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Symbolic Integration and Creative Telescoping

Motivation:

skip

Symbolic Integration: given f(x) in some domain D, does there
exist g(x) ∈ D such that f(x) = g′(x)?

If not, one can relax the question:

I Does there exist an extension E of D that contains such a g?

I Does there exist an operator P such that P · f is integrable?

Creative Telescoping: if f depends on another variable t, find a
linear differential operator P (w.r.t. t, free of x) such that P · f is
integrable. Such an operator P is called a telescoper.

The telescoper P gives rise to a differential equation satisfied by
the integral.
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Reduction-Based Creative Telescoping

Assume that the x-constants C = Constx(D) = { c ∈ D : c′ = 0 }
form a field and that D is a vector space over C.

Definition: A reduction is a C-linear map [·] : D → D such that
for every f ∈ D there exists a g ∈ D with f − [f ] = g′.

Strategy: For finding a telescoper

I compute [f ], [∂t · f ], [∂2t · f ], . . . ,

I until they become linearly dependent over C.

I The relation p0[f ] + · · ·+ pr[∂
r
t · f ] = 0 yields the telescoper

P = p0 + · · ·+ pr∂
r
t , since by linearity we have

[p0f + · · ·+ pr∂
r
t · f ] = 0,

and by definition of [·] we have that P · f is integrable.
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Termination

There are two ways to guarantee that this method terminates.

1. Design a reduction [·] with the property that when f ∈ D is
integrable, then [f ] = 0. Under this condition, the method
will find the smallest telescoper, but for the termination we
have to assume the existence of telescopers.

2. Show that the C-vector space generated by { [∂it · f ] : i ∈ N }
has finite dimension. This yields a bound for the order of the
minimal telescoper, and it implies the existence of telescopers.
It does not necessarily find the minimal telescoper.

Our task consists in defining a reduction map that satisfies either
Property 1 or Property 2 (or both).
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Previous Work on Reduction-Based Telescoping
I Bostan, Chen, Chyzak, Li (2010): first reduction-based

algorithm, for integrating bivariate rational functions
I Chen, Singer (2012): bivariate rational functions, was then

extended to consider also summation and q-summation
I Chen, Kauers, Singer (2012): hybrid algorithm for integrating

bivariate algebraic functions
I Bostan, Lairez, Salvy (2013, 2015): reduction technique for

multivariate rational functions
I Bostan, Chen, Chyzak, Li, Xin (2013): Hermite reduction for

hyperexponential functions
I Chen, Huang, Kauers, Li (2015, 2016): summation algorithm

for hypergeometric terms
I Bostan, Dumont, Salvy (2016): integration of bivariate

hypergeometric-hyperexponential terms
I Kauers, Koutschan (2015): integral bases for D-finite functions
I Chen, Kauers, Koutschan (2016): algebraic functions
I Chen, van Hoeij, Kauers, Koutschan (2017): fuchsian D-finite 4 / 17
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Example: Hermite Reduction

Consider the domain of rational functions D = Q(t, x), i.e., we
have C = Constx(D) = Q(t).

Hermite reduction: decomposes any f ∈ D into f = g′ + h with
g, h ∈ D such that h is a proper rational function with a squarefree
denominator. Hence, we can define a reduction map by [f ] = h.

It is easy to see that this reduction map satisfies both properties:

1. If [f ] 6= 0 then f is not integrable (in D), since a rational
function with a simple pole has no rational antiderivative (one
would have to introduce logarithms).

2. Set hi = [∂itf ]. Since differentiating doesn’t introduce new
poles, there is a (squarefree) polynomial d that is a common
denominator for all hi. Since the hi are proper, the dimension
of the C-vector they generate is at most degx d.
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Fuchsian Differential Operators
Consider a linear differential operator with polynomial coefficients:

L = `0 + · · ·+ `n∂
n
x , `0, . . . , `n ∈ C[x].

In our context, we typically have C = Q(t).

Definition: The operator L is called fuchsian at a point a ∈ C̄ if
it admits n linearly independent solutions in

C̄[[[x− a]]] :=
⋃
ν∈C

(x− a)νC̄[[x− a]][log(x− a)].

It is called fuchsian at ∞ if it admits n l.i. solutions in

C̄[[[x−1]]] :=
⋃
ν∈C

x−νC̄[[x−1]][log(x)].

It is simply called fuchsian if it is fuchsian at all a ∈ C̄ ∪ {∞}.
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Integral Series
Definition:

I Terms in these power series expansions, i.e., terms of the form

(x− a)α log(x− a)β or ( 1x)α log(x)β

are called integral if α > 0.

I A series in C̄[[[x− a]]] or C̄[[[x−1]]] is called integral if it only
contains integral terms.

I A non-integral series is said to have a pole at a (or ∞).

Analogy with Algebraic Functions:
Consider an algebraic function field A = C(x)[y]/〈M〉 with
minimal polynomial M of y-degree n. An element
f = f0 + f1y + · · ·+ fn−1y

n−1 ∈ A is called integral at a if the
leading coefficient of the minimial polynomial of f in C[x][y] is not
divisible by (x− a). This is the case if and only if if all Puiseux
series expansions of f at x = a involve only nonnegative exponents.
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Integral Bases
For a fuchsian operator L, we consider the left C(x)[∂x]-module
A = C(x)[∂x]/〈L〉, where 〈L〉 is the left ideal generated by L.

Definition:

I An element f = f0 + f1∂x + · · ·+ fn−1∂
n−1
x ∈ A is called

locally integral at a ∈ C̄ ∪ {∞} if for every solution y of L in
C̄[[[x− a]]] (or C̄[[[x−1]]]) the series f · y is integral.

I f is called globally integral if it is locally integral at every
a ∈ C̄ (“at all finite places”).

The globally integral elements f ∈ A form a C̄[x]-submodule of A.

Definition: A basis {ω1, . . . , ωn} of this module is called an
integral basis for A.
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Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Integrality
Examples: (A = C(x)[∂x]/〈L〉)

I 1 ∈ A represents a solution y of L · y = 0; indeed,
L · 1 = L = 0 in A.

I “1 ∈ A is integral at 0” means that all solutions y of L have
integral series expansions at x = 0.

I “∂x ∈ A is integral” means that for any solution y of L and
any point a ∈ C̄, the series expansion of y′ at x = a is integral.

Analogy with Algebraic Functions: (A = C(x)[y]/〈M〉)
I y ∈ A represents a formal solution of M(y) = 0; indeed,
M(y) = M = 0 in A.

I “y ∈ A is integral at 0” means that all solutions of M = 0
have Puiseux series expansions at x = 0 with exponents > 0.

I “y2 ∈ A is integral” means that for any solution y of M = 0
and any a ∈ C̄, the Puiseux series of y2 at x = a is integral.

9 / 17



Key Feature of Integral Bases

Feature: Integral bases make poles explicit!

Lemma: Let L be a fuchsian operator and let {ω1, . . . , ωn} be a
local integral basis of A = C(x)[∂x]/〈L〉 at a ∈ C̄ ∪ {∞}. Let
f =

∑n
i=1 fiωi ∈ A with f1, . . . , fn ∈ C(x). Then f is integral at

a if and only if each fiωi is integral at a.

Note: An integral basis {ω1, . . . , ωn} is always also a C(x)-vector
space basis of A.

I We have that f ∈ A has a pole at a ∈ C̄ if and only if at least
one of the fi has a pole at a.

I In particular the poles of the coefficients fi cannot cancel
each other.
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Hermite-Trager Reduction
Task: For given f ∈ A find g, h ∈ A such that

f =

n∑
i=1

fi
d
ωi = g′ + h and h =

n∑
i=1

hi
d∗
ωi,

where fi, hi ∈ C[x] and where d∗ is the squarefree part of d.

One step of the reduction consists in reducing the multiplicity
µ > 1 of some nontrivial squarefree factor v ∈ C[x] of d:

n∑
i=1

fi
uvµ

ωi =

( n∑
i=1

gi
vµ−1

ωi

)′
+

n∑
i=1

hi
uvµ−1

ωi (d = uvµ).

By a repeated application of such reduction steps one can
decompose any f ∈ A as f = g′ + h, where the denominators of
the coefficients of h are squarefree.
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HT Reduction for Fuchsian D-Finite Functions

Task: Decompose
n∑
i=1

fi
uvµ

ωi =

( n∑
i=1

gi
vµ−1

ωi

)′
+

n∑
i=1

hi
uvµ−1

ωi.

In order to determine the unknown polynomials g1, . . . , gn, we
clear the denominator uvµ:

n∑
i=1

fiωi =
n∑
i=1

(
uvg′iωi + uvµgi

(
v1−µωi

)′
+ vhiωi

)
.

Then this equation is reduced modulo v:

n∑
i=1

fiωi =
n∑
i=1

giuv
µ
(
v1−µωi

)′
mod v.

Using gcd(u, v) = 1 we can prove that the elements uvµ
(
v1−µωi

)′
form a local integral basis at each root of v.
−→ This implies that the gi are uniquely determined modulo v.
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Obstacle

Chevalley’s theorem: The only algebraic functions which are
integral at all finite places and at infinity are the constant ones.

Problem: This does not hold for fuchsian D-finite functions: there
exist functions that are integral at all places without being constant.

Fortunately, we can show that there are not too many such cases:

Lemma: Let {ω1, . . . , ωn} be an integral basis of A that is normal
at infinity, and let τ1, . . . , τn ∈ Z be such that {xτ1ω1, . . . , x

τnωn}
is a local integral basis at infinity. Then the set of all f ∈ A which
are integral everywhere is a C-vector space with basis

{xjωi : i = 1, . . . , n; j = 0, . . . , τi }.
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Main Result: Property 1
Theorem:

Suppose that f ∈ A has at least a double root at infinity, i.e.,
every series in C̄[[[x−1]]] associated to f only contains monomials
(1/x)α log(x)β with α > 2.

Let W = {ω1, . . . , ωn} be an integral basis for A that is normal at
infinity, and let f = g′ + h be the result of the Hermite reduction
with respect to W .

Let V ⊆ A be the C-vector space of all elements that are integral
at all places, including infinity, and let U = {v′ : v ∈ V } be the
space of all elements of A that are integrable in V .

Then f is integrable in A if and only if h ∈ U .

Note: In the special case of algebraic functions we get

f is integrable if and only if h = 0

since V is the set of constant functions (according to Chevalley).
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Property 2: Confinement
Proposition: Let W = {ω1, . . . , ωn}, f =

∑n
i=1(fi/D)ωi ∈ A,

τ1, . . . , τn ∈ Z, D, f1, . . . , fn ∈ C[x], e ∈ C[x], E = lcm(e,D∗).
Then f admits a telescoper of order at most

n
(

degx(E)− 1−min
(
0,min j(τj)

))
+

n∑
i=1

τi.

Polynomial Reduction: the idea is to decompose h further:

f = g′ + h = g′ +
n∑
i=1

hi
de
ωi = g′ +

n∑
i=1

ri
d
ωi +

n∑
i=1

si
e
ωi,

where degx(ri) < degx(d). The goal is to confine the si to a
finite-dimensional vector space over C.

Alternative bound: Every f ∈ A has a telescoper of order at most

n
(
degx(d) + degx(e) + τ + λ+ 1

)
.
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Example

Let L = 3(x3 − x)D2
x + 2(3x2 − 1)Dx with solutions

y1(x) = 1 and y2(x) = x1/3 2F1
(
1
6 ,

2
3 ; 7

6 ;x2
)
.

An integral basis for A = Q(x)[∂x]/〈L〉 that is also normal at
infinity is given by ω1 = 1 and ω2 = (x3 − x)∂x.

Both solutions are integral everywhere, and hence ω1 ∈ V (actually
V is spanned by ω1).

A straightforward calculation yields

W ′ =
1

e
MW =

1

x3 − x

(
0 1
0 x2 − 1

3

)
W for W =

(
ω1

ω2

)
.
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Example (continued)
Consider the following integrand (which has a double root at ∞):

f =
3

x2
ω1 +

2(2x+ 1)

(x3 − x)2
ω2.

The result of the Hermite reduction has nonzero remainder:

f =

(
−3

x
ω1 −

3(2x+ 1)

2(x3 − x)
ω2

)′
− 3

x3 − x
ω2,

According to the theorem, f is integrable if this remainder lies in
the subspace U = {v′ : v ∈ V }. Using the matrix M , we find that
ω′1 = 1

x3−xω2, which is indeed a scalar multiple of the remainder.
Hence, f is integrable:

f =

(
−3(x+ 1)

x
ω1 −

3(2x+ 1)

2(x3 − x)
ω2

)′
.
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