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Overview

Knot Theory
I AJ Conjecture

I A-polynomial
I Colored Jones polynomial

Computer Algebra

I Guessing
I Symbolic Summation

I Holonomic Systems Approach
I Creative Telescoping

I Factorization of q-shift operators

Computer algebra matters for knot theory!
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Basics of knot theory
Knot:

I embedding of the circle S1 in S3 (or in Euclidean space R3)
I “knotted (closed) string”
I oriented or non-oriented

Equivalence of knots:
I equivalence relation: ambient isotopy
I “two knots are the same if they can be transformed into each

other without cutting the string”

Examples:
I unknot: ©
I trefoil knot 31:
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Basics of knot theory
Link:

I disjoint union of one or several knots (“components”)

I may be entangled with each other

I equivalence is defined as for knots

Examples:

I unlink: ©©
I Hopf link:
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Basics of knot theory

Tame knot:

I polygonal knot: union of non-intersecting line segments

I there exists a projection with finitely many crossings

I from now on: consider only tame knots

Wild knot:

I no projection with finitely many crossings exists

Knot diagram:

I obtained by a projection of the knot into a plane

I planar graph with over-/underpass information at vertices
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Basics of knot theory

Fundamental problem:
Determine whether two descriptions (e.g., knot diagrams)
represent the same knot.

Knot invariants:

I combinatorial invariants

I knot polynomials

I quantum invariants

Knot polynomials:

I Alexander polynomial (1928)

I Jones polynomial (1984)

I A-polynomial

I HOMFLY polynomial
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The A-polynomial

The A-polynomial AK(M,L) of a knot K parametrizes the affine
variety of SL(2,C) representations of the knot complement,
viewed from the boundary torus:

I MK := S3 minus a tubular neighborhood of K
(“knot complement”)

I character variety: XMK
= Hom(π1(MK), SL(2,C))

(modulo conjugation)

I boundary: X∂(MK) = Hom(Z× Z,SL(2,C))

I consider the restriction map φ : XMK
→ X∂(MK)

I its image is defined by a bivariate polynomial, AK(M,L)

I difficult to compute (e.g., using elimination)

I even unknown for some knots with only 9 crossings.
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Example: trefoil
A finite presentation of the fundamental group of the trefoil knot:

π1(S
3 \ 31) = 〈a, b | aabbb〉

SL(2,C) representations:

a→
(
z 0
0 z−1

)
=: A (w.l.o.g.)

b→
(
v w
x y

)
=: B with detB = 1

There are two distinguished elements in π1(S
3 \K), the

meridian µ and the longitude λ, which live on the boundary torus.

µ = bab

λ = ba−1b−1a−1b−1a−1b−1ab−1a−1b−1ab
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Example: trefoil
Impose the following conditions:

tr

((
M 0
0 M−1

)
−M

)
= tr

((
L 0
0 L−1

)
− Λ

)
= 0

where

M = BAB,

Λ = BA−1B−1A−1B−1A−1B−1AB−1A−1B−1AB.

Putting things together, we have to consider the ideal〈
vy−wx−1, AABBB− Id2,M+M−1−tr(M), L+L−1−tr(Λ)

〉
and intersect it with Q[M,L], e.g., by Gröbner basis elimination.

In this case, we obtain A31(M,L) = L+M6.
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The Jones polynomial
Skein relation:

I a means to define/compute polynomial invariants
I three-term relation connecting the polynomials of knots which

differ only locally:

Definition. The skein relation for the Jones polynomial J(K) is

q−1J(L+)− qJ(L−) = (q1/2 − q−1/2)J(L0)

where L+, L−, L0 denote positive, negative, no crossing, resp.
Initial condition: J(©) = 1.

−→ Implementation by Hui Huang.
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The colored Jones function

The colored Jones function JK,n(q) of a knot K is a generalization
of the classical Jones polynomial. It is a sequence of Laurent
polynomials:

JK,n(q) ∈ Z[q±1]N.

It can be defined using the n-th parallels of K:

JK,n(q) =

n/2∑
k=0

(−1)k
(
n− k
k

)
J(K(k))

where J(K(k)) denotes the Jones polynomial of K(k),
the k-th parallel of K.
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The colored Jones function
Alternative definition via state sums using a diagram of K:

I label the m crossings with variables k = k1, . . . , km
I label the arcs: at a left-hand crossing ki

I add ki to the label a(k) of
the underpass

I subtract ki from the label
b(k) of the overpass

b− k a+ k

a b

I associate to each crossing ki a proper q-hypergeometric
expression Ri, depending locally on the labels:

Ri(n,k) = q−n/2−a(k)(n+ki−b(k))
(
qa(k)−n; q

)
ki

[
b(k)

ki

]
q

I the colored Jones function of K is given by an m-fold sum:

JK,n(q) =
∑

0≤k≤n
R1 · · ·Rm
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q-calculus
Recall some notation from q-calculus:

(a; q)n =

n−1∏
k=0

(1− aqk)

[n] =
qn/2 − q−n/2

q1/2 − q−1/2

[n]! =

n∏
k=1

[k][
n

k

]
q

=
[n]!

[k]![n− k]!

−→ All these terms are (proper) q-hypergeometric:

fn(q) is q-hg. ⇐⇒ fn+1(q)

fn(q)
∈ K(q, qn)
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Wilf-Zeilberger theory

Theorem. (“fundamental theorem of WZ theory”)
Every (multi-) sum over a proper q-hypergeometric term is
q-holonomic.

−→ The colored Jones function is a q-holonomic sequence.
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q-holonomic sequences

Notation.

I K: field of characteristic zero

I q: indeterminate, transcendental over K

Definition.
A univariate sequence

(
fn(q)

)
n∈N is called q-holonomic

if it satisfies a nontrivial linear recurrence with coefficients
that are polynomials in q and qn:

d∑
j=0

cj(q, q
n)fn+j(q) = 0 (n ∈ N)

where d is a nonnegative integer and cj(x, y) ∈ K[x, y] are
bivariate polynomials for j = 0, . . . , d with cd(x, y) 6= 0.
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The noncommutative A-polynomial

Notation.
Introduce operator notation:

(Lf)n(q) = fn+1(q), (Mf)n(q) = qnfn(q)

and let
O = K(q,M)〈L〉/(LM − qML).

Definition.
The noncommutative A-polynomial AK(q,M,L) ∈ O of a knot K
is the minimal-order operator (denominator- and content-free) that
annihilates JK,n(q).
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The AJ conjecture

There is a close relation between the A-polynomial AK(M,L) and
the annihilator AK(q,M,L) of the colored Jones function:

AJ Conjecture:
For every knot K the following identity holds:

AK(1,M,L) = poly(M) ·AK(M1/2, L).

The AJ conjecture has been verified (rigorously / non-rigorously)
for some knots with few crossings, by explicit computations, as
well as for some special families of knots.
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Pretzel knots
Consider 1-parameter family of pretzel knots Kp = (−2, 3, 2p+ 3):

I K−1 is the torus knot 51
I K0 = 819 and K1 = 10124 (both torus knots)
I Kp is hyperbolic for p 6= −1, 0, 1
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2-fusion knots
The pretzel knots Kp are members of a 2-parameter family of
2-fusion knots K(m1,m2) for integers m1 and m2:

We have: Kp = K(p, 1).
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Formula for the colored Jones polynomial
JK(m1,m2),n+1(1/q) =

µ(n)−w(m1,m2)

U(n)

∑
(k1,k2)∈nP∩Z2

ν(2k1, n, n)2m1+2m2ν(n+ 2k2, 2k1, n)2m2+1

× U(2k1)U(n+ 2k2)

Θ(n, n, 2k1)Θ(n, 2k1, n+ 2k2)
Tet(n, 2k1, 2k1, n, n, n+ 2k2)

where

µ(a) = (−1)aqa(a+2)/4

w(m1,m2) = 2m1 + 6m2 + 2

P = Polygon({(0, 0), (1/2,−1/2), (1, 0), (1, 1)})
ν(c, a, b) = (−1)(a+b−c)/2q(−a(a+2)−b(b+2)+c(c+2))/8

Θ(a, b, c) = (−1)(a+b+c)/2
[
a+ b+ c

2
+ 1

] [ a+b+c
2

−a+b+c
2 , a−b+c2 , a+b−c2

]
q

U(a) = (−1)a[a+ 1]
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Formula for the colored Jones polynomial

Tet(a, b, c, d, e, f) =

minSj∑
k=maxTi

(−1)k[k + 1]

×
[

k

S1 − k, S2 − k, S3 − k, k − T1, k − T2, k − T3, k − T4

]
q

where

S1 =
1

2
(a+d+b+c), S2 =

1

2
(a+d+e+f), S3 =

1

2
(b+c+e+f)

and

T1 =
1

2
(a+ b+ e), T2=

1

2
(a+ c+ f),

T3 =
1

2
(c+ d+ e), T4=

1

2
(b+ d+ f).
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Guessing

A candidate for a q-recurrence of JK,n(q) can be obtained by
“guessing”:

1. Use the formula to compute the values of JK,n(q) for 1 ≤ n ≤ N.
2. For the recurrence equation make an ansatz of the form

A(n) =

r∑
i=0

d∑
j=0

ci,j(q)q
jnJK,n+i(q)

with undetermined coefficients ci,j ∈ K(q).

3. Solve the linear system A(1) = · · · = A(N − r) = 0 for the ci,j .

4. If there is a solution for N − r ≥ (r + 1)(d+ 1), then this is a
very plausible candidate.
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Degree of the colored Jones polynomial
Size of the colored Jones polynomial at n = 10, 20, 30 for the
pretzel knot family, where d(p) = d1 + d2 for a Laurent polynomial∑d2

i=−d1 ciq
i with c−d1 6= 0 and cd2 6= 0:

p d(JKp,10(q)) d(JKp,20(q)) d(JKp,30(q))

-5 453 1919 4400
-4 363 1546 3549
-3 282 1197 2735
-2 225 950 2175
-1 225 950 2175
0 265 1130 2595
1 330 1410 3240
2 406 1736 3991
3 491 2098 4821
4 579 2469 5671
5 667 2843 6529

22 / 60



Some tricks

1. Use modular computations (evaluation – interpolation)
I evaluate JKp,n(q) for specific integers q and modulo a prime
I guess the recurrence (for that particular q and modulo prime)
I do this for many q and many primes
I use interpolation and rational reconstruction (modulo prime),

then chinese remaindering, to obtain the desired recurrence
equation

2. Trade order versus degree of the recurrence and compute the
(supposedly minimal-order) recurrence by gcrd.

3. Use information about the Newton polygon known from the
A-polynomial.

4. Exploit palindromicity to halve the number of unknowns.
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Palindromicity
We say that an operator P ∈ K(q)〈M±1, L±1〉/(LM − qML) is
palindromic if and only if there exist integers a, b ∈ Z such that

P (q,M,L) = (−1)aqbm/2MmLbP (q,M−1, L−1)L`−b

where m = degM (P ) + ldegM (P ) and ` = degL(P ) + ldegL(P ).

If P =
∑

i,j pi,jM
iLj then this implies that

pi,j = (−1)aqb(i−m/2)pm−i,`−j for all i, j ∈ Z.

Palindromicity implies that this operator has some palindromic bi-
infinite sequences fn(q), n ∈ Z as solutions, i.e., either fn(q) =
f−n(q) for all integers n, or fn(q) = −f−n(q) for all integers n.

−→ All operators here are palindromic!
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Guessed recurrences

p L-degree M -degree q-degree largest cf. ByteCount

−5 12 125 946 3.0× 108 5.7× 107

−4 9 66 392 12345 1.1× 107

−3 6 27 85 33 1.1× 106

−2 3 12 19 4 32032
−1 1 6 3 1 1192

0 2 13 13 2 1616
1 2 16 16 2 1616
2 6 58 233 6 47016
3 9 114 514 118 2.3× 106

4 12 191 1151 386444 1.9× 107

5 15 288 2174 2.2× 1011 8.6× 107
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Verification of AJ conjecture

1. The A-polynomials of K−5, . . . ,K5 were known.

2. Compute the q = 1 images of the guessed recurrence
operators.

3. The results are in accordance with the AJ conjecture.

4. Assuming that the guessed operators are correct, how can we
know that they are of minimal order?

5. Try to show irreducibility, which implies minimality.
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An easy sufficient criterion for irreducibility

Consider

A(q,M,L) =

d∑
j=0

aj(q,M)Lj ∈ O

with d > 1 and assume

I A(1,M,L) ∈ K(M)[L] is well-defined,

I irreducible,

I and a0(1,M)ad(1,M) 6= 0.

Then A(q,M,L) is irreducible in O.

−→ Most of the guessed operators are irreducible by this criterion
and therefore of minimal order.
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Consistency with the volume conjecture

The N -th Kashaev invariant 〈K〉N of a knot K is defined by

〈K〉N = JK,N (e2πi/N ).

The volume conjecture of Kashaev states that if K is a hyperbolic
knot, then

lim
N→∞

log |〈K〉N |
N

=
vol(K)

2π

where vol(K) is the volume of the hyperbolic knot K.

Since we are specializing to a root of unity, we might as well
consider the remainder τK,N (q) of JK,N (q) by the N -th cyclotomic
polynomial ΦN (q).
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Example
τK2,100(q) =
−1420771679897311607360 − 1402034476570732425908q − 1377764083694494707679q2 −
1348056285420017550322q3 − 1313028324854995190830q4 − 1272818441358081463973q5 −
1227585324968178744317q6 − 1177507490130630983388q7 − 1122782571182284245313q8 −
1063626542375688303231q9 + 420498814366636734411q10 + 469062907903390306537q11 +
515775824438145014436q12 + 560453209429428890901q13 + 602918741648741441924q14 +
643004829043136905736q15 + 680553270138355921566q16 + 715415878390451489264q17 +
747455067013913965248q18 + 776544391967778302155q19 − 618202628922511743188q20 −
576608139973286430388q21 − 532738042123286363977q22 − 486765470606610517117q23 −
438871858158259827294q24 − 389246218987652812332q25 − 338084402821172432280q26 −
285588321971646221647q27 − 231965154488540570326q28 − 177426526516296620808q29 +
1298584002796105745794q30 + 1335567867823634101034q31 + 1367280856639633305993q32 +
1393597812566394292363q33 + 1414414874600710903331q34 + 1429649887309469255114q35 +
1439242725058651352936q36 + 1443155529298983637839q37 + 1441372857979981026638q38 +
1433901746491878528487q39

2π
log |τK2,100(e

2πi/100)|
N

= 3.22309 . . .

But: vol(K2) = 2.8281220883307827 . . .

−→ Compute values for several N and fit a curve:

2.82813 + 9.41764
log(n)

n
− 3.89193

1

n
.
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Double twist knots

Consider the family of double twist knots Kp,p′ :

−→ Interesting family because their A-polynomials are reducible.
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Colored Jones function of Kp,p′

Using the Habiro theory of the colored Jones function, we get

JKp,p′ ,n(q) =

n−1∑
k=0

(−1)kcp,k(q)cp′,k(q)q
−kn− k(k+3)

2 (qn−1; q−1)k(q
n+1; q)k

where the sequence cp,n(q) is defined by

cp,n(q) =

n∑
k=0

(−1)k+nq−
k
2
+ k2

2
+ 3n

2
+n2

2
+kp+k2p (1− q2k+1)(q; q)n

(q; q)n−k(q; q)n+k+1
.

−→ Apply CK’s HolonomicFunctions package.
www.risc.jku.at/research/combinat/software/HolonomicFunctions/

I symbolic summation via creative telescoping

I closure properties

I delivers a q-holonomic recurrence for the sum
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Apply HolonomicFunctions

Consider the case p = p′ = 2, i.e., the knot K2,2 (which is 74).

Result:

I inhomogeneous recurrence of order 5

I M -degree 24 and q-degree 65

I corresponds to 4 printed pages

Problem:
Creative telescoping doesn’t necessarily give the minimal-order
recurrence (same problem as before).

Strategy:
Again, we would like to show that the corresponding operator is
irreducible.
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Minimality of inhomogeneous recurrences

Lemma: Let f = (fn)n∈N be a q-holonomic sequence and let
R ∈ O be a minimal-order operator such that Rf = u for some
u ∈ K(q,M). If Pf = 1 for some P ∈ O then u 6= 0 and P = QR
for some Q ∈ O.

Proof: Using right division with remainder, we can write
P = QR+ S with Q,S ∈ O and degL(S) < degL(R). Applying
this operator to f yields

1 = Pf = QRf + Sf = Qu+ Sf.

The remainder S must be zero, since otherwise Sf = 1−Qu is a
contradiction to the minimality assumption on R; note that
Qu ∈ K(q,M). Hence u must satisfy the equation Qu = 1, which
implies u 6= 0, and P = QR as claimed.
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How to show irreducibility?

Unfortunately, we cannot apply the previous criterion, since
A(1,M,L) in our case is reducible (double twist knots!).

For example, for K2,2 one gets(
L3 + (M7− 2M6 + 3M5 + 2M4− 7M3 + 2M2 + 6M − 2)L2 +

(2M7−6M6−2M5 +7M4−2M3−3M2 +2M −1)L+M7
)

×
(
L2 − (M4 −M3 − 2M2 −M + 1)L+M4

)

This means, if a factorization exists then it must be of the form

I (irreducible of order 2) · (irreducible of order 3)

I (irreducible of order 3) · (irreducible of order 2)
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Exterior powers

Casoratian (shift analogue of the Wronskian):

For k sequences f
(i)
n , i = 1, . . . , k, it is given by

W
(
f (1), . . . , f (k)

)
n

= det
0≤j≤k−1
1≤i≤k

f
(i)
n+j =

∣∣∣∣∣∣∣
f
(1)
n · · · f

(k)
n

...
...

f
(1)
n+k · · · f

(k)
n+k

∣∣∣∣∣∣∣ .

Exterior Powers:

I P ∈ O with degL(P ) = d

I notation:
∧kP (“k-th exterior power of P”)

I definition: minimal-order operator for W
(
f (1), . . . , f (k)

)
n

I where f (1), . . . , f (k) are assumed to be linearly independent
solutions of Pf = 0.
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Lemma

Lemma: Let P = Ld +
∑d−1

j=0 ajL
j ∈ O with a0 6= 0, let{

f
(1)
n , . . . , f

(d)
n

}
be a fundamental solution set of the equation

Pf = 0, and let w = W (f (1), . . . , f (d)). Then

wn+1 − (−1)da0wn = 0.

Proof: This is proven by an elementary calculation

wn+1 =

∣∣∣∣∣∣∣
f
(1)
n+1 · · · f

(d)
n+1

...
...

f
(1)
n+d · · · f

(d)
n+d

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
f
(1)
n+1 · · · f

(d)
n+1

...
...

f
(1)
n+d−1 · · · f

(d)
n+d−1

−a0f (1)n · · · −a0f (d)n

∣∣∣∣∣∣∣∣∣∣
= (−1)da0wn

(use f
(i)
n+d = −

∑d−1
j=0 ajf

(i)
n+j and row operations).
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Necessary and sufficient criterion for irreducibility

Lemma: Let P,Q,R ∈ O such that P = QR is a factorization
of P , and let k denote the order of R, i.e., k = degL(R). Then∧kP has a linear right factor L− a for some a ∈ K(q,M).

Proof:

I Let F =
{
f (1), . . . , f (k)

}
be a fundamental solution set of R.

I By the lemma it follows that w = W (f (1), . . . , f (k)) satisfies a
recurrence of order 1, say wn+1 = awn, a ∈ K(q,M).

I But F is also a set of linearly independent solutions of Pf = 0
and therefore w is contained in the solution space of

∧kP .

I It follows that
∧kP has the right factor L− a.
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Computation of exterior powers
As before let d denote the L-degree of P .

1. Ansatz for
∧kP :

c`(q,M)wn+` + · · ·+ c1(q,M)wn+1 + c0(q,M)wn = 0.

2. Replace all occurrences of wn+j by the expansion of the
Wronskian, e.g., for k = 2:

wn+j = f
(1)
n+jf

(2)
n+j+1 − f

(1)
n+j+1f

(2)
n+j .

3. Rewrite each f
(i)
n+j with j ≥ d as a K(q,M)-linear

combination of f
(i)
n , . . . , f

(i)
n+d−1, using the equation

Pf (i) = 0.

4. Coefficient comparison with respect to f
(i)
n+j , 1 ≤ i ≤ k,

0 ≤ j < d, yields a linear system for c0, . . . , c`.
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Exterior powers of P74

Some statistics concerning P74 and its exterior powers:

L-degree M -degree q-degree ByteCount

P74 5 24 65 463,544∧2P74 10 134 749 37,293,800∧3P74 10 183 1108 62,150,408

−→ We now have to prove that
∧2P74 and

∧3P74 have no linear
right factors.
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qHyper
Let P (q,M,L) = pd(q,M)Ld + · · ·+ p0(q,M), pi ∈ K[q,M ].

The qHyper algorithm (Abramov+Paule+Petkovšek 1998)
attempts to find a right factor L− r(q,M) of P where

r(q,M) = z(q)
a(q,M)

b(q,M)

c(q, qM)

c(q,M)
, a, b, c ∈ K[q,M ]

is assumed to be in normal form, defined by the conditions

gcd
(
a(q,M), b(q, qnM)

)
= 1 for all n ∈ N,

gcd
(
a(q,M), c(q,M)

)
= 1,

gcd
(
b(q,M), c(q, qM)

)
= 1.

It is not difficult to show that under these assumptions

a(q,M) | p0(q,M) and b(q,M) | pd(q, q1−dM).

−→ qHyper proceeds by testing all admissible choices of a and b.
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b(q,M), c(q, qM)

)
= 1.

It is not difficult to show that under these assumptions

a(q,M) | p0(q,M) and b(q,M) | pd(q, q1−dM).

−→ qHyper proceeds by testing all admissible choices of a and b.
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Application of qHyper
Apply qHyper to P (2)(q,M,L) :=

∧2P74 =
∑10

i=0 pi(q,M)Li

with

p0(q,M) = q162M44(M − 1)

( 9∏
i=6

(qiM − 1)

)
×
( 10∏
i=6

(qiM + 1)(q2i+1M2 − 1)

)
F (q,M)

p10(q, q
−9M) = q−117(q2M − 1)

( 7∏
i=4

(M − qi)
)

×
( 8∏
i=4

(M + qi)(M2 − q2i+1)

)
F (q, q−10M)

where F is a large irreducible polynomial.

−→ A blind application of qHyper would result in 45 · 216 · 216 =
193 273 528 320 possible choices for a and b.
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Confine the number of qHyper’s test cases

We exploit two conditions:

Condition 1: Study the image under q = 1:

P (2)(1,M,L) = R1(M) · (L−M4) ·Q1(M,L) ·Q2(M,L)

where Q1 and Q2 are irreducible of L-degree 3 and 6, respectively.
Thus we need only to test pairs (a, b) which satisfy the condition

(∗) a(1,M) = M4b(1,M).

Condition 2: a and b must fulfill the gcd condition:

gcd(a(q,M), b(q, qnM)) = 1 for all n ∈ N.

−→ Exclude most of the admissible choices for a and b.
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Structure of leading and trailing coefficient

p0(q,M) = q162M44(M − 1)
(∏9

i=6
(qiM − 1)

)
×
(∏10

i=6
(qiM + 1)(q2i+1M2 − 1)

)
F (q,M)

p10(q, q
−9M) = q−117(q2M − 1)

(∏7

i=4
(M − qi)

)
×
(∏8

i=4
(M + qi)(M2 − q2i+1)

)
F (q, q−10M)

p0(q,M) p10(q, q
−9M)

qiM − 1 0, 6, 7, 8, 9 −7, −6, −5, −4, 2

qiM + 1 6, 7, 8, 9, 10 −8, −7, −6, −5, −4

qiM2 − 1 13, 15, 17, 19, 21 −17, −15, −13, −11, −9

Linear and quadratic factors of the leading and trailing coefficients;
each cell contains the values of i of the corresponding factors.
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Which combinations to test

1. (*) implies that either both F1 and F2 must be present or
none of them; the gcd condition then excludes them entirely.

2. Clearly the factor M4 in (*) can only come from M44 in p0;
thus all other (linear and quadratic) factors in
a(1,M)/b(1,M) must cancel completely.

3. The most simple admissible choice is a(q,M) = M4 and
b(q,M) = 1.

4. Because of the gcd condition, a cancellation can almost never
take place among factors which are equivalent under the
substitution q = 1. This is reflected by the fact that the
entries in the first column of the table are (row-wise) larger
than those in the second column, e.g., (q6M + 1) | a(q,M)
and (q−4M + 1) | b(q,M) violates the gcd condition.
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Which combinations to test
5. The only exception is that (M − 1) | a(q,M) cancels with

(q2M − 1) | b(q,M) in a(1,M)/b(1,M). In that case, the
gcd condition excludes further factors of the form qiM − 1,
and together with (*) we see that no other factors at all can
occur. This gives the choice a(q,M) = M4(M − 1) and
b(q,M) = q2M − 1.

6. We may assume that a(q,M) contains some of the quadratic
factors qiM2 − 1. For q = 1 they factor as (M − 1)(M + 1)
and therefore can be canceled with corresponding pairs of
linear factors in b(q,M). The gcd condition forces a(q,M) to
be free of linear factors and b(q,M) to be free of quadratic

factors. Thus we obtain
∑5

m=1

(
5
m

)3
= 2251 possible choices.

7. Analogously a(q,M) can have some linear factors which for
q = 1 must cancel with quadratic factors in b(q,M); this gives
2251 further choices.

−→ Summing up, we have to test 4504 cases only!
45 / 60



Implementation

Don’t go through all cases to find out which ones are admissible.

I look at all linear factors of P (1,M,L)

I consider equivalence classes modulo q = 1

I let A be the set of images under q = 1

I define equivalence relation on A:

f(M) ∼ g(M) ⇐⇒ ∃f1, . . . , fs−1 ∈ A : degM (gcd(fi−1, fi)) > 0 for all 1/leqi/leqs

where f0 = f and fs = g.

I each factor of a(1,M)/b(1,M) is associated to a unique
∼-equivalence class of A

I determine all combinations of elements from A which produce
a(1,M)/b(1,M)

I produce all combinations of the original factors subject to (*)
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Results for double twist knots
K2,2 = 74:

I rigorous computation of A(q,M,L)

I rigorous proof that it is of minimal order (irreducible!)

K3,3:
I rigorous computation of A(q,M,L)

I (q,M,L)-degree = (458, 74, 11)

I minimality proof out of scope (requires
∧5P and

∧6P )

K4,4:
I A(q,M,L) guessed

I (q,M,L)-degree = (2045, 184, 19)

K5,5:
I A(q,M,L) guessed

I (q,M,L)-degree = (6922, 396, 29), ByteCount = 8GB

47 / 60



Results for double twist knots
K2,2 = 74:

I rigorous computation of A(q,M,L)

I rigorous proof that it is of minimal order (irreducible!)

K3,3:
I rigorous computation of A(q,M,L)

I (q,M,L)-degree = (458, 74, 11)

I minimality proof out of scope (requires
∧5P and

∧6P )

K4,4:
I A(q,M,L) guessed

I (q,M,L)-degree = (2045, 184, 19)

K5,5:
I A(q,M,L) guessed

I (q,M,L)-degree = (6922, 396, 29), ByteCount = 8GB

47 / 60



Results for double twist knots
K2,2 = 74:

I rigorous computation of A(q,M,L)

I rigorous proof that it is of minimal order (irreducible!)

K3,3:
I rigorous computation of A(q,M,L)

I (q,M,L)-degree = (458, 74, 11)

I minimality proof out of scope (requires
∧5P and

∧6P )

K4,4:
I A(q,M,L) guessed

I (q,M,L)-degree = (2045, 184, 19)

K5,5:
I A(q,M,L) guessed

I (q,M,L)-degree = (6922, 396, 29), ByteCount = 8GB
47 / 60



Colored Jones for connected sum of knots
Connected sum K1#K2 of two knots K1 and K2:

I A knot is irreducible if it cannot be written as connected sum
of two nontrivial knots.

I Each knot has a “unique factorization”.
I Rolfsen’s table contains only irreducible knots.

Fact: Let K1 and K2 be two knots in 3-space. Then the colored
Jones function of their connected sum is given by

JK1#K2,n(q) = JK1,n(q) JK2,n(q) for all n ∈ N.
−→ Like for the classical Jones polynomial.
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Symmetric product

For P1, P2 ∈ O the symmetric product P1 ? P2 is the
operator P ∈ O with minimal L-degree such that P (f · g) = 0 for
all sequences f and g for which P1(f) = 0 and P2(g) = 0.

Remark 1: P is unique up to multiplication by elements from
K(q,M) \ {0}.

Remark 2: The definition does not imply that the symmetric
product gives the shortest recurrence for the product of two
sequences.

Corollary: Let K1 and K2 be two knots and let P1, P2 ∈ O be
annihilating operators of their colored Jones functions, respectively.
Then the symmetric product P1 ? P2 annihilates JK1#K2,n(q).
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Example

Example.
Consider the sequence f(n) = qn + (−1)n whose minimal-order
annihilating operator is P = L2 + (1− q)L− q. As expected, the
symmetric product P ? P is of order 3:

P ? P = L3 − (q2 − q + 1)L2 − (q2 − q + 1)L+ q3

= (L− 1)(L+ q)(L− q2).

On the other hand, we have f(n)2 = q2n + 1 + 2(−q)n and this
expression is annihilated by the second-order operator

(qM2 + 1)L2 − (q − 1)(q2M2 − 1)L− q(q3M2 + 1).
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A-polynomial for connected sums

Definition.
For two bivariate polynomials A1(M,L) and A2(M,L) we define
the “A-product” A1 �A2 as follows:

I let I ⊆ K(M)[L1, L2, L] be the ideal

〈A1(M,L1), A2(M,L2), L− L1L2〉

I A1 �A2 is the generator of the elimination ideal I ∩K(M)[L]

I Note that K(M)[L] is a PID, thence A1 �A2 is unique up to
multiplication by elements from K(M) \ {0}.

Fact: Let K1 and K2 be two knots and A1(M,L) and A2(M,L)
their respective A-polynomials. Then the A-polynomial of K1#K2

is given by A1 �A2.
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Theorem

Notation: We introduce the map ψ by

ψ : O→ K(M)[L], P (q,M,L) 7→ P (1,M,L).

Theorem.
Let P1(q,M,L) and P2(q,M,L) be two operators in the
algebra O. Then the following divisibility condition holds:

ψ(P1) � ψ(P2) | ψ(P1 ? P2)

as polynomials in K(M)[L], provided that the above quantities are
defined.

52 / 60



Theorem

Notation: We introduce the map ψ by

ψ : O→ K(M)[L], P (q,M,L) 7→ P (1,M,L).

Theorem.
Let P1(q,M,L) and P2(q,M,L) be two operators in the
algebra O. Then the following divisibility condition holds:

ψ(P1) � ψ(P2) | ψ(P1 ? P2)

as polynomials in K(M)[L], provided that the above quantities are
defined.

52 / 60



Theorem

Notation: We introduce the map ψ by

ψ : O→ K(M)[L], P (q,M,L) 7→ P (1,M,L).

Theorem.
Let P1(q,M,L) and P2(q,M,L) be two operators in the
algebra O. Then the following divisibility condition holds:

ψ(P1) � ψ(P2) | ψ(P1 ? P2)

as polynomials in K(M)[L], provided that the above quantities are
defined.

52 / 60



Proof (1)
Recall the algorithm for computing the symmetric power P1 ? P2.

I let f(n) and g(n) be generic sequences that are annihilated
by P1 and P2, respectively

I make an ansatz for the minimal-order q-recurrence for the
product h(n) = f(n)g(n):

cd(q,M)h(n+ d) + · · ·+ c0(q,M)h(n) = 0

with undetermined coefficients cj ∈ K(q,M).
I let d1 and d2 denote the L-degrees of P1 and P2, respectively.
I using the q-recurrence represented by P1, we can rewrite
f(n+ s) as a K(q,M)-linear combination of
f(n), . . . , f(n+ d1 − 1) for any s ∈ N, and similarly for
g(n+ s)

I the ansatz therefore can be reduced to the following form:

d1−1∑
s=0

d2−1∑
t=0

Rs,t(q,M, c0, . . . , cd)f(n+ s)g(n+ t) = 0
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Proof (2)

d1−1∑
s=0

d2−1∑
t=0

Rs,t(q,M, c0, . . . , cd)f(n+ s)g(n+ t) = 0

I notation for the 2-tuples corresponding to the summands:

{(s0, t0), (s1, t1), . . . } = {(s, t) | 0 ≤ s ≤ d1−1, 0 ≤ t ≤ d2−1}
I for example, put si = bi/d2c and ti = i mod d2
I equating all Rs,t to zero yields a linear system Mc = 0
I the matrix M is given by

M = (mi,j)0≤i≤d1d2−1,0≤j≤d with mi,j = 〈cj〉Rsi,ti
I the algorithm proceeds by trying d = 0, d = 1, etc., until a

solution is found; this guarantees minimality.
I if d ≥ d1d2 the linear system has more unknowns than

equations so that a solution must exist; this ensures
termination.
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Proof (3)
To prove the claim, apply the above algorithm to ψ(P1) and ψ(P2).

I rewriting of f(n+ s) into f(n), . . . , f(n+ d1 − 1) can be
rephrased as the (noncommutative) polynomial reduction of
the operator Ls with P1

I if instead ψ(P1) is used the noncommutativity disappears

I the reduction procedure boils down to a polynomial division
with remainder in K(M)[L]

I let rem(a, b) denote the remainder of dividing the
polynomial a by b

I obtain a matrix M̃ with M̃ = ψ(M)

I the entries ψ(mi,j) of the matrix M̃ are obtained as follows:

ψ(mi,j) =
(
〈Lsi〉 rem(Lj , ψ(P1))

)
·
(
〈Lti〉 rem(Lj , ψ(P2))

)
= 〈Lsi1 L

ti
2 〉
(

rem(Lj1, P1(1,M,L1)) · rem(Lj2, P2(1,M,L2))
)
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Proof (4)

I note that the set G = {P1(1,M,L1), P2(1,M,L2)} is a
Gröbner basis in K(M)[L1, L2] by Buchberger’s product
criterion

I can define red(P,G) for P ∈ K(M)[L1, L2] as the unique
reductum of P with G

I Observe that

rem
(
Lj1, P1(1,M,L1)

)
·rem

(
Lj2, P2(1,M,L2)

)
= red

(
(L1L2)

j , G
)
.

I the linear system M̃c = 0 translates to the problem:
find c0, . . . , cd ∈ K(M) such that

d∑
j=0

cj(M) red
(
(L1L2)

j , G
)

= 0.
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Proof (5)

d∑
j=0

cj(M) red
(
(L1L2)

j , G
)

= 0.

I this can be rephrased as an elimination problem
I identify L1L2 with a new indeterminate L
I want to find a polynomial in K(M)[L], free of L1 and L2, in

the ideal generated by G and L− L1L2

I this elimination problem is just the definition of ψ(P1) �ψ(P2)
I Hence we have shown:

ψ(P1) ? ψ(P2) = ψ(P1) � ψ(P2).

I we have degL
(
ψ(P1 ? P2)

)
≥ degL

(
ψ(P1) ? ψ(P2)

)
I moreover: ψ(P1 ? P2) is an element of the elimination ideal

generated by ψ(P1) � ψ(P2)
I therefore ψ(P1) � ψ(P2) | ψ(P1 ? P2) as claimed
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To do

Let P1, P2, P be the minimal-order operators annihilating the
colored Jones functions of K1,K2,K1#K2, respectively.

Problem: We now have established that both ψ(P1) � ψ(P2) and
ψ(P ) divide ψ(P1 ? P2), but of course this doesn’t tell us anything
about divisibility properties between ψ(P1) � ψ(P2) and ψ(P ).

I identify nice conditions under which the symmetric product
yields the minimal-order recurrence

I investigate degree drop under ψ
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Example
Consider the connected sum 31#31. Its colored Jones polynomial
satisfies PJ31#31,n(q) = b with

P =
(
M4q5 − 2M3q3 −M2q4 +M2q + 2Mq2 − 1

)
L2

+
(
−M10q13 + 2M9q12 +M8q12 −M8q11 −M7q11 −M6q10

+M5q9 −M5q8 + 2M4q7 −M3q6
)
L

−M13q13 + 2M12q13 −M11q13 +M11q10 − 2M10q10 +M9q10

b = M11q11 − 2M9q10 −M9q8 −M8q9 +M7q9 + 2M7q7 +M6q8

+ 2M6q6 −M5q6 − 2M4q5 −M4q3 +M2q2

The operator P is reducible:

P =
(
(M2q − 1)L+M5q9 −M3q6

)
×
(
(M2q2 − 2Mq + 1)L−M8q4 + 2M7q4 −M6q4

)
But this factorization doesn’t yield a lower order recurrence for
J31#31,n(q). Hence P is of minimal order.
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Some results

Consider connected sums of 31 and 41:

I 31#31: degL(P ) = 2, reducible into 1 + 1

I 31#41: degL(P ) = 5, reducible into 2 + 1 + 2 and 1 + 2 + 2

I 41#41: degL(P ) = 5, reducible into 2 + 3

−→ In all cases the operators are reducible.

−→ Nevertheless, in all cases they are already minimal.
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