δ). Dualizing this exact sequence, we get the complex:

0 // O1×2 .R // O1×3 .Q2 // O // 0.

Then, we have 
homO(Ñ ,O) = kerO(.R) = 0,

ext1O(Ñ ,O) = kerO(.Q2)/imO(.R),

ext2O(Ñ ,O) = O/(O1×3Q2) = 0,

extiO(Ñ ,O) = 0, i > 3,
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since R has full row rank and 1 ∈ O1×3Q2. Using Algorithm 1 again, we get
kerO(.Q2) = O

1×2R′, where:

R′ :=

(
1 −1 0

0 ∂ − 1− δ −1

)
.

By (b) of Theorem 6, we get t(M) ∼= (O1×2R′)/(O1×2R). It means that the
rows of R′ modulo the system equations define a generating set of the torsion O-
submodule t(M) ofM . The first (resp., second) row ofR′ yields the torsion element
z1 := x1 − x2 (resp., z2 := (∂ − 1− δ)x2 − u = δ z1). Hence, t(M) is generated
by z1. If we consider the following inhomogeneous linear system

x1 − x2 = z1,

(∂ − 1)x1 − δ x2 − u = 0,

(∂ − 1)x2 − δ x1 − u = 0,

then computing a Gröbner basis for a monomial order which eliminates x1, x2, and
u, we obtain (∂ + δ − 1) z1 = 0. Let us now study the torsion-free O-module
M/t(M) := O1×3/(O1×2R′). One can show that M/t(M) ∼= O1×3Q2 = O

since ext2O(Ñ ,O) = 0 (see, e.g., [9, 47, 51]). By (e) of Theorem 6, the O-module
M/t(M) is projective. Using Algorithm 3, we can check that the following matrix

L :=

(
1 0 0

0 0 −1

)

is a left inverse ofR′T , and thus S := LT is a right inverse ofR′, which shows again
that M/t(M) is a projectiveO-module by (f) of Theorem 6. By the Quillen-Suslin
theorem (see (b) of Theorem 4), M/t(M) is then a free O-module of rank 1. This
result can be easily checked again by noticing that M/t(M) is defined by{

y1 − y2 = 0,

(∂ − 1− δ) y2 − v = 0,
⇐⇒

{
y1 = y2,

v = (∂ − 1− δ) y2,

which shows that y2 is a basis of M/t(M). Finally, sinceO is a commutative poly-
nomial ring, we can use Remark 10 to prove again the results obtained above. In-
deed, the ideal Fitt0(N) defined by all the 2× 2 minors of R is defined by the ideal
I := (∂ + δ − 1). The algebraic variety formed by the zeros of I is ∂ + δ − 1 = 0,
which is 1-dimensional. Using Remark 10, we then get ext1O(N,O) 6= 0, which
proves again that t(M) 6= 0. Similarly, if N ′ := O2×1/(R′O3×1) is the Auslander
transpose ofM/t(M), then we have Fitt0(N ′) = (∂−1−δ, 1) = O, which shows
that extiO(N

′,O) = 0 for i = 1, 2, which proves again thatM/t(M) is a projective
and thus a freeO-module.

Finally, if R is a full row rank matrix, then (f) of Theorem 6 shows that M
is a projective left D-module if and only if we have N ∼= ext1D(M,D) = 0 or
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equivalently if and only if Ñ = 0. In this case, we do not have to test the vanishing
of all the extiD(N,D)’s for i = 1, . . . , n as shown in (e) of Theorem 6.

Example 17. Let O := A
[
∂; idA,

d
dt

]
be a ring of OD operators with coefficients

in a noetherian differential ringA, A ∈ An×n, B ∈ An×m, and the leftO-module
M := O1×(n+m)/(O1×nR) finitely presented by R := (∂ In − A − B) ∈
On×(n+m) which defines the linear system ẋ(t) = Ax(t)+B u(t). SinceR has full
row rank, (f) of Theorem 6 shows that M is a projective left O-module if and only
if R admits a right inverse, i.e., using the involution θ defined in (b) of Example 3,
if and only if θ(R) := (−∂ In −AT −BT )T ∈ O(n+m)×n admits a left inverse
S. This is equivalent to say that the adjoint system θ(R)λ = 0, i.e.,{

λ̇+AT λ = 0,

BT λ = 0,
(22)

has only the trivial solution λ = 0 since S θ(R) = Iq yields λ = S (θ(R)λ) = 0.
The above system is not a Gröbner basis for the total degree order since if we differ-
entiate the zero-order equation, we get ḂT λ+ BT λ̇ = 0, i.e., using the first-order
equation, we obtain the new zero-order equation (ḂT − BT AT )λ = 0. We can
repeat the same procedure with this last equation. Hence, if we define the sequence
of matrices Bi defined by B0 := BT and Bi+1 := Ḃi − BiA

T for i > 1, we
obtain that (BT0 BT1 BT2 . . .)T λ = 0. SinceA is supposed to be noetherian, the
increasing sequence of A-submodules Ok :=

∑k
i=0A

1×mBi of A1×n stabilizes
(see, e.g., [52]), i.e., there exists r ∈ N such that Os = Or for all s > r. Then, we
get:

(22) ⇐⇒


λ̇+AT λ = 0,B0

...
Br

 λ = 0.

Hence, the above system has the only solution λ = 0 if and only if the matrix O :=
(BT0 BT1 BT2 . . . BTr )

T admits a left inverse with entries inA or equivalently if
and only if OT admits a right inverse with entries in A. If A is a field, then we can
take r = n− 1 by the Cayley-Hamilton theorem and the condition on the existence
of a right inverse forOT then becomes thatOT has full row rank. Finally, ifA := k
is a field of constants, i.e., ȧ = 0 for all a ∈ A, as, e.g.,A = Q orR, then we get the
standard controllability condition rankk(B AB . . . An−1B) = n (see [27,32]).

4.3 Dictionary between system properties and module properties

Let us introduce a few more definitions.

Definition 13 ([52]). We have the following definitions:
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(a) A left D-module F is said to be injective if for every left D-module M , we have
extiD(M,F) = 0 for i > 1.

(b) A left D-module F is said to be cogenerator if for every left D-module M and
m ∈M \ {0}, there exists ϕ ∈ homD(M,F) such that ϕ(m) 6= 0.

It can be shown that a leftD-module F is injective if and only if for every matrix
R ∈ Dq×p and ζ ∈ Fq satisfying R2 ζ = 0, where R2 ∈ Dr×q is any matrix such
that kerD(.R) = imD(.R2), there exists η ∈ Fp solving the inhomogeneous linear
system Rη = ζ [52]. A standard result in homological algebra shows that there
always exists an injective cogenerator left module for a ring D [52].

Example 18. If Ω is an open convex subset ofRn and F := C∞(Ω) orD′(Ω) (i.e.,
the space of distributions with support in Ω), then F is an injective cogenerator
D := k

[
∂1; idk,

∂
∂x1

]
· · ·
[
∂n; idk,

∂
∂xn

]
-module, where k := R or C. For more

details, see [43] and the references therein.

Example 19. If F is the set of real-valued functions on R which are smooth except
for a finite number of points, then F is an injective cogenerator left B1(R)-module
[57].

Based on the results of [21–23,45,46,56], we can give the following definitions.

Definition 14 ([9]). Let D be a noetherian domain, R ∈ Dq×p, F an injective co-
generator left D-module, and the linear system (behaviour) defined by R and F :

kerF (R.) := {η := (η1 . . . ηp)
T ∈ Fp | Rη = 0}.

(a) An observable is a D-linear combination of the system variables ηi.
(b) An observable ψ(η) is called autonomous if it satisfies a D-linear relation by

itself, i.e., dψ(η) = 0 for some d ∈ D \ {0}. An observable is said to be free if
it is not autonomous.

(c) The linear system is said to be controllable if every observable is free.
(d) The linear system is said to be parametrizable if there exists a matrixQ ∈ Dp×m

such that kerF (R.) = QFm, i.e., if for every η ∈ kerF (R.), there exists ξ ∈ Fm
such that η = Qξ. Then, Q is called a parametrization and ξ a potential.

(e) The linear system is said to be flat if there exists a parametrization Q ∈ Dp×m

which admits a left inverse T ∈ Dm×p, i.e, T Q = Ip. In other words, a flat
system is a parametrizable system such that every component ξi of a potential ξ
is an observable of the system. The potential ξ is then called a flat output.

We are now in position to state the correspondence between the properties of a
linear system defined in Definition 14 and the properties of the associated finitely
generated left module defined in Definition 11.

Theorem 7 ([9]). With the hypotheses and notations of Definition 14, we have:

(a) The observables of the linear system are in one-to-one correspondence with the
elements of M .
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(b) The autonomous elements of the linear system are in one-to-one correspondence
with the torsion elements of M . Consequently, the linear system is controllable
iff M is torsion-free.

(c) The linear system is parametrizable iff there exists a matrix Q ∈ Dp×m such
that we have M := D1×p/(D1×q R) ∼= D1×pQ, i.e., iff M is a torsion-free left
D-module. Then, the matrix Q is a parametrization, i.e., kerF (R.) = QFm.

(d) The linear system is flat iff M is a free left D-module. Then, the bases of M are
in one-to-one correspondence with the flat outputs of the linear system.

Example 20. Let us give the system interpretations of the results obtained in Ex-
ample 16. First, we have the autonomous element z1(t) := x1(t) − x2(t) of (21)
since it satisfies the autonomous DTD equation ż1(t) − z1(t) − z1(t − 1) = 0.
It is a non controllable element of (21) since its trajectory cannot be changed by
means of u. Moreover, the controllable system associated with (21) is defined by
M/t(M) := O1×3/(O1×2R′), which is a free O-module of rank 1. Thus, if F
is any O-module (e.g., F := C∞(R>0)), then the corresponding linear system
R′ η = 0, where η := (y1 y2 v)T , is flat and y2 is a flat output. Finally, the
matrix Q2 defined in Example 16 is an injective parametrization of kerF (R′.), i.e.,
we have R′ η = 0 if and only if there exists ξ ∈ F such that η = Q2 ξ. Finally, we
can check that Q2 admits a left inverse S2 := (0 1 0) (see Algorithm 3), which
shows that ξ = (S2Q2) ξ = S2 η is uniquely defined by η.

Finally, we illustrate Theorems 6 and 7 with standard linear functional systems
coming from control theory and mathematical physics.

Example 21.(a) Let us consider a wind tunnel model studied in [41] and defined by
the following linear DTD system:

ẋ1(t) + a x1(t)− k a x2(t− h) = 0,

ẋ2(t)− x3(t) = 0,

ẋ3(t) + ω2 x2(t) + 2 ζ ω x3(t)− ω2 u(t) = 0,

(23)

where a, k, ω, and ζ are constant parameters. Checking that ext1O(N,O) = 0,
(c) of Theorem 6 shows that (23) defines a torsion-free module over the ring
of DTD operators, and thus (23) is parametrizable by (c) of Theorem 7. The
matrix Q1 obtained during the computation of ext1O(N,O) (see (19)) is then a
parametrization of (23) and we have

(23) ⇐⇒


x1(t) = ω2 k a z(t− h),
x2(t) = ω2 ż(t)− aω2 z(t),

x3(t) = ω2 z̈(t) + ω2 a ż(t),

u(t) = z(3)(t) + (2 ζ ω + a) z̈(t) + (ω2 + 2 aω ζ) ż(t) + aω z(t),

for all z which belongs to an injective module F over the ring of DTD operators.
(b) Let us consider the first group of Maxwell equations defined by
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∂B

∂t
+∇ ∧E = 0,

∇.B = 0,

(24)

where B (resp., E) denotes the magnetic (resp., electric) field. We can prove that
the differential module associated with (24) is reflexive (see [9]). In particular,
(24) is parametrizable and using the matrix Q1 obtained in the computation of
ext1O(N,O) (see (19)), we obtain

(24) ⇐⇒

E = −∂A
∂t
−∇V,

B = ∇ ∧A,
(25)

where (A, V ) is the so-called quadri-potential formed by smooth functions over
R3. The second matrix Q2 defining a free resolution of N (see (19)) then defines
a parametrization of the inhomogeneous part of (25), i.e., we have−

∂A

∂t
−∇V = 0,

∇ ∧A = 0,
⇐⇒

A = ∇ ξ,

V = −∂ξ
∂t
,

where ξ is an arbitrary smooth function onR3 (used, e.g., for the Lorenz gauge).
(c) Similarly as for the first group of Maxwell equations, we can prove that the equi-

librium of the stress tensor defined by

∂σx
∂x

+
∂τxy
∂y

+
∂τzx
∂z

= 0,

∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

= 0,

∂τzx
∂x

+
∂τyz
∂y

+
∂σz
∂z

= 0,

(26)

defines a reflexive differential module (see [47]) and we have the parametrization
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(26) ⇐⇒



σx =
∂2χ3

∂y2
+
∂2χ2

∂z2
+
∂2ψ1

∂y ∂z
,

τyz = −
∂2χ1

∂y ∂z
− 1

2

∂

∂x

(
−∂ψ1

∂x
+
∂ψ2

∂y
+
∂ψ3

∂z

)
,

σy =
∂2χ1

∂z2
+
∂2χ3

∂x2
+
∂2ψ2

∂z ∂x
,

τzx = − ∂
2χ2

∂z ∂x
− 1

2

∂

∂y

(
∂ψ1

∂x
− ∂ψ2

∂y
+
∂ψ3

∂z

)
,

σz =
∂2χ2

∂x2
+
∂2χ1

∂y2
+
∂2ψ3

∂x ∂y
,

τxy = − ∂
2χ3

∂x ∂y
− 1

2

∂

∂z

(
∂ψ1

∂x
+
∂ψ2

∂y
− ∂ψ3

∂z

)
,

where the ψi’s and the χj’s are smooth functions on R3. Finally, if we set ψ1 =
ψ2 = ψ3 = 0 (resp., χ1 = χ2 = χ3 = 0), then we obtain the so-called Maxwell’s
parametrization (resp., Morera’s parametrization). For more details, see [47].

(d) Let us consider the following time-varying linear OD system:{
ẋ1(t)− t u1(t) = 0,

ẋ2(t)− u2(t) = 0.

Using Example 17, we can easily check that this system is controllable, i.e., de-
fines a stably free left module over O := A1(Q). By (c) of Theorem 4 (i.e.,
by Stafford’s theorem), this module is then free, i.e., the time-varying linear
system is flat by (d) of Theorem 7. The effective computation of an injective
parametrization is usually a difficult task. To do that, following constructive ver-
sions of Stafford’s theorems [48,49] and their implementations in the STAFFORD
package [48, 49], we obtain the following injective parametrization

x1(t) = t2 ξ1(t)− t ξ̇2(t) + ξ2(t),

x2(t) = t (t+ 1) ξ1(t)− (t+ 1) ξ̇2(t) + ξ2(t),

u1(t) = t ξ̇1(t) + 2 ξ1(t)− ξ̈2(t),
u2(t) = t (t+ 1) ξ̇1(t) + (2 t+ 1) ξ1(t)− (t+ 1) ξ̈2(t),

where ξ1 and ξ2 are arbitrary functions in a leftO-module F , and:{
ξ1(t) = (t+ 1)u1(t)− u2(t),
ξ2(t) = (t+ 1)x1(t)− t x2(t).

In the language of module theory, {ξ1 = (t+1)u1−u2, ξ2 = (t+1)x1− t x2}
is a basis of the free leftA1(Q)-moduleM , where x1, x2, u1 and u2 denote here
the generators of the module as explained in Section 4.1. Finally, we point out
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that the above injective parametrization does not contain singularities contrary to{
u1(t) = t−1 ẋ1(t),

u2(t) = ẋ2(t),

where x1 and x2 are arbitrary functions, which admits a singularity at t = 0.
(e) If we consider the following linear DTD system{

ẏ1(t)− y1(t− h) + 2 y1(t) + 2 y2(t)− 2u(t− h) = 0,

ẏ1(t) + ẏ2(t)− u̇(t− h)− u(t) = 0,

using (e) or (f) of Theorem 6, then we can check that it defines a projective
module over the commutative polynomial ring of DTD operators with constant
coefficients. By the Quillen-Suslin theorem (see (b) of Theorem 4), this module is
free. The computation of bases and injective parametrizations is usually intricate
and requires an effective version of the Quillen-Suslin theorem [20]. Using the
QUILLENSUSLIN package [20], we get the following injective parametrization

y1(t) = ξ(t),

y2(t) =
1
2 (−ξ̈(t− h) + ξ̇(t− 2h)− ξ̇(t) + ξ1(t− h)− 2 ξ(t)),

u(t) = 1
2 (ξ̇(t− h)− ξ̈(t)),

for all ξ belonging to a module over the ring of DTD operators. Finally, note that
y1 defines a basis of the free module defined by the above system.

5 Mathematica packages

5.1 The HOLONOMICFUNCTIONS package

The Mathematica package named HOLONOMICFUNCTIONS has been developed by
the second-named author in the frame of his Ph.D. thesis [29]. It can be down-
loaded for free from the website http://www.risc.jku.at/research/
combinat/software/HolonomicFunctions/, and a complete documen-
tation is given in the manual [30]. We start with a fresh Mathematica session and
load the package with the following command:

In[1]:= << RISC`HolonomicFunctions`

HolonomicFunctions Package version 1.7.1 (09-Oct-2013)
written by Christoph Koutschan
Copyright 2007-2013, Research Institute for Symbolic Computation
(RISC),
Johannes Kepler University, Linz, Austria
−→ Type ?HolonomicFunctions for help.

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
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In its core, the package provides functionality to construct Ore algebras and to
work with Ore polynomials. First, we demonstrate how this is done using a very
standard application, namely the operator from (b) of Example 2. For this purpose,
we define a multivariate Ore algebra with rational function coefficients, which is
built up of the shift operator Sn and the ordinary differential operator Dt:

In[2]:= alg = OreAlgebra[S[n],Der[t]]

Out[2]= K(t, n)[Sn;Sn, 0][Dt; 1, Dt]

The symbol K in Out[2] has no particular meaning, and just indicates that the
constant field can be everything that covers the user’s input; for example K could
contain the rational numbers Q as a proper subfield.

We can now convert an input expression to an Ore polynomial that belongs to
this Ore algebra and do some arithmetic (note the usage of the noncommutative
multiplication ∗∗ in Mathematica):

In[3]:= op = ToOrePolynomial[S[n] + Der[t]− n/t, alg]

Out[3]= Sn +Dt −
n

t

In[4]:= op ∗∗ (Der[t] + t n)

Out[4]= SnDt +D2
t + (n t+ t)Sn +

(
n t−

n

t

)
Dt +

(
n− n2

)
To construct an Ore algebra with polynomial coefficients, we just have to in-

clude the variables n and t in the command. Note that each monomial is displayed
according to the order in which the generators of the ring are given:

In[5]:= alg1 = OreAlgebra[S[n],Der[t], n, t]

Out[5]= K[n, t][Sn;Sn, 0][Dt; 1, Dt]

In[6]:= ChangeOreAlgebra[t ∗∗ op, alg1]

Out[6]= Sn t+Dt t− n− 1

The HOLONOMICFUNCTIONS package provides a rather general implementa-
tion of Ore algebras, which is advantageous for the applications in control theory
discussed in Section 4. For instance, the coefficients of an Ore polynomial ring need
not necessarily be polynomials or rational functions. The software also allows us to
have, for example, elementary functions in the coefficients:

In[7]:= alg = OreAlgebra[Der[t]]

Out[7]= K(t)[Dt; 1, Dt]

In[8]:= op = ToOrePolynomial[Cos[t] ∗∗Der[t] ∗∗ Sin[t], alg]

Out[8]= sin(t) cos(t)Dt + cos2(t)

In[9]:= op + Sin[t]̂ 2

Out[9]= sin(t) cos(t)Dt +
(
sin2(t) + cos2(t)

)
Note that the obvious simplification in the last step is not carried out. By default,

HOLONOMICFUNCTIONS keeps the coefficients of Ore polynomials in expanded
form, without further simplifications. But there are options to specify a normal form
for the coefficients and how to add and multiply them:
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In[10]:= alg1 = OreAlgebra[Der[t],CoefficientNormal→ Simplify,CoefficientPlus→
(Simplify[#1 + #2]&),CoefficientTimes→ (Simplify[#1 ∗#2]&)]

Out[10]= K(t)[Dt; 1, Dt]

In[11]:= op1 = ChangeOreAlgebra[op, alg1]

Out[11]= sin(t) cos(t)Dt + cos2(t)

In[12]:= op1 + Sin[t]̂ 2

Out[12]= sin(t) cos(t)Dt + 1

Ideally, these options are chosen in a way that expressions identically zero are
actually simplified to 0. This is, for instance, not the case when dealing with rational
function coefficients in expanded form (as we did above).

Apart from the coefficient domain, HOLONOMICFUNCTIONS provides also a lot
of flexibility concerning Ore extensions. As we have seen already, the most common
operator symbols are predefined, but there is also a way for the user to define own
operator symbols. As an example, we can construct an Ore algebra with a generic
Ore extension:
In[13]:= OreSigma[d] := σ;
In[14]:= OreDelta[d] := δ;
In[15]:= alg = OreAlgebra[d]

Out[15]= K[d;σ, δ]

In[16]:= ToOrePolynomial[d̂ 2 ∗∗ t, alg]

Out[16]= σ(σ(t))d2 + (δ(σ(t)) + σ(δ(t))d+ δ(δ(t))

Based on the arithmetic of Ore polynomials, an implementation of Buchberger’s
algorithm for computing Gröbner bases is part of the HOLONOMICFUNCTIONS
package. In the following, we consider a family of orthogonal polynomials, namely
the Legendre polynomials, which satisfy a second-order differential equation as well
as a three-term recurrence. We represent these equations as operators in a suitable
Ore algebra and show, by means of a Gröbner basis computation, that Buchberger’s
product criterion cannot be exploited in noncommutative domains (note that the two
Ore polynomials have leading power products D2

t and S2
n , whose gcd is 1):

In[17]:= ode = (t̂ 2− 1) ∗D[f [n, t], t, t] + 2x ∗D[f [n, t], t]− n(n+ 1) ∗ f [n, t]

Out[17]=
(
t2 − 1

)
f (0,2)(n, t) + 2 t f (0,1)(n, t)− n (n+ 1)f(n, t)

In[18]:= rec = (n+ 1) ∗ f [n+ 1, t]− t(2n+ 1) ∗ f [n, t] + n ∗ f [n− 1, t]

Out[18]= n f(n− 1, t)− (2n+ 1) t f(n, t) + (n+ 1) f(n+ 1, t)

In[19]:= ops = ToOrePolynomial[{ode, rec}, f [n, x]]

Out[19]= {(t2 − 1)D2
t + 2 tDt + (−n2 − n), (n+ 2)S2

n + (−2n t− 3 t)Sn + (n+ 1)}
In[20]:= OreGroebnerBasis[ops]

Out[20]= {(−n− 1)Sn + (t2 − 1)Dt + (nt+ t), (t2 − 1)D2
t + 2 tDt + (−n2 − n)}

Although this paper is mostly about applications of the above-described meth-
ods in control theory, we want to mention briefly the main application for which
the HOLONOMICFUNCTIONS package has been developed. That is: proving spe-
cial function identities, involving integrals and symbolic sums, in the spirit of Zeil-
berger’s holonomic systems approach [54]. Once the input functions are represented
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by their annihilators (together with initial conditions), one can use Gröbner ba-
sis techniques to compute the annihilator of an integral or sum, by employing the
method of creative telescoping [55]. An identity then is established, for example, by
observing that both sides satisfy the same differential equation or recurrence. As an
example, consider the following identity involving the Laguerre polynomials Lan(t)
and the Bessel function Ja(t):

e−t ta/2 n!Lan(t) =

∫ +∞

0

e−τ τ
a
2+n Ja

(
2
√
τ t
)
dτ. (27)

By using closure properties of holonomic functions, the HOLONOMICFUNCTIONS
package automatically computes the annihilator of the function on the left-hand side
of (27). The result is given as a Gröbner basis:
In[21]:= Annihilator[Exp[−t] ∗ t̂ (a/2) ∗ n! ∗ LaguerreL[n, a, t], {S[a],S[n],Der[t]}]

Out[21]= {2Sn − 2 tDt + (−a− 2n− 2), 4 t2D2
t + (4 t2 + 4 t)Dt + (−a2 + 2 a t+ 4n t+ 4 t),

2 t S2
a + (2 a t+ 2 t2 + 2 t)Dt + (−a2 + a t− a+ 2n t+ 2 t)}

For the right-hand side of (27), one computes the annihilator of the integrand,
and then applies creative telescoping to it, in the form of Chyzak’s algorithm [8]:
In[22]:= ann = Annihilator[Exp[−τ ] ∗ τ (̂a/2 + n) ∗ BesselJ[a, 2 Sqrt[τ t]],

{S[a],S[n],Der[t],Der[τ ]}]
Out[22]= {2 tDt − 2 τ Dτ + (a+ 2n− 2 τ), Sn − τ, τ2D2

τ + (−a τ − 2n τ + 2 τ2 + τ)Dτ +
(an−a τ+n2−2n τ+τ2+τ t+τ), t S2

a +(a τ+τ)Dτ+(−a2−an+a τ−a−n+τ t+τ)}
In[23]:= CreativeTelescoping[ann,Der[τ ]]

Out[23]= {{−2Sn + 2 tDt + (a+ 2n+ 2), 4 t2D2
t + (4 t2 + 4 t)Dt + (−a2 + 2 a t+ 4n t+ 4 t),

2 t S2
a + (2 a t+ 2 t2 + 2 t)Dt + (−a2 + a t− a+ 2n t+ 2 t)}, {−2 τ,−4 τ t,−2 τ t}}

Note that the first part of Out[23] agrees (up to sign) with Out[21], the annihilator
of the left-hand side. In order to complete the proof of (27), one has to investigate
whether the certificate (the second part of Out[23]) contributes an inhomogeneous
part to the computed equations (this is not the case here), and one has to compare
initial values. These steps are currently beyond the capabilities of the package and
have to be done by hand; see the examples in [29] where this is demonstrated in
detail.

5.2 The OREALGEBRAICANALYSIS package

A Mathematica package, called OREALGEBRAICANALYSIS, has been recently
developed by the first, third, and fourth-named authors3. It is freely available with a
library of examples (see [15]).

The OREALGEBRAICANALYSIS package can be used to study (determined/over-
determined/underdetermined) linear functional systems appearing, e.g., in control
theory and in mathematical physics. For instance, structural properties of linear

3 This work was supported by the PHC PARROT 29586NG between France and Estonia.
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functional systems can algorithmically be decided (e.g., existence and computation
of autonomous elements, (injective, minimal, chain of) parametrizations, potentials,
flat outputs, decide Willems’ controllability and observability). We point out that
the algorithms implemented in this package are generic in the sense that they do not
depend on the Ore algebras.

To define, manipulate, and compute in Ore algebras of functional operators, we
use the Mathematica package HOLONOMICFUNCTIONS described in the previ-
ous section. The package OREALGEBRAICANALYSIS extends these Gröbner basis
techniques to finitely presented left modules over the same classes of Ore algebras.
It also contains algorithms for module theory (e.g., test whether or not a module
admits torsion elements, is torsion-free, reflexive, projective, stably free, free) and
homological algebra (e.g., computation of free resolutions, projective dimension,
extension modules with value in the underlying ring, invariants, . . . ).

The OREALGEBRAICANALYSIS package includes the main procedures imple-
mented in the Maple packages OREMODULES [10] and OREMORPHISMS [13].
Since HOLONOMICFUNCTIONS can handle larger classes of Ore algebras than the
Maple package ORE−ALGEBRA4, OREALGEBRAICANALYSIS can study larger
classes of linear functional systems than the Maple packages OREMODULES and
OREMORPHISMS. Moreover, the internal design of Mathematica can allow us to
consider classes of systems which could not easily be considered in Maple such as
generic linearizations of nonlinear functional systems defined by explicit equations
and systems containing transcendental functions (e.g., trigonometric functions, spe-
cial functions). See the following examples.

We will now shortly illustrate the main functions and applications of the OREAL-
GEBRAICANALYSIS package with explicit examples. For more examples, see [15].

Example 22. Let us consider an example studied in [42]. We start the Mathematica
session by loading the package
In[24]:= << OreAlgebraicAnalysis̀

and then entering the system equations in the form:
In[25]:= eqs = {x′

1[t]→ x1[t]u[t] + u[t− 2],

x′
2[t]→ u[t] + u[t− 1],

x′
3[t]→ u[t− 1]− u[t− 2]};

vars = {x1[t], x2[t], x3[t], u[t] };

Let us now introduce the following Ore algebra A of DTD operators:
In[26]:= replA = ModelToReplacementRules[ eqs, t ];

A = OreAlgebraWithRelations[ Der[t], S[−1][t], replA ]

Out[26]= K(t)[Dt; 1, Dt][
(
S−1
t

)
; #1/ . t→ t− 1&, 0&]

The matrixR of DTD operators which defines the generic linearization of the above
nonlinear system is then given by:
In[27]:= MatrixForm[R = ToOrePolynomialD[ eqs, vars,A ]]

4 http://algo.inria.fr/chyzak/Mgfun/Sessions/Ore_algebra.html.

http://algo.inria.fr/chyzak/Mgfun/Sessions/Ore_algebra.html
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Out[27]=
Dt − u[t] 0 0 −

(
S−1t

)2 − x1[t]
0 Dt 0 −

(
S−1t

)
− 1

0 0 Dt

(
S−1t

)2 − (S−1t )


Let M = A1×4/(A1×3R) be the left A-module finitely presented by the matrix R.
The adjoint of R is then defined by:
In[28]:= MatrixForm[ Radj = Involution[ R,A ]]

Out[28]=


Dt − u[−t] 0 0
0 Dt 0
0 0 Dt

−
(
S−1t

)2 − x1[−t] − (S−1t )
− 1

(
S−1t

)2 − (S−1t )


Let us check whether or not M is a torsion-free left A-module:
In[29]:= {Ann, Rp, Q} = Exti[ Radj, A, 1 ];

MatrixForm[ Ann ]

Out[29]=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Dt


In[30]:= MatrixForm[ Rp ]

Out[30]=


0 −Dt 0
(
S−1t

)
+ 1

−Dt + u[t] 0 −Dt

(
S−1t

)
+ x1[t]

0 0 Dt

(
S−1t

)2 − (S−1t )
0 −

(
S−1t

)2
+
(
S−1t

)
−
(
S−1t

)
− 1 0


The matrix Q is a parametrization of the controllable part (it is too large to be printed
here; see [15]). Since Ann is not the identity matrix, we deduce that M admits
nontrivial torsion elements and thus the corresponding system admits autonomous
elements τ1, . . . , τ4, defined by:
In[31]:= {aut, eqs, rels} = AutonomousElements[ R,

{dx1[t], dx2[t], dx3[t], du[t]}, τ, A, Relations→ True];

aut

Out[31]= {τ [1][t]→ du[−1 + t] + du[t]− dx′2[t],
τ [2][t]→ du[−1 + t] + u[t]dx1[t] + du[t]x1[t]− dx′1[t]− dx′3[t],
τ [3][t]→ du[−2 + t]− du[−1 + t] + dx′3[t],
τ [4][t]→ −dx2[−2 + t] + dx2[−1 + t]− dx3[−1 + t]− dx3[t] }

In[32]:= eqs

Out[32]= { τ [1][t] == 0, τ [2][t] == 0, τ [3][t] == 0, τ [4]′[t] == 0 }

In[33]:= rels

Out[33]= {−τ [2][t]− τ [3][t] == 0, −τ [1][t] == 0, τ [3][t] == 0,

− τ [1][−2 + t] + τ [1][−1 + t] + τ [3][−1 + t] + τ [3][t] + τ [4]′[t] == 0 }

We note that the first three autonomous elements τ1, τ2, τ3 are trivial. The only non-
trivial autonomous element is τ4 = −dx2(t−2)+dx2(t−1)−dx3(t−1)−dx3(t),
which satisfies τ̇4 = 0.
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Example 23. Let us consider the following nonlinear DTD system considered in [6]:
In[34]:= eqs = {x′

1[t]→ x2[t− 1]u[t],

x′
2[t]→ x3[t]u[t],

x′
3[t]→ u[t]};

vars = {x1[t], x2[t], x3[t], u[t]};

Let us introduce the following Ore algebra A of DTD operators
In[35]:= replA = ModelToReplacementRules[ eqs, t ];

A = OreAlgebraWithRelations[ Der[t], S[−1][t], replA ]

Out[35]= K(t)[Dt; 1, Dt][
(
S−1
t

)
; #1/ . t→ t− 1&, 0&]

the matrix R of DTD operators which defines the generic linearization of the above
nonlinear system
In[36]:= MatrixForm[R = ToOrePolynomialD[eqs, vars,A]]

Out[36]=
Dt −u[t]

(
S−1t

)
0 −x2[t− 1]

0 Dt −u[t] −x3[t]
0 0 Dt −1


and the left A-module M = A1×4/(A1×3R) finitely presented by R. Let us first
compute the adjoint of R:
In[37]:= MatrixForm[Radj = Involution[R,A]]

Out[37]=


Dt 0 0
−u[1− t]

(
S−1t

)
Dt 0

0 −u[−t] Dt

−x2[−1− t] −x3[−t] −1


Let us check whether or not M is a torsion-free left A-module:
In[38]:= {Ann,Rp,Q} = Simplify[ Exti[ Radj, A, 1 ]];

MatrixForm[ Ann ]

Out[38]=
Dt 0 0

0 1 0
0 0 u[t]Dt − u′[t]


In[39]:= MatrixForm[ Rp ]

Out[39]=
 0 −1 x3[t] 0

0 0 −Dt 1
Dt 0 −u[t]x3[t− 1]

(
S−1t

)
−x3[t− 1]


The matrix Q is too large to be printed here. For more details, see [15].
In[40]:= {aut, eqs, rels} = AutonomousElements[ R, {dx1[t], dx2[t], dx3[t], du[t]},

τ, A, Relations→ True]; aut

Out[40]= {τ [1][t]→ −dx2[t] + dx3[t]x3[t],

τ [2][t]→ du[t]− dx′3[t],
τ [3][t]→ −du[t]x2[t− 1]− u[t]dx3[t− 1]x3[t− 1] + dx′1[t]}

The autonomous elements τ1, τ2, τ3 satisfy the following equations:
In[41]:= eqs

Out[41]= {τ [1]′[t] == 0,
τ [2][t] == 0,
− τ [3][t]u′[t] + u[t]τ [3]′[t] == 0}
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The A-linear relations among the autonomous elements are given by:
In[42]:= rels

Out[42]= {u[t]τ [1][t− 1] + τ [3][t] == 0,

− x[3][t]τ [2][t]− τ [1]′[t] == 0,
τ [2][t] == 0}

Let us now prove that the set of autonomous elements can be generated by τ1.
Let us introduce the matrix L defining rels:
In[43]:= MatrixForm[L = ToOrePolynomialD[ rels,

{τ [1][t], τ [2][t], τ [3][t]}, A]]

Out[43]=
u[t] (S−1t )

0 1
−Dt −x3[t] 0
0 −1 0


Let us consider the following matrix
In[44]:= MatrixForm[γ = {{1, 0, 0}} ]

Out[44]=
(
1 0 0

)
which corresponds to the position of τ1. To express τ2 and τ3 in terms of τ1, we
first check whether or not the matrix T , formed by stacking L with γ, admits a left
inverse.
In[45]:= U = LeftInverse[T = Join[L, γ], A]

Out[45]= {{0, 0, 0, 1}, {0, 0,−1, 0}, {1, 0, 0,−u[t]
(
S−1
t

)
}}

Hence, if we consider the last column of the left inverse U of T , i.e.
In[46]:= MatrixForm[V = Take[U,All,−1]]

Out[46]=
 1

0
−u[t]

(
S−1t

)


then we obtain:
In[47]:= Thread[Table[τ [i][t], {i, 3}]→ ApplyMatrix[V, {τ [1][t]}]]

Out[47]= {τ [1][t]→ τ [1][t], τ [2][t]→ 0, τ [3][t]→ −u[t]τ [1][t− 1]}

From this point, we will use some procedures which are not freely available
(see [2]). Finally, let us integrate the one-form defined by τ1:
In[48]:= BookForm[sp = SpanK[{ApplyMatrixD[Rp[[1]], vars]}, t]]

Out[48]= SpanK[−dx2[t] + x3[t]dx3[t]]

In[49]:= IntegrateOneForms[sp]

Out[49]= {x2[t]−
1

2
x3[t]

2}

Thus, x1 is an autonomous element of the nonlinear DTD system.
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Gröbner bases. Journal of Symbolic Computation, 46, 595–608, 2011.

39. Macaulay 2 project. http://www.math.uiuc.edu/Macaulay2/.
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