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ABSTRACT
Elaborating on an approach recently proposed by Mark van Hoeij,

we continue to investigate why creative telescoping occasionally

fails to find the minimal-order annihilating operator of a given

definite sum or integral. We offer an explanation based on the

consideration of residues.
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1 INTRODUCTION
Creative telescoping is the standard approach to definite summa-

tion and integration in computer algebra. Its purpose is to find an

annihilating operator for a given definite sum

∑
𝑘 𝑓 (𝑛, 𝑘) or a given

definite integral

∫
Ω 𝑓 (𝑥,𝑦)𝑑𝑦.
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Such operators are obtained from annihilating operators of the

summand or integrand that have a particular form. In the case of

summation, suppose that we have

(𝐿 − (𝑆𝑘 − 1)𝑄) · 𝑓 (𝑛, 𝑘) = 0 (1.1)

for some operator 𝐿 that only involves 𝑛 and the shift operator 𝑆𝑛
but neither 𝑘 nor the shift operator 𝑆𝑘 , and another operator𝑄 that

may involve any of 𝑛, 𝑘, 𝑆𝑛, 𝑆𝑘 . Summing the equation over all 𝑘

yields

𝐿 ·
∑︁
𝑘

𝑓 (𝑛, 𝑘) =
[
𝑄 · 𝑓 (𝑛, 𝑘)

]∞
𝑘=−∞ .

If the right-hand side happens to be zero, we find that 𝐿 is an

annihilating operator for the sum.

In the case of integration, having

(𝐿 − 𝐷𝑦𝑄) · 𝑓 (𝑥,𝑦) = 0 (1.2)

for some operator 𝐿 that only involves 𝑥 and the derivation 𝐷𝑥 but

neither 𝑦 nor the derivation 𝐷𝑦 , and some other operator 𝑄 that

may involve any of 𝑥,𝑦, 𝐷𝑥 , 𝐷𝑦 , implies the equation

𝐿 ·
∫
Ω
𝑓 (𝑥,𝑦) 𝑑𝑦 =

[
𝑄 · 𝑓 (𝑥,𝑦)

]
Ω .

If the right-hand side happens to be zero, we find that 𝐿 is an

annihilating operator for the integral.

An operator 𝐿 as in equations (1.1) and (1.2) is called a telescoper
for 𝑓 , and 𝑄 is called a certificate for 𝐿. The degree of 𝑆𝑛 or 𝐷𝑥 in

𝐿 is called the order of 𝐿. If 𝐿 is such that there is no telescoper

of lower order, then 𝐿 is called a minimal telescoper. The minimal

telescoper is unique up to multiplication by rational functions (from

the left).

Algorithms for testing the existence of telescopers and comput-

ing them if they exist meanwhile have a long history in computer

algebra, see [1, 2, 22, 31, 34, 35] for classical results and recent

developments on the matter. In his recent paper [33], van Hoeij

proposed a fresh view on creative telescoping. He explains why a

telescoper can often be written as a least common left multiple of

smaller operators, and why the minimal telescoper is sometimes

not the minimal-order annihilating operator for the sum or integral

under consideration.

Let 𝐶 be a field of characteristic zero and 𝐶 (𝑛, 𝑘) be the field

of rational functions in 𝑛, 𝑘 over 𝐶 . Let 𝐴𝑛,𝑘 = 𝐶 (𝑛, 𝑘)⟨𝑆𝑛, 𝑆𝑘 ⟩ be
the ring of all linear recurrence operators in 𝑆𝑛, 𝑆𝑘 with rational
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function coefficients, and 𝐴𝑛 = 𝐶 (𝑛)⟨𝑆𝑛⟩ be the subalgebra con-
sisting of all operators that do not involve 𝑘 or 𝑆𝑘 . For a given

summand 𝑓 (𝑛, 𝑘), consider the 𝐴𝑛-module Ω := 𝐴𝑛,𝑘 · 𝑓 (𝑛, 𝑘) and
the quotient module 𝑀 := Ω/((𝑆𝑘 − 1)Ω). An operator 𝐿 ∈ 𝐴𝑛 is

then a telescoper for 𝐻 = 𝑓 (𝑛, 𝑘) if and only if it is an annihilating

operator of the image 𝐻 of 𝐻 in𝑀 .

In this setting, van Hoeij makes the following observations:

• If𝑀 can be written as a direct sum of submodules, say𝑀 =

𝑀1 ⊕ 𝑀2, then the minimal telescoper for 𝐻 is the least

common left multiple of the minimal annihilating operators

of the projections 𝜋1 (𝐻 ) and 𝜋2 (𝐻 ) of 𝐻 in 𝑀1 and 𝑀2,

respectively.

• If, moreover, the definite sum whose summand corresponds

to 𝜋1 (𝐻 ) happens to be zero identically, then every annihi-

lating operator of 𝜋2 (𝐻 ) is already an annihilating operator

of the definite sum over 𝐻 , even though it may not be a

telescoper for 𝐻 .

In order to take advantage of the second observation, it is necessary

to understand under which circumstances a definite sum can be zero.

Such “vanishing sums” are themselves examples when a minimal

telescoper fails to be a minimal annihilator. For example, we have∑
𝑘 (−1)𝑘

(
2𝑛+1
𝑘

)2
= 0, so the minimal annihilator is 1. However, the

minimal telescoper of (−1)𝑘
(
2𝑛+1
𝑘

)2
is 𝐿 = (2𝑛 + 3)𝑆𝑛 + (8𝑛 + 8).

Note that since 𝐿 is irreducible, the module𝑀 , which is isomorphic

to 𝐴𝑛/⟨𝐿⟩, has no nontrivial submodules.

We propose an explanation of why certain sums are identically

zero which is based on the investigation of residues. Also based on

residues, we will explain why telescopers tend to be least common

left multiples. We are not the first to use residues in the context

of creative telescoping. For rational functions and algebraic func-

tions in the differential case, it was observed by Chen, Kauers, and

Singer [16] that telescopers and residues are closely related. Chen

and Singer also used residues in the context of summation prob-

lems [17]. Residues are also tied to creative telescoping through

the equivalence of extracting residues with taking diagonals and

positive parts and the computation of Hadamard products [11]. We

are also not the first to study the non-minimality of telescopers.

Besides van Hoeij’s recent work [33], the problem was investigated

by Paule [27] who proposed the method of creative symmetrizing.

This method was further developed [29, 30] and enhanced by incor-

porating contiguous relations [28]. An approach reminiscent to van

Hoeij’s ideas already appeared in a technical report by Chyzak [18].

By translating multiple binomial sums to rational integrals, Bostan,

Lairez, and Salvy [12] approach the non-minimality problem by a

technique they call geometric reduction.

2 RESIDUES AND TELESCOPERS FOR
RATIONAL FUNCTIONS

Residues have played an important role in rational integration and

summation [8, 9, 13, 17, 26]. In this section, we will first use residues

in the continuous setting to explain why minimal telescopers may

not always lead to minimal annihilators for integrals and then use

residues in the discrete setting to explain some vanishing sums.

2.1 The integration case
Let 𝐹 = 𝐶 (𝑥), so that the bivariate rational function field𝐶 (𝑥,𝑦) can
be viewed as a univariate rational function field 𝐹 (𝑦). An element

𝑓 of 𝐹 (𝑦) is said to be integrable in 𝐹 (𝑦) if 𝑓 = 𝐷𝑦 (𝑔) for some

𝑔 ∈ 𝐹 (𝑦).
Any rational function 𝑓 = 𝑎/𝑏 ∈ 𝐹 (𝑦) with 𝑎, 𝑏 ∈ 𝐹 [𝑦] and

gcd(𝑎, 𝑏) = 1 can be uniquely written as

𝑓 = 𝑝 +
𝑛∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝛼𝑖, 𝑗

(𝑦 − 𝛽𝑖 ) 𝑗
,

where 𝑝 ∈ 𝐹 [𝑦], 𝑛,𝑚𝑖 ∈ N, 𝛼𝑖, 𝑗 , 𝛽𝑖 ∈ 𝐹 , and the 𝛽𝑖 ’s are distinct

roots of 𝑏. Note that all the 𝛼𝑖, 𝑗 ’s are in the field 𝐹 (𝛽1, . . . , 𝛽𝑛). The
value 𝛼𝑖,1 ∈ 𝐹 is called the residue (in 𝑦) of 𝑓 at 𝛽𝑖 , denoted by

res𝑦 (𝑓 , 𝛽𝑖 ). Let 𝑃,𝑄 ∈ 𝐹 [𝑦] be such that gcd(𝑃,𝑄) = 1 and 𝑄 is

squarefree and let 𝛽 ∈ 𝐹 be a zero of 𝑄 . Then we have Lagrange’s

residue formula

res𝑦

(
𝑃

𝑄
, 𝛽

)
=

𝑃 (𝛽)
𝐷𝑦 (𝑄) (𝛽)

.

It is well-known that a rational function is integrable in 𝐹 (𝑦) if
and only if all its residues in 𝑦 are zero (see [17, Proposition 2.2]).

So residues are the obstruction to the integrability in 𝐹 (𝑦). From
this fact and the commutativity between the derivation in 𝑥 and

taking the residue in 𝑦, we have that the minimal telescoper of a

rational function in 𝐶 (𝑥,𝑦) is the least common left multiple of

the minimal annihilating operators of its residues in 𝑦 which are

algebraic functions in 𝐶 (𝑥) (see [16, Theorem 6]).

Now consider the integral

𝐼 (𝑥) :=
∫ ∞

−∞
𝑓 (𝑥,𝑦) 𝑑𝑦 with 𝑓 :=

1

𝑦4 + 𝑥𝑦2 + 1

and 𝑥 > 2.

We have 𝐼 (𝑥) = 𝜋/
√
𝑥 + 2, so the integral has the minimal anni-

hilator (2𝑥 + 4)𝐷𝑥 + 1. The minimal telescoper for 𝑓 however is

𝐿 = (4𝑥2−16)𝐷2

𝑥 +12𝑥𝐷𝑥 +3. Let us see why the minimal telescoper

overshoots in this example.

Let 𝛼, 𝛽 ∈ Q(𝑥) be such that 𝛼,−𝛼, 𝛽,−𝛽 are the poles of 𝑓 and
𝛽 = 𝛼 (𝛼2 + 𝑥). Then we have the residues

res𝑦 (𝑓 ,±𝛼) = ±𝛼 (2 − 𝑥
2 − 𝛼2𝑥)

2(𝑥2 − 4)
and res𝑦 (𝑓 ,±𝛽) = ±𝛼 (2𝛼

2 + 𝑥)
2(𝑥2 − 4)

.

Note that each of the four residues has the telescoper 𝐿 as its

minimal annihilator. This does not explain yet why the telescoper

factors and overshoots. To explain this, we need to observe that

the sum res𝑦 (𝑓 , 𝛼) + res𝑦 (𝑓 , 𝛽) is annihilated by (2𝑥 + 4)𝐷𝑥 + 1.

By the residue theorem, the sum of these residues is equal (up to a

multiplicative constant) to the following contour integral:

Re

Im

•𝛼

•−𝛼

•𝛽

•−𝛽
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By increasing the contour indefinitely, we see that it is also the

value of the real integral 𝐼 (𝑥) = 𝜋/
√
𝑥 + 2. As creative telescoping

does not know the contour but only the integrand, it must return

a telescoper that works for every contour, in particular one that

encircles only one of the poles. For such a contour, the minimal

telescoper is indeed the minimal annihilator.

In van Hoeij’s language of submodules, translated to the differen-

tial case, consider Ω = 𝐶 (𝑥,𝑦), 𝑀 = Ω/𝐷𝑦Ω, and 𝐴𝑥 = 𝐶 (𝑥)⟨𝐷𝑥 ⟩.
The submodule generated by 𝑓 in𝑀 is𝑁 = span𝐶 (𝑥 ) (𝑓 +𝐷𝑦Ω, 𝑦2 𝑓 +
𝐷𝑦Ω). Note that dim𝐶 (𝑥 ) 𝑁 = ord(𝐿) = 2. The module 𝑁 admits a

decomposition 𝑁 = 𝑁+ ⊕ 𝑁− where 𝑁± = span𝐶 (𝑥 ) ((1 ± 𝑦2) 𝑓 +
𝐷𝑦Ω), which suggests writing

𝑓 =
1 + 𝑦2
2

𝑓 + 1 − 𝑦2
2

𝑓 .

Indeed, the minimal telescoper of
1+𝑦2
2
𝑓 is (2𝑥 + 4)𝐷𝑥 + 1, the

minimal telescoper of
1−𝑦2
2
𝑓 is (2𝑥 − 4)𝐷𝑥 + 1, and 𝐿 is the least

common left multiple of these operators. Because of

res𝑦 (𝑓 , 𝛼) = res𝑦 (𝑦2 𝑓 , 𝛽) and res𝑦 (𝑓 , 𝛽) = res𝑦 (𝑦2 𝑓 , 𝛼),

the residues of
1−𝑦2
2
𝑓 at 𝛼 and 𝛽 cancel each other, so∫ ∞

−∞

1 − 𝑦2
2

𝑓 𝑑𝑦 = 0,

and that’s why the factor (2𝑥 − 4)𝐷𝑥 + 1 of 𝐿 is not needed for 𝐼 (𝑥).

2.2 The summation case
As a discrete analogue of residues for rational integration, discrete

residues are introduced to study the summability problem and the

existence problem of telescopers for rational functions in [17]. Effi-

cient algorithms for computing discrete residues and their variants

are given in [8–10].

Let 𝑆𝑥 and 𝑆𝑦 denote the usual shift operators of𝐶 (𝑥,𝑦) with re-

spect to 𝑥 and 𝑦, respectively. Let Δ𝑦 denote the difference operator

defined by Δ𝑦 (𝑟 ) = 𝑆𝑦 (𝑟 ) − 𝑟 for any 𝑟 ∈ 𝐹 (𝑦). A rational function

𝑓 ∈ 𝐹 (𝑦) is said to be summable in 𝐹 (𝑦) if 𝑓 = Δ𝑦 (𝑔) for some

𝑔 ∈ 𝐹 (𝑦). For any elements 𝛽 ∈ 𝐹 , we call the set {𝛽 + 𝑖 | 𝑖 ∈ Z} a
Z-orbit of 𝛽 in 𝐹 , denoted by [𝛽]Z. Any rational function 𝑓 ∈ 𝐹 (𝑦)
can be decomposed into the form

𝑓 = 𝑝 +
𝑛∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑑𝑖,𝑗∑︁
ℓ=0

𝛼𝑖, 𝑗,ℓ

(𝑦 − (𝛽𝑖 + ℓ)) 𝑗
,

where 𝑝 ∈ 𝐹 [𝑦],𝑚,𝑛𝑖 , 𝑑𝑖, 𝑗 ∈ N, 𝛼𝑖, 𝑗,ℓ , 𝛽𝑖 ∈ 𝐹 , and the 𝛽𝑖 ’s are in dis-

tinctZ-orbits. The sum
∑𝑑𝑖,𝑗
ℓ=0

𝛼𝑖, 𝑗,ℓ is called the discrete residue in𝑦 of
𝑓 at theZ-orbit [𝛽𝑖 ]Z ofmultiplicity 𝑗 , denoted by dres𝑦 (𝑓 , [𝛽𝑖 ]Z, 𝑗).
By Proposition 2.5 in [17], discrete residues are the precise obstruc-

tion for rational functions to be summable, i.e., 𝑓 ∈ 𝐹 (𝑦) is sum-

mable in 𝐹 (𝑦) if and only if all of the discrete residues of 𝑓 are

zero.

We recall a very old result due to Nicole [32] that describes a

family of summable rational functions and then use this result to

explain some vanishing sums. The idea behind this theorem has

become part of the classical summation folklore and also explained,

for example, in Section 5.3 of [20].

Lemma 2.1 (Nicole, 1717). Let 𝑛 ≥ 2 be an integer and 𝑃 ∈ 𝐹 [𝑦]
be such that deg𝑦 (𝑃) ≤ 𝑛 − 2. Then the rational function

𝑓 =
𝑃 (𝑦)

(𝑦 + 𝛽1) · · · (𝑦 + 𝛽𝑛)
is summable in 𝐹 (𝑦) for all 𝛽𝑖 ∈ 𝐹 with 𝛽𝑖 − 𝛽 𝑗 ∈ Z \ {0} for 𝑖 ≠ 𝑗 .

Proof. By partial fraction decomposition, we get

𝑓 =

𝑛∑︁
𝑖=1

𝛼𝑖

𝑦 + 𝛽𝑖
, where 𝛼𝑖 ∈ 𝐹 . (2.1)

Note that the 𝛽𝑖 ’s are in the same Z-orbit. By Proposition 2.5 in [17],

𝑓 is summable in 𝐹 (𝑦) if and only if the sum

∑𝑛
𝑖=1 𝛼𝑖 is zero. By

normalizing 𝑓 in (2.1), we get

𝑃 = (𝛼1 + · · · + 𝛼𝑛)𝑦𝑛−1 + terms with degree lower than 𝑛 − 1.

Since deg𝑦 (𝑃) ≤ 𝑛 − 2, it holds that

∑𝑛
𝑖=1 𝛼𝑖 = 0.

When 𝐹 is the field of complex numbers, the vanishing-sum

identity

∑𝑛
𝑖=1 𝛼𝑖 = 0 also follows from Cauchy’s residue theorem

since the residue of 𝑓 at infinity is zero.

As a corollary of Nicole’s lemma, we obtain a class of vanishing

sums. For any polynomial 𝑃 ∈ 𝐹 [𝑦] with deg𝑦 (𝑃) ≤ 𝑛 − 1, we

consider the rational function

𝑓 =
𝑃 (𝑦)

𝑦 (𝑦 + 1) · · · (𝑦 + 𝑛) =

𝑛∑︁
𝑘=0

𝛼𝑘

𝑦 + 𝑘 ,

which is summable in 𝐹 (𝑦) by Nicole’s lemma. Since the denomi-

nator of 𝑓 is squarefree, Lagrange’s residue formula implies that

𝛼𝑘 =
(−1)𝑘𝑃 (−𝑘)
𝑘!(𝑛 − 𝑘)! .

Then we have the vanishing sum

𝑛∑︁
𝑘=0

(−1)𝑘𝑃 (−𝑘)
𝑘!(𝑛 − 𝑘)! = 0.

Example 2.1. To show the combinatorial identity

𝑛∑︁
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
𝑘 𝑗 = 0, where 𝑛 ≥ 2 and 0 ≤ 𝑗 < 𝑛,

we consider the rational function

𝑓 =
𝑃

𝑄
=

𝑛!(−𝑦) 𝑗
𝑦 (𝑦 + 1) · · · (𝑦 + 𝑛) =

𝑛∑︁
𝑘=0

𝛼𝑘

𝑦 + 𝑘 .

By Lagrange’s residue formula, we have

𝛼𝑘 = (−1)𝑘
(
𝑛

𝑘

)
𝑘 𝑗 .

Since 0 ≤ 𝑗 < 𝑛, we have deg𝑦 (𝑃) ≤ deg𝑦 (𝑄)−2. Then the identity∑𝑛
𝑘=0

𝛼𝑘 = 0 holds.

Example 2.2. To show the combinatorial identity

𝑛∑︁
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
1

2𝑘 − 1

= 0, where 𝑛 ≥ 1,

we consider the rational function

𝑓 =
𝑃

𝑄
= −

2
𝑛 ∏𝑛−1

𝑖=1 (2(𝑦 + 𝑖) + 1)
𝑦 (𝑦 + 1) · · · (𝑦 + 𝑛) =

𝑛∑︁
𝑘=0

𝛼𝑘

𝑦 + 𝑘 .
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By Lagrange’s residue formula, we get

𝛼𝑘 =

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
1

2𝑘 − 1

.

Since deg𝑦 (𝑃) = 𝑛− 1 and deg𝑦 (𝑄) = 𝑛 + 1, Nicole’s lemma implies

the identity

∑𝑛
𝑘=0

𝛼𝑘 = 0.

We will see more applications of Nicole’s lemma in Section 3.3.

3 RESIDUAL FORMS AND PRESCOPERS FOR
HYPERGEOMETRIC TERMS

We now focus on creative telescoping for hypergeometric terms.

We will use residual forms introduced in [15] to construct submod-

ules in order to find right factors of minimal telescopers and then

investigate the automorphisms and the non-minimality phenome-

non of minimal telescopers for hypergeometric sums. These studies

continue the development of the submodule approach initialized

by van Hoeij [33].

To be more compatible with the customary usage, we will now

use 𝑛 and 𝑘 instead of 𝑥 and 𝑦, respectively. A sequence 𝐻 (𝑛, 𝑘)
is called a hypergeometric term over 𝐶 (𝑛, 𝑘) with respect to 𝑛 and

𝑘 if the two shift quotients 𝑆𝑛 (𝐻 )/𝐻 and 𝑆𝑘 (𝐻 )/𝐻 are rational

functions in 𝐶 (𝑛, 𝑘). A hypergeometric term 𝐻 is said to be hyper-
geometric summable in 𝑘 if 𝐻 = Δ𝑘 (𝐺) for some hypergeometric

term 𝐺 . A nonzero linear operator 𝐿 ∈ 𝐶 (𝑛)⟨𝑆𝑛⟩ is called a tele-
scoper for 𝐻 if there exists another hypergeometric term 𝐺 (𝑛, 𝑘)
such that

𝐿(𝐻 (𝑛, 𝑘)) = Δ𝑘 (𝐺 (𝑛, 𝑘)) . (3.1)

Recall that 𝑝 ∈ 𝐶 (𝑛) [𝑘] is shift-free in 𝑘 if gcd(𝑝, 𝑆𝑖
𝑘
(𝑝)) = 1 for

all 𝑖 ∈ Z \ {0}. A rational function 𝑓 = 𝑎/𝑏 ∈ 𝐶 (𝑛, 𝑘) is shift-
reduced in 𝑘 if gcd(𝑎, 𝑆𝑖

𝑘
(𝑏)) = 1 for all 𝑖 ∈ Z. A nonzero polynomial

𝑝 ∈ 𝐶 (𝑛) [𝑘] is strongly prime with a rational function 𝑓 = 𝑎/𝑏 if

gcd(𝑝, 𝑆−𝑖
𝑘

(𝑎)) = gcd(𝑝, 𝑆𝑖
𝑘
(𝑏)) = 1 for all 𝑖 ∈ N. By computing

rational normal forms as in [5], one can write 𝑓 ∈ 𝐶 (𝑛, 𝑘) as

𝑓 =
𝑆𝑘 (𝑆)
𝑆

· 𝐾, (3.2)

where 𝑆, 𝐾 ∈ 𝐶 (𝑛, 𝑘) such that 𝐾 is shift-reduced in 𝑘 . The rational

functions 𝐾 and 𝑆 are called kernel and shell of 𝑓 , respectively. Let
𝑓 = 𝑆𝑘 (𝐻 )/𝐻 . Then𝐻 = 𝑆 ·𝐻0 with 𝑆𝑘 (𝐻0)/𝐻0 = 𝐾 . Write𝐾 = 𝑢/𝑣
with𝑢, 𝑣 ∈ 𝐶 (𝑛) [𝑘] and gcd(𝑢, 𝑣) = 1. Let 𝜙𝐾 : 𝐶 (𝑛) [𝑘] → 𝐶 (𝑛) [𝑘]
be a 𝐶 (𝑛)-linear map defined by

𝜙𝐾 (𝑝) = 𝑢𝑆𝑘 (𝑝) − 𝑣𝑝 for all 𝑝 ∈ 𝐶 (𝑛) [𝑘] .
Let𝑊𝐾 be the standard complement of the image im(𝜙𝐾 ) in𝐶 (𝑛) [𝑘]
such that 𝐶 (𝑛) [𝑘] = im(𝜙𝐾 ) ⊕𝑊𝐾 . By the modified Abramov–

Petkovšek reduction [15] we can decompose 𝐻 into

𝐻 = Δ𝑘 (𝑟 · 𝐻0) +
(𝑎
𝑏
+ 𝑝
𝑣

)
𝐻0 (3.3)

where 𝑟 ∈ 𝐶 (𝑛, 𝑘), 𝑝 ∈𝑊𝐾 , and 𝑎, 𝑏 ∈ 𝐶 (𝑛) [𝑘] such that deg𝑘 (𝑎) <
deg𝑘 (𝑏), gcd(𝑎, 𝑏) = 1, and 𝑏 is shift-free in 𝑘 and strongly prime

with 𝐾 . By Proposition 4.7 and Theorem 4.8 in [15], we have𝑊𝐾 is

finite-dimensional over 𝐶 (𝑛) and 𝐻 is hypergeometric summable

in 𝑘 if and only if 𝑎 = 0 and 𝑝 = 0. So the form (𝑎/𝑏 + 𝑝/𝑣)𝐻0 is the

obstruction to the hypergeometric summability. For this reason, we

call (𝑎/𝑏 + 𝑝/𝑣)𝐻0 a residual form of 𝐻 with respect to Δ𝑘 .
Let Ω be the 𝐴𝑛-module 𝐶 (𝑛, 𝑘) · 𝐻 . Note that Δ𝑘 (Ω) is an 𝐴𝑛-

submodule of Ω. Let𝑀 denote the quotient module Ω/Δ𝑘 (Ω). An

operator 𝐿 ∈ 𝐴𝑛 is a telescoper for𝐻 if and only if 𝐿 is an annihilator

of the image 𝐻 of 𝐻 in𝑀 .

Lemma 3.1. Let 𝐻0 and 𝑣 be defined as in (3.3) and let

𝑁 :=

{𝑝
𝑣
𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾
}
.

Then 𝑁 is an 𝐴𝑛-submodule of𝑀 .

Proof. By [21, Proposition 5.2] with 𝑏0 = 1, for any 𝑖 ∈ N,

𝑆𝑖𝑛

(𝑝
𝑣
𝐻0

)
≡ 𝑝𝑖

𝑣
𝐻0 mod Δ𝑘 (Ω)

for some 𝑝𝑖 ∈𝑊𝐾 . The lemma follows.

Note that𝑁 is independent of the choice of 𝑆 and𝐾 in the rational

normal form (3.2). We will call 𝑁 a kernel submodule of𝑀 which is

an 𝐴𝑛-submodule and a finite-dimensional vector space over 𝐶 (𝑛).
Recall that an operator 𝐿 is a telescoper for 𝐻 if it annihilates 𝐻

in𝑀 . Therefore, if 𝑁 is any submodule of𝑀 , then for an operator

𝐿 to be a telescoper, it is necessary that 𝐿 maps 𝐻 into 𝑁 , although

this condition is in general not sufficient for being a telescoper. This
observation motivates the following definition of prescopers for

hypergeometric terms. An analogous definition was introduced

in [19, Section 6.2] for hyperexponential functions.

Definition 3.2. A nonzero operator 𝑅 ∈ 𝐶 (𝑛)⟨𝑆𝑛⟩ is called a
prescoper for 𝐻 with respect to 𝑘 if 𝑅(𝐻 ) + Δ𝑘 (Ω) ∈ 𝑁 , i.e., there
exists 𝑝 ∈𝑊𝐾 such that

𝑅(𝐻 ) ≡ 𝑝

𝑣
𝐻0 mod Δ𝑘 (Ω).

A prescoper is said to be minimal if it has minimal degree in 𝑆𝑛 .

By definition, it is clear that telescopers are prescopers. The next

lemma shows that the minimal prescoper for 𝐻 is a right factor of

the minimal telescoper for 𝐻 if they exist.

Lemma 3.3. Let 𝑁 ⊆ 𝑀 be 𝐴𝑛-modules and𝑚 ∈ 𝑀 . Suppose that
𝑅 ∈ 𝐴𝑛 is the minimal annihilator for𝑚 + 𝑁 ∈ 𝑀/𝑁 and 𝑇 is the
minimal annihilator for 𝑅(𝑚), then 𝑇 · 𝑅 is the minimal annihilator
for𝑚 ∈ 𝑀 .

Proof. We firstly observe that𝑇 · 𝑅 is an annihilator for𝑚 ∈ 𝑀 .

Let 𝐿 be any annihilator for 𝑚. Then 𝐿 must be an annihilator

for 𝑚 + 𝑁 ∈ 𝑀/𝑁 , which implies that 𝐿 is right divisible by 𝑅.

Let 𝐿 = 𝐿̃ · 𝑅, then 𝐿̃ is an annihilator for 𝑅(𝑚). By the minimality

of 𝑇 , we have that 𝐿̃ is right divisible by 𝑇 and then 𝐿 is right

divisible by 𝑇 · 𝑅. Hence 𝑇 · 𝑅 is the minimal annihilator for𝑚.

The following lemma will be used in the next sections to explore

the LCLM structure of annihilators of elements in 𝐴𝑛-modules.

Lemma 3.4. Let𝑀 be an𝐴𝑛-module and𝑀 =
⊕𝑛

𝑖=1𝑀𝑖 be a direct-
sum decomposition of 𝑀 . For any element𝑚 =𝑚1 + · · · +𝑚𝑛 ∈ 𝑀 ,
the minimal annihilator for𝑚 is the least common left multiple of
the minimal annihilators for the𝑚𝑖 ’s.

Proof. Let 𝐿𝑖 be the minimal annihilator for𝑚𝑖 ∈ 𝑀𝑖 . Suppose
𝐿 is an annihilator for𝑚, then

𝐿(𝑚) = 𝐿(𝑚1) + · · · + 𝐿(𝑚𝑛) = 0.

Since 𝐿(𝑚𝑖 ) ∈ 𝑀𝑖 , we have 𝐿(𝑚𝑖 ) = 0, which implies that 𝐿 is right-

divisible by 𝐿𝑖 . Thus 𝐿 is right-divisible by lclm(𝐿1, . . . , 𝐿𝑛). Note
that lclm(𝐿1, . . . , 𝐿𝑛) is an annihilator for𝑚. The lemma follows.
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3.1 Constructing minimal prescopers
We now present a method to construct minimal prescopers for hy-

pergeometric terms. We first recall some terminologies from [7,

Section 4] and [21, Section 3] about properties of polynomials

under shifts. Let 𝐹 be a field of characteristic zero. Two polyno-

mials 𝑞1, 𝑞2 ∈ 𝐹 [𝑧] are 𝜎-equivalent with respect to the 𝐹 -auto-

morphism 𝜎 of 𝐹 [𝑧] if 𝑞1 = 𝜎 𝑗 (𝑞2) for some 𝑗 ∈ Z \ {0}, de-
noted as 𝑞1 ∼𝜎 𝑞2. Two shift-free polynomials 𝑏1, 𝑏2 ∈ 𝐶 (𝑛) [𝑘]
are shift-related (with respect to 𝑘) if for any nontrivial monic ir-

reducible factor 𝑞1 of 𝑏1, there exists a unique monic irreducible

factor 𝑞2 of 𝑏2 with the same multiplicity as 𝑞1 in 𝑏1 such that 𝑞1
and 𝑞2 are 𝑆𝑘 -equivalent and vice versa. An irreducible polyno-

mial 𝑝 ∈ 𝐶 [𝑛, 𝑘] is integer-linear over 𝐶 if there exist a univariate

polynomial 𝑃 ∈ 𝐶 [𝑧] and a nonzero vector (𝑚, ℓ) ∈ Z2 such that

𝑝 (𝑛, 𝑘) = 𝑃 (𝑚𝑛 + ℓ𝑘). A polynomial 𝑝 ∈ 𝐶 [𝑛, 𝑘] is integer-linear if
all of its irreducible factors are integer-linear.

By the existence criterion on telescopers [3], a hypergeometric

term 𝐻 as in (3.3) has a nonzero telescoper in 𝐴𝑛 if and only if 𝑏 is

an integer-linear polynomial. From now on, we always assume that

the given hypergeometric term 𝐻 has a nonzero telescoper. Since 𝑏

is integer-linear, shift-free in 𝑘 , and strongly prime with 𝐾 , we can

decompose 𝑏 as

𝑏 =

𝐼∏
𝑖=1

ℓ𝑖−1∏
𝑗=0

𝑆
𝜇𝑖,𝑗

𝑘

(
𝑃𝑖 (𝑚𝑖𝑛 + ℓ𝑖𝑘 + 𝑗)

)𝜆𝑖,𝑗 ,
where each 𝑃𝑖 ∈ 𝐶 [𝑧] is irreducible, 𝜆𝑖, 𝑗 ∈ N and 𝑚𝑖 , ℓ𝑖 , 𝜇𝑖, 𝑗 ∈ Z
satisfying ℓ𝑖 > 0, gcd(𝑚𝑖 , ℓ𝑖 ) = 1, and 𝑆

𝜇𝑖,𝑗

𝑘

(
𝑃𝑖 (𝑚𝑖𝑛 + ℓ𝑖𝑘 + 𝑗)

)
is

strongly prime with 𝐾 . Moreover, one can ensure that for all 𝑖, 𝑖′ ∈
{1, . . . , 𝐼 } with 𝑖 ≠ 𝑖′, at least one of the following three relations is
not satisfied:

𝑚𝑖 =𝑚𝑖′ , ℓ𝑖 = ℓ𝑖′ , and 𝑃𝑖 ∼𝑆𝑧 𝑃𝑖′ . (3.4)

Let 𝜆𝑖 := max{𝜆𝑖,0, . . . , 𝜆𝑖,ℓ𝑖−1} and set

𝐵𝑖, 𝑗 := 𝑆
𝜇𝑖,𝑗

𝑘

(
𝑃𝑖 (𝑚𝑖𝑛 + ℓ𝑖𝑘 + 𝑗)

)𝜆𝑖 .
Then we can write 𝑎/𝑏 in the residual form of 𝐻 as

𝑎

𝑏
=

𝐼∑︁
𝑖=1

ℓ𝑖−1∑︁
𝑗=0

𝑞𝑖, 𝑗

𝐵𝑖, 𝑗
, (3.5)

where 𝑞𝑖, 𝑗 ∈ 𝐶 (𝑛) [𝑘] such that deg𝑘 (𝑞𝑖, 𝑗 ) < deg𝑘 (𝐵𝑖, 𝑗 ). Let 𝐻̂ =

𝑎/𝑏 · 𝐻0. By Definition 3.2, the minimal prescoper for 𝐻 is equal to

the minimal prescoper for 𝐻̂ . From the above decomposition we

obtain

𝐻̂ =

𝐼∑︁
𝑖=1

𝐻̂𝑖 with 𝐻̂𝑖 :=

ℓ𝑖−1∑︁
𝑗=0

𝑞𝑖, 𝑗

𝐵𝑖, 𝑗
· 𝐻0 .

Lemma 3.5. The minimal prescoper for 𝐻̂ is the least common left
multiple of the minimal prescopers for the 𝐻̂𝑖 ’s.

Proof. Let 𝑉𝑖 ⊆ 𝑀/𝑁 be the set that consists of the elements

ℓ𝑖−1∑︁
𝑗=0

𝑎𝑖, 𝑗

𝐵𝑖, 𝑗
𝐻0 + 𝑁

with 𝑎𝑖, 𝑗 ∈ 𝐶 (𝑛) [𝑘] and deg𝑘 (𝑎𝑖, 𝑗 ) < deg𝑘 (𝐵𝑖, 𝑗 ). By [21, Proposi-

tion 5.4], for any𝑑 ∈ N, there exist 𝑎𝑖, 𝑗 ∈ 𝐶 (𝑛) [𝑘] with deg𝑘 (𝑎𝑖, 𝑗 ) <

deg𝑘 (𝐵𝑖, 𝑗 ) and 𝑝𝑑 ∈𝑊𝐾 such that

𝑆𝑑𝑛

(
ℓ−1∑︁
𝑗=0

𝑎𝑖, 𝑗

𝐵𝑖, 𝑗
𝐻0

)
≡

(
ℓ−1∑︁
𝑗=0

𝑎𝑖, 𝑗

𝐵𝑖, 𝑗
+ 𝑝𝑑
𝑣

)
𝐻0 mod Δ𝑘 (Ω).

This implies that 𝑉𝑖 is an 𝐴𝑛-submodule of𝑀/𝑁 . Let 𝑉 =
∑𝐼
𝑖=1𝑉𝑖 .

Then 𝐻̂ + 𝑁 is an element of 𝑉 . By Lemma 3.4, it remains to show

that 𝑉 =
⊕𝐼

𝑖=1𝑉𝑖 . By [21, Proposition 3.2] the following holds: if

there exist 𝑝1, 𝑝2 ∈𝑊𝐾 such that(𝑎1
𝑏1

+ 𝑝1
𝑣

)
𝐻0 ≡

(𝑎2
𝑏2

+ 𝑝2
𝑣

)
𝐻0 mod Δ𝑘 (Ω),

where 𝑏1, 𝑏2 satisfy the conditions as in Equation (3.3), then 𝑏1 and

𝑏2 are shift-related to each other. As a consequence, we have that

𝑉𝑖 ∩𝑉𝑗 = {0} for any 𝑖 ≠ 𝑗 .

We next deal with the question how to compute the minimal

prescoper for each 𝐻̂𝑖 . For each 𝑑 ∈ N, the modified Abramov–

Petkovšek reduction [15] decomposes

𝑆𝑑𝑛 (𝐻̂𝑖 ) ≡
(
𝑟𝑖,𝑑 +

𝑝𝑖,𝑑

𝑣

)
𝐻0 mod Δ𝑘 (Ω),

where 𝑝𝑖,𝑑 ∈ 𝑊𝐾 and 𝑟𝑖,𝑑 ∈ 𝐶 (𝑛, 𝑘), which are also contained in

a finite-dimensional 𝐶 (𝑛)-vector space. Take the minimal 𝜌𝑖 ∈ N
such that

∑𝜌𝑖
𝑑=0

𝑒𝑖,𝑑𝑟𝑖,𝑑 = 0 with 𝑒𝑖,𝑑 ∈ 𝐶 (𝑛) and 𝑒𝑖,𝜌𝑖 = 1. Then we

have

𝑅𝑖 :=

𝜌𝑖∑︁
𝑑=0

𝑒𝑖,𝑑𝑆
𝑑
𝑛

is the minimal prescoper for 𝐻̂𝑖 .

For a rational function 𝑓 ∈ 𝐶 (𝑛, 𝑘) of the form

𝑓 =
1

(𝑚𝑛 + ℓ𝑘)𝑠 ,

where 𝑠 is a positive integer and𝑚, ℓ ∈ Zwith ℓ ≠ 0 and gcd(𝑚, ℓ) =
1, one can observe that 𝑆ℓ𝑛 − 1 is the minimal telescoper for 𝑓 . Based

on this observation, Le [25] gave a direct method for computing

minimal telescopers for rational functions which avoids the process

of item-by-item examination of the order of the ansatz operators

in Zeilberger’s algorithm. Motivated by van Hoeij’s example in [33,

Section 3], we partially extend Le’s direct method to special hyper-

geometric terms of the form

𝐻 =
𝑞(𝑛, 𝑘)

(𝑚𝑛 + ℓ𝑘 + 𝛼)𝜆
· 𝐻0, (3.6)

where 𝛼 ∈ 𝐶 , deg𝑘 (𝑞) < 𝜆, gcd(𝑞,𝑚𝑛+ℓ𝑘+𝛼) = 1, and (𝑚𝑛+ℓ𝑘+𝛼)
is strongly prime with 𝐾 . For a nonzero operator 𝑅 ∈ 𝐶 (𝑛)⟨𝑆𝑛⟩ and
a positive integer ℓ ∈ N, we can write 𝑅 as

𝑅 = 𝑅0 + · · · + 𝑅ℓ−1, (3.7)

with 𝑅𝑖 ∈ 𝑆𝑖𝑛 ·𝐶 (𝑛)⟨𝑆ℓ𝑛⟩. This decomposition is called the ℓ-exponent
separation of 𝑅, see [14, Section 4].

Lemma 3.6. Let 𝐻 be as in (3.6) and let 𝑅 have the ℓ-exponent
separation as in (3.7). If 𝑅 is the minimal prescoper for𝐻 , then 𝑅 = 𝑅0.

Proof. Note that any two polynomials in

{
𝑆𝑖𝑛 (𝑚𝑛+ℓ𝑘+𝛼)𝜆

}
ℓ−1
𝑖=0

are not 𝑆𝑘 -equivalent, but for all 𝑗 ∈ N we have that 𝑆
𝑗ℓ
𝑛 (𝑚𝑛 + ℓ𝑘 +

𝛼)𝜆 and (𝑚𝑛+ℓ𝑘+𝛼)𝜆 are 𝑆𝑘 -equivalent. Then
{
𝑅𝑖 (𝐻 )+Δ𝑘 (Ω)

}
ℓ−1
𝑖=0
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is linearly independent over 𝐶 (𝑛) modulo 𝑁 . If 𝑅 is the minimal

prescoper for 𝐻 , then

𝑅(𝐻 ) + Δ𝑘 (Ω) =
ℓ−1∑︁
𝑖=0

(
𝑅𝑖 (𝐻 ) + Δ𝑘 (Ω)

)
∈ 𝑁,

which implies that 𝑅𝑖 (𝐻 ) + Δ𝑘 (Ω) ∈ 𝑁 , i.e., each 𝑅𝑖 is a prescoper

for 𝐻 . Since 𝑁 is also closed under 𝑆−1𝑛 , the trailing coefficient of 𝑅

is nonzero, which leads to 𝑅0 ≠ 0. For 𝑖 ≠ 𝑗 , we have ord(𝑅𝑖 ) ≠

ord(𝑅 𝑗 ), unless both are zero. We deduce that actually 𝑅𝑖 = 0

for each 𝑖 = 1, . . . , ℓ − 1, because otherwise we could find some

prescoper 𝑅 𝑗 with order less than ord(𝑅).

Using Lemma 3.6, we now present a recursive algorithm accord-

ing to the value 𝜆 for computing the minimal prescoper for 𝐻 as

in (3.6). Since 𝑆ℓ𝑛𝑆
−𝑚
𝑘

fixes the linear form (𝑚𝑛 + ℓ𝑘 + 𝛼), we have

ℎ =
𝑆ℓ𝑛𝑆

−𝑚
𝑘

(𝐻 )
𝐻

=
𝑆ℓ𝑛𝑆

−𝑚
𝑘

(𝑞𝐻0)
𝑞𝐻0

∈ 𝐶 (𝑛, 𝑘). (3.8)

Since gcd(𝑞,𝑚𝑛 + ℓ𝑘 + 𝛼) = 1 and (𝑚𝑛 + ℓ𝑘 + 𝛼) is strongly prime

with𝐾 , the evaluation ofℎ at𝑘 = −𝑚𝑛/ℓ−𝛼/ℓ , assigned to 𝑟 ∈ 𝐶 (𝑛),
is well-defined.

For 𝜆 = 1, we have 𝑞 ∈ 𝐶 (𝑛). It can be decomposed into

𝑆ℓ𝑛 (𝐻 ) ≡ 𝑆ℓ𝑛𝑆−𝑚𝑘 (𝐻 ) ≡
(

𝑟 · 𝑞
𝑚𝑛 + ℓ𝑘 + 𝛼 + 𝑝

′

𝑣

)
𝐻0 mod Δ𝑘 (Ω),

for some 𝑝′ ∈𝑊𝐾 . Then (𝑆ℓ𝑛 − 𝑟 ) · 𝐻 + Δ𝑘 (Ω) ∈ 𝑁 . By Lemma 3.6,

we have that 𝑅 := 𝑆ℓ𝑛 − 𝑟 is the minimal prescoper for 𝐻 .

For 𝜆 > 1, we let 𝐴𝑛 := 𝐶 (𝑛)⟨𝑆ℓ𝑛⟩ which is a subring of 𝐴𝑛 and

let𝑀𝑖 be the set consisting of the elements(
𝑎

(𝑚𝑛 + ℓ𝑘 + 𝛼)𝑖
+ 𝑝
𝑣

)
𝐻0 + Δ𝑘 (Ω)

where 𝑎 ∈ 𝐶 (𝑛) [𝑘] with deg𝑘 (𝑎) < 𝑖 and 𝑝 ∈ 𝑊𝐾 . We claim that

𝑀𝑖 is a 𝐴𝑛-submodule of 𝑀 . Indeed, for any 𝐻𝑖 + Δ𝑘 (Ω) ∈ 𝑀𝑖
and 𝑗 ∈ N,

𝑆
𝑗ℓ
𝑛 (𝐻𝑖 ) ≡ 𝑆 𝑗 ℓ𝑛 𝑆

− 𝑗𝑚
𝑘

(𝐻𝑖 ) ≡
(

𝑎′

(𝑚𝑛 + ℓ𝑘 + 𝛼)𝑖
+ 𝑝

′

𝑣

)
𝐻0 mod Δ𝑘 (Ω),

for some 𝑎′ ∈ 𝐶 (𝑛) [𝑘] with deg𝑘 (𝑎′) < 𝑖 and 𝑝′ ∈𝑊𝐾 . By defini-

tion, we have 𝑁 ⊆ 𝑀𝑖 and𝑀𝑖−1 is an 𝐴𝑛-submodule of𝑀𝑖 . By the

modified Abramov–Petkovšek reduction, we can decompose𝐻 into

𝑆ℓ𝑛 (𝐻 ) ≡ 𝑆ℓ𝑛𝑆−𝑚𝑘 (𝐻 ) ≡
(

𝑟 · 𝑞
(𝑚𝑛 + ℓ𝑘 + 𝛼)𝜆

)
𝐻0 + 𝐻 mod Δ𝑘 (Ω),

where𝐻 +Δ𝑘 (Ω) ∈ 𝑀𝜆−1. Then (𝑆ℓ𝑛 −𝑟 ) ·𝐻 +Δ𝑘 (Ω) ∈ 𝑀𝜆−1. Since
𝑅 := 𝑆ℓ𝑛 − 𝑟 is of order 1 in 𝐴𝑛 and 𝐻 + Δ𝑘 (Ω) ∉ 𝑀𝜆−1, it is the
minimal annihilator for 𝐻 + Δ𝑘 (Ω) +𝑀𝜆−1 ∈ 𝑀𝜆/𝑀𝜆−1. We can

recursively compute the minimal prescoper 𝐿̃ for 𝐻 . By Lemma 3.3,

we have 𝐿̃ · 𝑅 is the minimal prescoper for 𝐻 .

The following example, sent to us by Hui Huang, indicates that

the above method outperforms the existing codes for Zeilberger’s

algorithm in Maple and the reduction-based method in [15].

Example 3.7. Consider the hypergeometric term

𝐻 =
1

2𝑛 + 𝑘 𝐻0 with 𝐻0 =

(
5𝑛
3𝑘

)2(𝑛
𝑘

) .

Then the shift-quotient with respect to 𝑘 is

𝐾 =
𝑆𝑘 (𝐻0)
𝐻0

=
(3𝑘 − 5𝑛)2 (3𝑘 − 5𝑛 + 1)2 (3𝑘 − 5𝑛 + 2)2

9(𝑛 − 𝑘) (𝑘 + 1) (3𝑘 + 1)2 (3𝑘 + 2)2
,

which is already shift-reduced in 𝑘 . Let 𝑣 be the denominator of 𝐾
and

𝑁 =

{𝑝
𝑣
𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾 ⊂ Q(𝑛) [𝑘]
}
.

Observe that 𝐻 ∉ 𝑁 . Evaluating 𝑆𝑛𝑆−2𝑘 (𝐻 )/𝐻 at 𝑘 = −2𝑛 yields

𝑟 =
3(3𝑛 + 1) (3𝑛 + 2)∏5

𝑖=1 (5𝑛 + 𝑖)
2
∏

5

𝑖=0 (6𝑛 + 𝑖)
2

2𝑛(2𝑛 + 1)∏11

𝑖=1 (11𝑛 + 𝑖)2
.

Then 𝑅 = 𝑆𝑛 −𝑟 is the minimal prescoper for𝐻 . It remains to compute
the minimal telescoper for

𝐻 := (𝑆𝑛 − 𝑟 ) · 𝐻,
which is of order 6. It takes 13 seconds on a Dell Optiplex 7090 (CPU
3.70GHz, RAM 128G) with the reduction-based method in [15], com-
pared with 31 seconds with the Maple code for Zeilberger’s algorithm.

Note that in this example, 𝐻0 is not defined for all integers. This

is a bit uncommon, but it is not so uncommon that the certificates

have poles at some integer points. This also happens in some of

the examples discussed below. Algorithms and theory for creative

telescoping typically ignore this issue and leave it to the user to

check that everything makes sense. Noteworthy exceptions include

the careful study of Abramov and Petkovšek [4, 6] as well as the

approach of Bostan, Lairez, and Salvy [12].

3.2 Automorphisms of the kernel submodule
In his paper [33], van Hoeij presents examples in which a symmetry

of a summation problem translates into an automorphism of the

submodule 𝑁 . The eigenspaces of the automorphism give rise to

a decomposition of 𝑁 into submodules, and this decomposition

explains why theminimal telescoper is not theminimal annihilating

operator of the sum.

Automorphisms of𝑁 can be found algorithmically. By Lemma 3.1,

the 𝐴𝑛-module 𝑁 has a finite dimension as 𝐶 (𝑛)-vector space.

Let {𝑣1, . . . , 𝑣𝑑 } be a vector space basis. Any 𝐴𝑛-automorphism

𝜙 : 𝑁 → 𝑁 is in particular a 𝐶 (𝑛)-linear map. As such, it can be

written in the form

©­­«
𝜙 (𝑣1)
.
.
.

𝜙 (𝑣𝑑 )

ª®®¬ = Φ
©­­«
𝑣1
.
.
.

𝑣𝑑

ª®®¬ , (3.9)

for a certain matrix Φ ∈ 𝐶 (𝑛)𝑑×𝑑 . The requirement for a linear

map to be an 𝐴𝑛-module automorphism is that it is invertible and

compatible with the shift. If Σ ∈ 𝐶 (𝑛)𝑑×𝑑 is defined by

©­­«
𝑆𝑛 (𝑣1)
.
.
.

𝑆𝑛 (𝑣𝑑 )

ª®®¬ = Σ
©­­«
𝑣1
.
.
.

𝑣𝑑

ª®®¬ , (3.10)

then the latter requirement means that the commutation rule ΣΦ =

𝑆𝑛 (Φ)Σ must hold.

In order to find automorphisms, we can therefore make an ansatz

with undetermined coefficients for the entries of Φ. The require-
ment ΣΦ = 𝑆𝑛 (Φ)Σ leads to a coupled system of linear recurrence
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equations for the undetermined coefficients. This system can be

solved, for example, using the command SolveCoupledSystem of
Koutschan’s Mathematica package HolonomicFunctions [23]. The

result is a 𝐶-linear subspace of 𝐶 (𝑛)𝑑×𝑑 . Automorphisms corre-

spond to all the matrices in this space whose determinant is nonzero.

Example 3.8. For the hypergeometric term 𝐻0 :=
( 𝑛
2𝑘

)
2, the kernel

module 𝑁 computed by the modified Abramov–Petkovšek reduction
is a 𝐶 (𝑛)-vector space of dimension 3, given by the following basis:{

𝑘𝑖

4(2𝑘 + 1)2 (𝑘 + 1)2
𝐻0 + Δ𝑘 (Ω)

���� 𝑖 = 0, 1, 2

}
.

The matrix Σ ∈ 𝐶 (𝑛)3×3 is determined by 𝑁 , but it is too large to
display it here. We make an ansatz for Φ := (𝜙𝑖, 𝑗 )1≤𝑖, 𝑗≤3 with unde-
termined entries 𝜙𝑖, 𝑗 . Then the condition ΣΦ = 𝑆𝑛 (Φ)Σ yields a 9 × 9

coupled first-order linear system of difference equations, whose ratio-
nal solutions are computed with the command SolveCoupledSystem.
It returns a two-dimensional solution space over the constant field 𝐶 ,
which is spanned by the identity matrix 𝐼 and by the matrix

Ψ =

(
12𝑛3+16𝑛+64 −64𝑛2+32𝑛+192 128𝑛+192

4𝑛4−2𝑛3+4𝑛2−8𝑛−48 −20𝑛3+16𝑛2−16𝑛−128 32𝑛2−16𝑛−96
𝑛5−2𝑛4+4𝑛3+32 −4𝑛4+16𝑛3−16𝑛2−32𝑛+64 4𝑛3−40𝑛2−48𝑛+32

)
4(𝑛 + 2)3

.

The matrix Ψ corresponds to the automorphism (𝑛, 𝑘) → (𝑛, 𝑘 + 1/2),
and it satisfies Ψ2 = 𝐼 , as expected. By inspecting the symmetry of𝐻0,
one could anticipate the existence of another automorphism, namely
(𝑛, 𝑘) → (𝑛, 𝑛/2 − 𝑘). However, it turns out that this map is not
compatible with 𝑆𝑛 and hence is not an 𝐴𝑛-module automorphism.

3.3 Zero-sum submodules
The submodule approach introduced by van Hoeij [33] can not only

speed-up the computation of minimal telescopers, but also explain

(by examples) why the minimal telescoper for a hypergeometric

sum may not be its minimal recurrence. The explanation of the

non-minimality phenomenon by anti-symmetry has been given

in [18, 27–30] that leads to themethod of creative symmetrizing [24].

A concrete example is the identity

2𝑛+1∑︁
𝑘=0

(−1)𝑘
(
2𝑛 + 1

𝑘

)
2

= 0.

The summand 𝐻 := (−1)𝑘
(
2𝑛+1
𝑘

)2
satisfies the anti-symmetry re-

lation 𝐻 (𝑛, 𝑘) = −𝐻 (𝑛, 2𝑛 + 1 − 𝑘). So summing 𝐻 for 𝑘 from 0 to

2𝑛 + 1 leads to zero. The minimal telescoper for 𝐻 is the first-order

operator 𝑆𝑛 + 8(𝑛 + 1)/(2𝑛 + 3), but the minimal recurrence for the

above vanishing sum is any nonzero element of 𝐶 (𝑛).
As a research question, van Hoeij [33, Section 7] proposed to

study the zero-sum submodules, especially how to detect and find

such submodules. We call 𝑍 ⊆ 𝑁 a zero-sum submodule if it only

contains terms whose summation with respect to 𝑘 gives 0. Note

that every operator𝑇 with𝑇 (𝐻 ) ∈ 𝑍 is then an annihilating opera-

tor of

∑
𝑘 𝐻 , but not necessarily a telescoper.

The following two examples show how the techniques from the

previous sections, especially Nicole’s lemma, can be used to con-

struct zero-sum submodules and explain the non-minimality phe-

nomenon. In the first example, we find that the minimal prescoper 𝑅

maps 𝐻 not only into 𝑁 but even into 𝑍 . It is therefore an annihila-

tor of the sum. However, since 𝑅(𝐻 ) ≠ 0 ∈ 𝑀 , it is not a telescoper.

In the second example, the minimal prescoper is 𝑅 = 1. Neverthe-

less, the minimal telescoper is not the minimal annihilator of the

sum because it turns out that there is an operator𝑇 with𝑇 (𝐻 ) ∈ 𝑍
but 𝑇 (𝐻 ) ≠ 0.

Example 3.9. The minimal telescoper for the hypergeometric term

𝐻 := (−1)𝑘
(
3𝑛 + 1

𝑘

) (
3𝑛 − 𝑘
𝑛

)
3

is of order 2, which is not the minimal recurrence satisfied by the sum
+∞∑︁

𝑘=−∞
𝐻 (𝑛, 𝑘) = 1.

To explain this non-minimality, we let 𝐻0 = (𝑘 − 3𝑛 − 1)𝐻 and let

𝐾 :=
𝑆𝑘 (𝐻0)
𝐻0

=
(𝑘 − 2𝑛)3

(𝑘 + 1) (𝑘 − 3𝑛)2
=:
𝑢

𝑣
.

Then the algorithm in Section 3.1 can compute the minimal prescoper
𝑅 = 𝑆𝑛 − 1 for 𝐻 so that 𝑅(𝐻 ) + Δ𝑘 (Ω) is in the submodule

𝑁 :=

{𝑝
𝑣
· 𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾
}
,

where𝑊𝑘 has a Q(𝑛)-basis {1, 𝑘3}. We now use Nicole’s lemma in
Section 2.2 to show that for all 𝑝 ∈ Q(𝑛) [𝑘] with deg𝑘 (𝑝) ≤ 2, we
have the vanishing-sum identity

+∞∑︁
𝑘=−∞

𝑝

𝑣
· 𝐻0 = 0, where 𝑛 ≥ 1.

Similar to Examples 2.1 and 2.2, we consider the rational function

𝑓 =
𝑃

𝑄
=
𝑝 (𝑛,−𝑥) (3𝑛 + 1)!(𝑥 + 3𝑛 − 1)2 · · · (𝑥 + 2𝑛 + 1)2

(𝑛!)3 (𝑥 − 1)𝑥 (𝑥 + 1) · · · (𝑥 + 2𝑛)

=

2𝑛∑︁
𝑘=−1

𝛼𝑘

𝑥 + 𝑘 .

Since 𝑄 is squarefree, Lagrange’s residue formula implies that

𝛼𝑘 =
𝑝 (𝑛, 𝑘) (3𝑛 + 1)!(3𝑛 − 𝑘 − 1)2 · · · (2𝑛 − 𝑘 + 1)2

(𝑛!)3 (−𝑘 − 1) (−𝑘) (−𝑘 + 1) · · · (−𝑘 + 2𝑛)
=
𝑝

𝑣
· 𝐻0 .

By Lemma 2.1, 𝑓 is summable in C(𝑥) since deg𝑘 (𝑝) ≤ 2. Then
the above vanishing-sum identity holds. By this identity, we have a
zero-sum submodule

𝑍 :=

{𝑝
𝑣
· 𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾 with deg𝑘 (𝑝) = 0

}
.

Applying the prescoper 𝑅 = 𝑆𝑛 − 1 to 𝐻 yields

𝑆𝑛 (𝐻 ) − 𝐻 ≡ 37𝑛7 + 96𝑛6 + 81𝑛5 + 22𝑛4

8(𝑛 + 1)3 (9𝑛2 + 10𝑛 + 3)
𝐻0

𝑣
mod Δ𝑘 (Ω).

So 𝑆𝑛 (𝐻 ) − 𝐻 + Δ𝑘 (Ω) ∈ 𝑍 which contributes zero to the sum. Then
𝑆𝑛 − 1 is the minimal annihilator for the sum

∑+∞
𝑘=−∞ 𝐻 (𝑛, 𝑘).

Example 3.10. We now explain why minimal telescopers overshoot
in the following combinatorial identity

𝑛∑︁
𝑘=0

(−1)𝑘
(
𝑛

𝑘

) (
3𝑘

𝑛

)
= (−3)𝑛 .
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This is a special case of the identity in [30, Section 4.3] which was
originally used to show the non-minimality phenomenon with expla-
nations in [12, 28]. The minimal telescoper for the summand 𝐻 :=

(−1)𝑘
(𝑛
𝑘

) (
3𝑘
𝑛

)
is

𝑆2𝑛 + 3(5𝑛 + 7)
2(2𝑛 + 3) 𝑆𝑛 + 9(𝑛 + 1)

2(2𝑛 + 3) ,

but this is not the minimal recurrence 𝑆𝑛 + 3 satisfied by the sum. In
this example, we let 𝐻0 = 𝐻 and

𝐾 :=
𝑆𝑘 (𝐻0)
𝐻0

=
3(𝑘 − 𝑛) (3𝑘 + 1) (3𝑘 + 2)

(3𝑘 − 𝑛 + 1) (3𝑘 − 𝑛 + 2) (3𝑘 − 𝑛 + 3) =:
𝑢

𝑣
.

The corresponding kernel submodule is

𝑁 :=

{𝑝
𝑣
· 𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾
}
,

where𝑊𝑘 has a Q(𝑛)-basis {1, 𝑘3}. Since 𝐻 + Δ𝑘 (Ω) ∈ 𝑁 , the mini-
mal prescoper of 𝐻 is 𝑅 = 1. Similar to the previous example, consid-
ering the rational function

𝑓 =
𝑝 (𝑛,−𝑥) (−3𝑥) (−3𝑥 − 1) · · · (−3𝑥 − 𝑛 + 4)

𝑥 (𝑥 + 1) · · · (𝑥 + 𝑛)
yields the vanishing-sum identity

𝑛∑︁
𝑘=0

𝑝

𝑣
· 𝐻0 = 0, where 𝑛 ≥ 3,

for all 𝑝 ∈ Q(𝑛) [𝑘] with deg𝑘 (𝑝) ≤ 2. So we obtain the zero-sum
submodule

𝑍 :=

{𝑝
𝑣
· 𝐻0 + Δ𝑘 (Ω)

��� 𝑝 ∈𝑊𝐾 with deg𝑘 (𝑝) = 0

}
.

We can verify that 𝑍 is closed under any operator in 𝐴𝑛 . In fact,

𝑆𝑛

(
𝐻0

𝑣

)
≡ −9𝑛3 − 21𝑛2 + 36𝑛 + 84

2(𝑛 + 2) (2𝑛 + 5) (3𝑛 + 4)
𝐻0

𝑣
mod Δ𝑘 (Ω).

The remaining task is to find an operator 𝑇 ∈ Q(𝑛)⟨𝑆𝑛⟩ such that
𝑇 (𝐻 ) + Δ𝑘 (Ω) ∈ 𝑍 . The modified Abramov–Petkovšek reduction
decomposes 𝐻0 and 𝑆𝑛 (𝐻0) as

𝐻0 ≡
81𝑘3𝑛 − 𝑛4 + 108𝑘3 + 4𝑛3 − 12𝑛2 + 12𝑛 + 18

(3𝑛 + 4) · 𝑣 𝐻0

mod Δ𝑘 (Ω) .

𝑆𝑛 (𝐻0) ≡
−243𝑘3𝑛 + 𝑛4 − 324𝑘3 − 9𝑛3 + 41𝑛2 − 42𝑛 − 54

(3𝑛 + 4) · 𝑣 𝐻0

mod Δ𝑘 (Ω).
Note that 𝑇 = 𝑆𝑛 + 3 brings 𝐻0 into the zero-sum submodule 𝑍 .
Therefore,𝑇 annihilates the sum, and since the sum evaluates to (−3)𝑛 ,
we find that 𝑇 is actually its minimal annihilator.
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