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unresolved examples of Christol’s conjecture are diagonals of rational functions.
Finally we give two arguments that show that it is likely that the
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1. Introduction

There is a plethora of multiple integrals in physics: Feynman integrals, lattice Green
functions, the summands of the magnetic susceptibility of the 2D Ising model [1, 2],
that have very specific mathematical properties. These functions are D-finite, i.e.,
solutions of linear differential operators with polynomial coefficients, and have series
expansions with integer coefficients. It was also shown that the linear differential
operators annihilating the summands of the magnetic susceptibility of the Ising model
χ̃(n), verify the specific property of being Fuchsian‡ operators: the critical exponents
of all their singularities are given by rational numbers, and their Wronskians are N -
th roots of rational functions [1, 2]. It was also shown that the χ̃(n) functions are
solutions of globally nilpotent operators [3], and that they “come from geometry”
being G-operators [5].

The unifying scheme behind these seemingly sparse properties is that these
functions are diagonals of rational functions [6, 7]. It was shown for example in [7],
that if summands of the magnetic susceptibility χ̃(n) for any n have an integer
coefficient series expansion reducing to algebraic series modulo any prime, it is because
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‡ Denoting by θ the homogeneous derivative x · d
dx

, the degrees of all the polynomial terms of the
Fuchsian linear differential operator

∑
n Pn(x) · θn are equal.
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they are diagonals of rational functions for any integer n. In fact many problems
in mathematical physics involving n-fold integrals, could be interpreted in terms of
diagonals of algebraic or rational¶ functions†.

In the case of the magnetic susceptibility of the square Ising model, it was
possible to show that the χ̃(n)’s are diagonals of rational functions because one
had access to the algebraic integrands‖. The only hurdle to overcome was to show
the integrand to be analytic at the origin. Now, it is straightforward to show that

3F2

(
[2/9, 5/9, 8/9], [2/3, 1], 36 · x

)
and 3F2

(
[1/9, 4/9, 7/9], [1/3, 1], 36 · x

)
verify the

criteria that every diagonal of a rational function needs to satisfy [9]:

• it is globally bounded: there exist integers c and d in N∗, such that d f(c x) ∈
Z[[x]] and f(x) has a radius of convergence that is non-zero in C.

• it is D-finite: there exists a linear differential operator L ∈ Z[x][ d
dx ], with L 6= 0,

such that L(f) = 0.

It is however much harder to prove these two functions to be diagonals of rational
functions, as it is an example of an inverse problem of creative telescoping§.

Now, solving inverse problems is hard, and it is relevant to physics. Inverse
problems are hard because the objects they study are not attainable through direct
study. This is the case with the problem we tackle in this paper: it is very hard to guess
the rational function whose diagonal is given by 3F2

(
[2/9, 5/9, 8/9], [2/3, 1], 36 · x

)
or 3F2

(
[1/9, 4/9, 7/9], [1/3, 1], 36 · x

)
, and that is why the problem of showing any

member of this “class” of hypergeometric functions to be a diagonal of a rational
function, has been open since Christol came up with a first unresolved example in
1986 [21].

Computational software tools such as Maple and Mathematica, as well as the
software package [11], were heavily used to guess the rational functions whose diagonals
give these 3F2 functions. While physicists know that these tools can be used for
direct computation in physics‡, it is less known that they can be used to study inverse
problems like the one we discuss in this paper, which makes this paper all the more
relevant to physicists.

Furthermore, these 3F2 hypergeometric functions are shown in Appendix A to be
related to Shimura curves, a type of curves that appears in the context of Calabi-Yau
varieties [13] (which can be seen as generalizations of K3 surfaces [14]), and in the
context of mathematical physics [15], for instance mirror symmetry in physics [4]. For
example in [15], Shimura curves are discussed in the context of superelliptic curves
which have different applications in mathematical physics [17]. Furthermore, in the
context of Calabi-Yau operators [18, 19], it is worth recalling that the (non-holonomic
but differentially algebraic) series of the nome, or the Yukawa coupling series [20], are
actually series with integer coefficients, this property having a deep physical meaning
like counting the number of instantons.

Christol’s conjecture is an important problem for D-finite series. As explained
in [21], the conjecture states that every series verifying the two properties appearing in

¶ Any diagonal of an algebraic function in n variables can be rewritten as the diagonal of a rational
function in 2n variables: see [8].
† See [6, 7] p.26 and p.58.
‖ See the integrand of equation (26) in [7].
§ See section 8 of [10].
‡ The software package [11] can be used to compute differential equations verified by various sunset
and sunrise Feynman diagrams [12].
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the bullet points above, is the diagonal of a rational function. In the same paper [21],
Christol came up with an unresolved example to his conjecture, and a longer list was
generated by Christol and his co-authors in 2012 in [7]. In this paper we show that
two of the unresolved examples of the conjecture given in [7] on page 58, namely the

3F2

(
[2/9, 5/9, 8/9], [2/3, 1], 36 · x

)
and 3F2

(
[1/9, 4/9, 7/9], [1/3, 1], 36 · x

)
are indeed

diagonals of rational functions and provide a generalization of this result.

2. Recalls on diagonals of rational functions and on Christol’s conjecture

2.1. Definition of the diagonal of a rational function

The diagonal of a rational function in n variables R(x1, . . . , xn) =
P(x1, . . . , xn)/Q(x1, . . . , xn), where P,Q ∈ Q[x1, . . . , xn] such that Q(0, . . . , 0) 6= 0,
is defined through its multi-Taylor expansion around (0, . . . , 0):

R
(
x1, . . . , xn

)
=

∞∑
m1 =0

· · ·
∞∑

mn =0

Rm1, ...,mn · x
m1
1 · · · xmn

n , (1)

as the series in one variable x:

Diag
(
R
(
x1, . . . , xn

))
=

∞∑
m=0

Rm,m, ...,m · xm. (2)

2.2. Hadamard product of algebraic functions and Christol’s conjecture

Recall that the Hadamard product of two series f(x) =
∑∞

n=0 αn · xn and g(x) =∑∞
n=0 βn · xn is given by:

f(x) ? g(x) =

∞∑
n=0

αn · βn · xn. (3)

Hypergeometric series of the form pFp−1([a1, . . . , ap], [b1 . . . , bp−1], x) of height
h = h(a1, . . . , ap, b1 . . . , bp−1), where the height h is given by:

h = #{1 ≤ j ≤ p | bj ∈ Z} −#{1 ≤ j ≤ p | aj ∈ Z} (4)

with bp = 1, that can be written‡ as the Hadamard product of h globally bounded]
series of height 1, were shown to verify Christol’s conjecture. For example, the globally
bounded hypergeometric series 3F2([1/3, 1/3, 1/3], [1, 1], x) has height 3, and it can
be written as the Hadamard product of three algebraic functions†:

3F2([
1

3
,

1

3
,

1

3
], [1, 1], x) = (1− x)−1/3 ? (1− x)−1/3 ? (1− x)−1/3, (5)

and can thus be written as the diagonal of the algebraic function in three variables:

(1− x)−1/3 · (1− y)−1/3 · (1− z)−1/3. (6)

Unlike the case of 3F2([1/3, 1/3, 1/3], [1, 1], x) , the hypergeometric functions

3F2([2/9, 5/9, 8/9], [2/3, 1], x) and 3F2([1/9, 4/9, 7/9], [1/3, 1], x), while being globally

‡ See [21] p.15.
] Globally bounded series can be recast into series with integer coefficients [6, 7].
† Diagonals are closed under the Hadamard product: if two series are diagonals of rational functions,
their Hadamard product is also a diagonal of a rational function.
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bounded functions [22], were constructed in a way that prevents them from being
written as “simple” Hadamard products of algebraic functions [22].

Note that a pFp−1 hypergeometric function can be shown to be globally bounded
in general, by looking at Landau functions as explained in the work of Christol [21].
Furthermore, Beukers and Heckman have shown in [23], that pFp−1 globally bounded
hypergeometric functions of height one according to the definition above, are algebraic
functions.

2.3. Unresolved examples to the conjecture

Generalized hypergeometric functions with regular singularities pFp−1 are a simple
and natural testing ground for Christol’s conjecture.

All 2F1([a, b], [c], x) hypergeometric series with a, b ∈ Q \ Z and c ∈ Z that are
globally bounded are diagonals of rational functions. There are three cases that fall
into this category:

• If the parameter c = 1, then the 2F1 function can be written as the Hadamard
product of two 1F0 functions, which are algebraic functions, and thus are
diagonals of rational functions by Furstenberg’s [24] theorem¶.

• If the parameter is such that c > 1 with c ∈ Z, then the 2F1 function can be
written as the Hadamard product of a 1F0 and an algebraic function, and is thus
the diagonal of a rational function by Furstenberg’s theorem.

• If parameter c is not an integer, in this case the 2F1 function is a diagonal of a
rational function if and only if it is an algebraic function††.

Moving on to 3F2 hypergeometric functions, one can ask the question: when is a
globally bounded 3F2([a, b, c], [d, e], x) hypergeometric function, with a, b, c ∈ Q \ Z,
the diagonal of a rational function?

• If d, e are integers greater than 0, then the 3F2([a, b, c], [d, e], x) can be written as
the Hadamard product of three algebraic functions, analogously to the situation
in the 2F1 above, and is thus the diagonal of a rational function, by the closure
of diagonals under the Hadamard product and by Furstenberg’s theorem.

• If the parameters d and e in 3F2([a, b, c], [d, e], x) are rational numbers but not
integers, then the 3F2 is algebraic§, and is thus a diagonal by Furstenberg’s
theorem.

Excluding the case where any of the parameters of the hypergeometric function

pFq is a non-positive integer, because in this case the pFq is either a polynomial or
not defined, the interesting case occurs when only one of the two parameters d or e
is rational but not integer, and the other is an integer. But even in this case, a lot of
the 3F2 functions are easily seen to be diagonals of a rational function. Suppose that
a 3F2([a, b, c], [1, e], x) is globally bounded, with the parameters a, b, c, e ∈ Q \ Z,
then there are six ways to write the 3F2([a, b, c], [1, e], x) function as the diagonal of a
rational function. This corresponds to the six ways to write the 3F2([a, b, c], [1, e], x)
as a Hadamard product of hypergeometric functions:

¶ Furstenberg’s theorem states that any algebraic function is the diagonal of a rational function in
two variables.
††The only 2F1 hypergeometric functions that are globally bounded with c ∈ Q are the algebraic
ones: they are the ones appearing in the list of Schwarz [25].
§ This follows from the result of Beukers and Heckmann in [23].
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• 2F1([a, b], [e], x) ? 1F0([c], x)

• 2F1([a, c], [e], x) ? 1F0([b], x)

• 2F1([b, c], [e], x) ? 1F0([a], x)

• 2F1([a, b], [1], x) ? 2F1([c, 1], [e], x)

• 2F1([a, c], [1], x) ? 2F1([b, 1], [e], x)

• 2F1([b, c], [1], x) ? 2F1([a, 1], [e], x)

Now 1F0([c], x) and 2F1([a, b], [1], x) are diagonals of rational functions by what we
have said above. Then 3F2([a, b, c], [1, e], x) is a diagonal of rational functions if

2F1([c, 1], [e], x) or 2F1([a, b], [e], x)††, are diagonals of rational functions, i.e. if
and only if they are algebraic functions, since e ∈ Q \ Z. Now 2F1([c, 1], [e], x)
cannot be an algebraic function for e ∈ Q by Goursat [26]. Hence if one
of 2F1([a, b], [e], x), 2F1([b, c], [e], x), or 2F1([a, c], [e], x) is an algebraic function,
then 3F2([a, b, c], [1, e], x) is the diagonal of a rational function. Now taking the
two examples given in [7]] that we are looking at here, we see that neither

3F2 ([2/9, 5/9, 8/9], [2/3, 1], x), nor 3F2 ([1/9, 4/9, 7/9], [2/3, 1], x), can be obtained
as diagonals of rational functions through Hadamard products† since the three 2F1

hypergeometric series are not globally bounded¶:

2F1

(
[
2

9
,

5

9
], [

2

3
], x

)
, 2F1

(
[
2

9
,

8

9
], [

2

3
], x

)
, 2F1

(
[
5

9
,

8

9
], [

2

3
], x

)
, (7)

and nor are the 2F1 hypergeometric series:

2F1

(
[
1

9
,

4

9
], [

1

3
], x

)
, 2F1

(
[
4

9
,

7

9
], [

1

3
], x

)
, 2F1

(
[
1

9
,

7

9
], [

1

3
], x

)
. (8)

3. The main results

The globally bounded 3F2 hypergeometric series

3F2

(
[
2

9
,

5

9
,

8

9
], [

2

3
, 1], 27 · x

)
, 3F2

(
[
1

9
,

4

9
,

7

9
], [

1

3
, 1], 27 · x

)
(9)

are‡ respectively the diagonals of the two algebraic functions

3F2

(
[
2

9
,

5

9
,

8

9
], [

2

3
, 1], 27 · x

)
= Diag

( (1− x− y)1/3

1− x− y − z

)
, (10)

and

3F2

(
[
1

9
,

4

9
,

7

9
], [

1

3
, 1], 27 · x

)
= Diag

( (1 − x− y)2/3

1 − x− y − z

)
. (11)

These two hypergeometric series†† (9) can be recast into series with integer coefficients

3F2

(
[
2

9
,

5

9
,

8

9
], [

2

3
, 1], 36 · x

)
= 1 + 120x + 47124x2 + 23483460x3 + · · · , (12)

†† Instead of 2F1([c, 1], [e], x), or one could take any one of the three permuted versions:

2F1([b, 1], [e], x) , etc.
] Appendix F p.58 of [7].
† See [27] for a proof that 3F2 ([1/9, 4/9, 7/9], [2/3, 1], x) cannot be written as a Hadamard product.
¶ One can see this experimentally by taking the series expansion of any of the Gauss hypergeometric
functions: the prime numbers in the denominators of the coefficients grow continuously.
‡ The operators annihilating the two hypergeometric functions (9) are adjoint of each other.
††The hypergeometric function 3F2([2/9, 5/9, 8/9], [2/3, 1], 27x) can be rewritten as the Hadamard

product 2F1

(
[ 2
9
, 5

9
], [ 2

3
], 27x

)
? (1 − x)−8/9 with 2F1

(
[ 2
9
, 5

9
], [ 2

3
], 27x

)
being associated with a

Shimura curve [30]. For more details please refer to Appendix A.
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and

3F2

(
[
1

9
,

4

9
,

7

9
], [

1

3
, 1], 36 · x) = 1 + 84x + 32760x2 + 16302000x3 + · · · (13)

Now Denef and Lipshitz in [8] show that any power series in Q [[x1, . . . , xn]],
algebraic over Q(x1, . . . , xn), is the diagonal of a rational function in 2n variables,
and they give an algorithm to build this rational function. This means that
we can construct the rational functions, whose corresponding diagonals are the

3F2([2/9, 5/9, 8/9], [2/3, 1], 27 ·x) and the 3F2([1/9, 4/9, 7/9], [1/3, 1], 27 ·x) functions.
We recall the algorithm of Denef and Lipshitz and apply it to the algebraic function
(1−x−y)1/3/(1−x−y−z) in the first subsection below, and then we give the rational
function and a generalization of the result in the second subsection. Finally, we give
a second proof of the general result using binomial sums.

3.1. From diagonals of algebraic functions to diagonals of rational functions: Denef
and Lipshitz

We explain a method which, for a given algebraic power series in n variables,
constructs a rational function in 2n variables whose diagonal equals the diagonal of
the given algebraic series. Moreover, the partial diagonal of that 2n-variable rational
function, with respect to the pairs of variables (x1, xn+1), . . . , (xn−1, x2n), yields the
original n-variable algebraic power series. The method is described in the paper by
Denef and Lipshitz [8] in the proof of their Theorem 6.2. As a running example we
use the three-variable algebraic function

f(x, y, z) =
(1− x− y)1/3

1− x− y − z
, (14)

whose multi-Taylor series expansion at 0 is actually a power series in the three variables
x, y, z:

f(x, y, z) = 1 +
2

3
x +

2

3
y + z +

10

9
xy +

5

3
xz +

5

3
yz +

40

9
xyz + . . . (15)

Note that the minimal polynomial of f is given by

p(x, y, z, f) =
(

(x+ y + z − 1) · f
)3

+ 1 − x− y. (16)

Denef and Lipshitz’s theorem is formulated for étale extensions, which basically means
that the partial derivative (w.r.t. f) of the minimal polynomial has a nonzero constant
coefficient at 0. Clearly, the above polynomial p(x, y, z, f) does not meet this criterion.
However, by considering f̃ = f − 1, i.e. by removing the constant term of f , we can
achieve an étale extension. The minimal polynomial then reads

p̃(x, y, z, f) =
(

(x+ y + z − 1) · (f + 1)
)3

+ 1 − x− y. (17)

Indeed, ∂p̃
∂f (0, 0, 0, 0) = −3 6= 0. According to the proof of Theorem 6.2 (i) in [8], the

rational function

r̃(x, y, z, f) = f2 ·
∂p̃
∂f (xf, yf, zf, f)

p̃(xf, yf, zf, f)
(18)

has the property that D
(
r̃(x, y, z, f)

)
= f̃(x, y, z), and hence D

(
r(x, y, z, f)

)
=

f(x, y, z) for r(x, y, z, f) = r̃(x, y, z, f) +1. Here the operator D denotes a special
kind of “diagonalization” with respect to the last variable: for

f(x1, . . . , xn, y) =
∑

ai1,...,in,j · x
i1
1 · · · xinn yj , (19)
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one defines

D
(
f(x1, . . . , xn, y)

)
=

∑
j=i1+···+in

ai1,...,in,j · x
i1
1 · · · xinn . (20)

In our running example we obtain:

r(x, y, z, f) =
3 f2 · (f + 1)2 · (xf + yf + zf − 1)3

(f + 1)3 · (xf + yf + zf − 1)3 − xf − yf + 1
+ 1. (21)

In the second step, which is explained in the proof of Theorem 6.2(ii) of [8], one has
to transform the rational function r (that has n + 1 variables) into another rational
function (having 2n variables) such that its ”true” (partial) diagonal gives the n-
variable algebraic series f . It consists of a sequence of n − 1 elementary steps, each
of which is adding one more variable. In our example, we have to do the following

r1(x, y, z, u1, v1) =
u1 · r(x, y, z, u1) − v1 · r(x, y, z, v1)

u1 − v1
, (22)

r2(x, y, z, u1, u2, v2) =
u2 · r1(x, y, z, u1, u2) − v2 · r1(x, y, z, u1, v2)

u2 − v2
,

and obtain with r2 the desired rational function in six variables.

3.2. Generalization of the previous result

By the algorithm of Denef and Lipshitz given in the previous section, it is possible to
show that the algebraic function

(1 − x − y)b/a

1 − x − y − z
, (23)

corresponds to the following rational function in six variables, by taking the diagonal
with respect to (x, u), (y, v) and (z, w):

a · u3v · (1 − ux− uy − uz) · (1 + u)a−1 · (1 − ux− uy − uz)a−1

(1 + u)a · (1 − ux− uy − uz)a − (1 − ux− uy)b · (u − v) · (v − w)

− a · v4 · (1 − vx− vy − vz) · ((1 + v) · (1 − vx− vy − vz))a−1

(1 + v)a · (1 − vx− vy − vz)a − (1 − vx− vy)b · (u − v)(v − w)
(24)

− a · u3w · (1 − ux− uy − uz)((1 + u) · (1 − ux− uy − uz))a−1

(1 + u)a · (1 − ux− uy − uz)a − (1 − ux− uy)b · (u − w) · (v − w)

− aw4 · (1 − wx− wy − wz) · (1 + w)a−1 · (1 − wx− wy − wz)a−1

(1 + w)a · (1 − wx− wy − wz)a − (1 − wx− wy)b · (u− w) · (v − w)
+ 1.

The diagonal of the rational function (24) is annihilated by the linear differential
operator of order three:

a3 x2 (27x− 1) ·D3
x + a2 x (135 a · x − 27 b · x− 3 a+ b) ·D2

x (25)

+ a · ((9 b2 − 63 b a + 114 a2) · x + b a− a2) ·Dx + (3 a− b) · (2 a− b) · (a− b),
and can be expressed as the 3F2 hypergeometric function

3F2

(
[
3 a − b

3 a
,

2 a − b
3 a

,
a − b

3 a
], [

a − b
a

, 1], 27 · x
)
. (26)

In particular, the two hypergeometric functions 3F2([2/9, 5/9, 8/9], [2/3, 1], 27· x)
and 3F2([1/9, 4/9, 7/9], [1/3, 1], 27· x) appearing in (9), correspond respectively to the
parameters (b, a) = (1, 3), and (b, a) = (2, 3) in the algebraic function (23). Other
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values of the parameters (b, a) are not necessarily unresolved examples of Christol’s
conjecture.

For example if we consider the parameter values b = 1 and a = 7 , we see
that the diagonal of (24) is given by the globally bounded† series (27)

3F2

(
[
2

7
,

13

21
,

20

21
], [

6

7
, 1], 27x

)
= 1 +

260

49
x +

188190

2401
x2 + · · · (27)

with the 2F1 series

2F1

(
[
13

21
,

20

21
], [

6

7
], 27x

)
, 2F1

(
[
2

7
,

20

21
], [

6

7
], 27x

)
, 2F1

(
[
2

7
,

13

21
], [

6

7
], 27x

)
,

being series that are not globally bounded. Hence the hypergeometric series (27)
cannot be easily written as a Hadamard product, as explained in Section 2.3.

In contrast, for b = 3 and a = 4 the diagonal of (24) which is given by the
globally bounded‡ series (28)

3F2

(
[
3

4
,

5

12
,

1

12
], [

1

4
, 1], 27x

)
= 1 +

45

16
x +

41769

1024
x2 + · · · (28)

with the 2F1 series

2F1

(
[

5

12
,

1

12
], [

1

4
], 27x

)
, (29)

being a globally bounded series, which means that it can be written as a diagonal using
one of the procedures given in Section 2.3. We note that algebraic functions close to the
algebraic functions appearing in (10) and (11), also give 3F2 or 4F3 hypergeometric
functions as their diagonals that are unresolved examples to Christol’s conjecture:

Diag
( (1− x− 2 y)2/3

1− x− y − z

)
= 3F2

(
[
1

9
,

4

9
,

7

9
], [

2

3
, 1], 27 · x

)
, (30)

Diag
( (1 − x− 2 y)1/3

1 − x− y − z

)
= 3F2

(
[
2

9
,

5

9
,

8

9
], [

5

6
, 1], 27 · x

)
, (31)

Diag
( (1 − x)1/3

1 − x− y − z

)
= 4F3

(
[
2

9
,

5

9
,

8

9
,

1

2
], [

1

3
,

5

6
, 1], 27 · x

)
, (32)

Diag
( (1 − x− y)1/3

1 − x− z

)
= 4F3

(
[
2

9
,

5

9
,

8

9
,
−1

3
], [

1

3
,

5

6
, 1], 27 · x

)
. (33)

3.3. Proof

A computer algebra proof of this result can easily be obtained using the creative
telescoping program [11]: one computes the operator (25) using the program [11], and
verifies that this operator does annihilate the diagonal of (23)††. Another longer way
to do it which we provide below, is through binomial sums.

† 3F2

(
[ 2
7
, 13

21
, 20

21
], [ 6

7
, 1], 27 · 73 · x

)
is a series with integer coefficients.

‡ 3F2

(
[ 3
4
, 5

12
, 1

12
], [ 1

4
, 1], 1728 · x

)
is a series with integer coefficients.

††One also needs to note that initial conditions have to be compared.
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The denominator of the algebraic function (1 − x− y)b/a/(1 − x− y− z) can be
expanded as a geometric series:

(1 − x− y − z)−1 =

∞∑
n=0

∞∑
m=0

(
n

m

)
· (x+ y)m zn−m

=

∞∑
n=0

∞∑
m=0

∞∑
l=0

(
n

m

)(
m

l

)
· xl ym−l zn−m, (34)

while the numerator can be written as the sum:

(1 − (x+ y))b/a =

∞∑
k=0

(−b/a)k
k!

· (x+ y)k =

∞∑
k=0

k∑
j=0

(−b/a)k
k!

·
(
k

j

)
xjyk−j . (35)

Multiplying these two sums (34) and (35) and re-indexing, we obtain:
∞∑
s=0

∞∑
t=0

∞∑
u=0

xs yt zu ·
s∑

j=0

∞∑
k=0

(−b/a)k
k!

·
(
k

j

)(
s+ t+ u− k
s+ t− k

)(
s+ t− k
s− j

)
. (36)

Now taking the coefficients corresponding to the diagonal in (36), i.e. such that
s = t = u = n, we get:

n∑
j=0

∞∑
k=0

(−b/a)k
k!

·
(
k

j

)(
3n− k
2n− k

)(
2n− k
n− j

)

=

2n∑
k=0

(−b/a)k
k!

·
(

3n− k
2n− k

)
·

n∑
j=0

(
k

j

)(
2n− k
n− j

)
. (37)

Now recalling the Chu-Vandermonde identity which says that
(
2n
n

)
=∑n

j=0

(
k
j

) (
2n−k
n−j

)
, we find that (37) can be written as

S(n) =

(
2n

n

)
·

2n∑
k=0

(−b/a)k
k!

·
(

3n− k
2n− k

)
, (38)

and by using a computer algebra tool like Mathematica or Maple to simplify
this sum into a closed form, from which we can read off the hypergeometric
function representation of the diagonal. More precisely, we used creative telescoping
(Zeilberger’s algorithm) to prove that (38) satisfies the first-order recurrence:

(b − 3 a − 3 an) · (b − 2 a− 3 an) · (b − a − 3 an) · S(n)

= a2 · (n+ 1)2 · (b− a− an) · S(n+ 1). (39)

Together with the initial condition S(0) = 1, we obtain the closed form

S(n) =
33n ·

(
(a− b)/(3a)

)
n
·
(
(2a− b)/(3a)

)
n
·
(
(3a− b)/(3a)

)
n(

(a− b)/a
)
n
·
(
n!
)2 . (40)

4. Telescopers of algebraic functions versus diagonals of algebraic
functions

The diagonal of an algebraic function and a solution of a telescoper† of an algebraic
function are close, yet distinct notions. A telescoper annihilates an n-fold integral of

† By “telescoper” of a rational function R(x, y, z) we denote the output of the creative telescoping
program [11], applied to the transformed rational function R(x/y, y/z, z)/(yz), which is a differential
operator that annihilates the diagonal of R.



Christol’s conjecture 10

an algebraic function over all integration cycles††. For example the hypergeometric
function 3F2([a, b, c], [d, 1], x) is the solution of the telescoper of the following algebraic
function obtained through creative telescoping:

(1− y)−1−b+d · yb · (1− x · y2)−a · (1− z)−c (41)

with a, b, c, d ∈ Q. Hence if one takes the parameters a, b, c, d to have the values
a = 1/9, b = 4/9, c = 7/9, d = 1/3, one immediately obtains that the telescoper of
the algebraic function

y4/9

(1− y)10/9 · (1− x y2)1/9 · (1− z)7/9
, (42)

admits as a solution the hypergeometric function 3F2([ 19 ,
4
9 ,

7
9 ], [ 13 , 1], x). Yet the

diagonal of the algebraic function (42) is equal to zero. This is not incompatible with
the fact that the hypergeometric function 3F2([ 19 ,

4
9 ,

7
9 ], [ 13 , 1], x) can be written as

as the diagonal of another algebraic function, namely (11). Other 3F2 unresolved
examples to Christol’s conjecture like [21]

3F2

(
[
1

9
,

4

9
,

5

9
], [

1

3
, 1], 27 · x

)
, (43)

were not obtained here as diagonals of an algebraic function, yet they are solutions of
the telescoper of an algebraic function and can thus be seen as a period of an algebraic
variety over a non-evanescent cycle‡, but not necessarily as a diagonal of an algebraic
function (i.e. a period over an evanescent cycle). We give two arguments in favour of
the fact that the 3F2 hypergeometric function (43) is most probably a diagonal of an
algebraic function.

4.1. Diagonal: algebraic mod p

If one expects 3F2 hypergeometric functions like (43) to be diagonals of an algebraic
function, one should find [6, 7] that the corresponding series expansion reduces to an
algebraic series modulo any prime number p, or power of a prime number pr. In order
to verify this fact on (43) we look at the series expansion of

3F2

(
[
1

9
,

4

9
,

5

9
], [

1

3
, 1], 272 · x

)
= 1 + 60x + 20475x2 + 9373650x3 (44)

+ 4881796920x4 + 2734407111744x5 + 1605040007778900x6 + · · ·
which becomes modulo 2:

3F2

(
[
1

9
,

4

9
,

5

9
], [

1

3
, 1], 272 · x

)
= 1 + x2 + x128 + x130

+ x8192 + x8194 + x8320 + x8322

+ x524288 + x524290 + x524416 + x524418 + x532480 + x532482 + x532608 + x532610

+O(x600000)

= (1 + x2) · (1 + x128) · (1 + x8192) · (1 + x524288) +O
(
x600000

)
. (45)

Straightforward guessing gives the infinite product formula

F (x) = (1 + x2) · (1 + x2
7

) · (1 + x2
13

) · (1 + x2
19

) · · · (1 + x2
6n+1

) · · · (46)

††Diagonals correspond only to evanescent integration cycles over algebraic functions.
‡ To be totally rigorous, one has to consider the two certificates of the telescoping equation see if
that the integral of the derivatives of these two certificates over that cycle are actually zero.
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which is solution of

F (x) = (1 + x2) · F (x64) mod. 2, (47)

i.e. 3F2

(
[ 19 ,

4
9 ,

5
9 ], [ 13 , 1], 272 · x

)
is an algebraic function modulo 2 satisfying:

F (x) = (1 + x2) · F (x)64 mod. 2 (48)

or:

(1 + x2) · F (x)63 = 1 mod. 2. (49)

Modulo 3 we have the following expansion

3F2

(
[ 19 ,

4
9 ,

5
9 ], [ 13 , 1], 272 · x

)
− 1

3
= 2 · F (x) mod. 3, (50)

where:

F (x) = x + x3 + x9 + x27 + x81 + x243 + x729 + x2187 + x6561

+ x19683 + x59049 +O
(
x60000

)
(51)

which is solution of

x + F (x3) = F (x) mod. 3, (52)

i.e. F (x) is an algebraic function modulo 3:

x + F (x)3 = F (x) mod. 3. (53)

Unlike for the hypergeometric series 3F2

(
[ 19 ,

4
9 ,

7
9 ], [ 13 , 1], 272 · x

)
hypergeometric

series, it is less obvious how to obtain the 3F2

(
[ 19 ,

4
9 ,

5
9 ], [ 13 , 1], 272 · x

)
as the diagonal

of a rational function. It is however possible to obtain 3F2

(
[ 19 ,

4
9 ,

5
9 ], [ 13 , 1], 272 · x

)
,

as the solution of a telescoper of an algebraic function, and this solution is an algebraic
function modulo p.

4.2. A relation between 3F2([1/9, 4/9, 5/9], [1/3, 1], 27 · x) and a 4F3 diagonal of an
algebraic function

The diagonal of the product of algebraic functions

(1− x− y)2/3

(1− x− y − z)
· (1− w)−5/9, (54)

is given by the 4F3 hypergeometric function H which is the Hadamard product of

3F2([1/9, 4/9, 7/9], [1/3, 1], 27 · x) and (1 − x)−5/9:

H = 4F3

(
[
1

9
,

4

9
,

5

9
,

7

9
], [

1

3
, 1, 1], 27 · x

)
= (1 − x)−5/9 ? 3F2

(
[
1

9
,

4

9
,

7

9
], [

1

3
, 1], 27 · x

)
= Diag

( (1− x− y)2/3

(1− x− y − z)
· (1− w)−5/9

)
. (55)

This 4F3 hypergeometric function (55) can also be written as the Hadamard product:

H = (1 − x)−7/9 ? 3F2([
1

9
,

4

9
,

5

9
], [

1

3
, 1], 27 · x). (56)
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So even though we did not find a rational (or algebraic) function whose diagonal is

given by (43), knowing that 3F2

(
[ 19 ,

4
9 ,

7
9 ], [ 13 , 1], 27 · x

)
is the diagonal of a rational

function, we see that the Hadamard product of (43) with a simple algebraic function
(1 −x)−7/9 is actually a diagonal of an algebraic (or rational) function. This suggests

but does not prove, that 3F2

(
[ 19 ,

4
9 ,

5
9 ], [ 13 , 1], 27 · x

)
could also be a diagonal of a

rational function.

5. Conclusion

The emergence of series with integer coefficients in physics is often an indicator,
of existence of mathematical structure behind the function one is considering. For
instance [35] the low or high-temperature expansions of χ̃(2), and of the full magnetic
susceptibility of the square-lattice Ising model, reduce to algebraic functions modulo
2r. For χ̃(2), it was understood that the reason behind the reduction modulo 2r was
the fact that χ̃(2) was a diagonal of a rational function¶. This property is not yet fully
understood for the full magnetic susceptibility, which is a non-holonomic function, and
is probably not differentially algebraic [36]. In[16] it was shown that Fuchsian linear
differential operators having coefficients in Q(z), with a rigid monodromy group, and
with the critical exponents being rational numbers, have a strong Frobenius structure
for almost all prime numbers p. In fact Theorem 1 in [16], allows one to know right
away that the 3F2 ([1/9, 4/9, 5/9], [1/3, 1], x) is an algebraic series modulo almost
any prime p, without doing any of the calculations of section 4.1 that we give for
illustration purposes.

Yet neither the property of algebraicity of diagonals modulo p, nor
the result of [16], are helpful in proving the hypergeometric functions

3F2 ([2/9, 5/9, 8/9], [2/3, 1], x) and 3F2 ([1/9, 4/9, 7/9], [1/3, 1], x) to be the diagonals
of rational functions. We have shown in this paper that the hypergeometric series

3F2 ([2/9, 5/9, 8/9], [2/3, 1], x) and 3F2 ([1/9, 4/9, 7/9], [1/3, 1], x) appearing in [7] are
diagonals of rational functions. We did so by first finding two algebraic functions
whose diagonals were given by these two hypergeometric functions, and through an
algorithm outlined in the paper [8], we were able to recover the rational functions
whose diagonals are given by these two 3F2 hypergeometric functions.

We were also able to give a generalization of this result, and obtain other unre-
solved examples of Christol’s conjecture as diagonals of rational functions. Further-
more, even though we were not able to write the 3F2([1/9, 4/9, 5/9], [1/3, 1], 27 · x)
given by Christol in [21], as a diagonal of a rational function, we gave two ar-
guments that suggested that it was likely to be so, one of them using the result
of [16]. More generally, we believe after writing the 3F2 ([2/9, 5/9, 8/9], [2/3, 1], x)
and 3F2 ([1/9, 4/9, 7/9], [1/3, 1], x) as diagonal of rational functions, that it is likely
that the other 3F2 unresolved examples of Christol’s conjecture are diagonals of ra-
tional functions.
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Appendix A. Counterexamples and links with Shimura curves

The Gauss hypergeometric function appearing on the left in (9)

3F2

(
[
2

9
,

5

9
,

8

9
], [

2

3
, 1], 27x

)
(A.1)

can be seen as the Hadamard product of a Gauss hypergeometric function and an
algebraic function given by:

2F1

(
[
2

9
,

5

9
], [

2

3
], 27x

)
? (1 − x)−8/9. (A.2)

Now the Gauss hypergeometric function 2F1

(
[ 29 ,

5
9 ], [ 23 ], 27x

)
happens to be a

hypergeometric function corresponding to an automorphic form associated with a
Shimura curve [30, 31, 32]. One has the identity:

2F1

(
[
2

9
,

5

9
], [

2

3
], 27x

)
= (1 − 27x)−1/9 · (1 − 36x + 216x2)−1/18

× 2F1

(
[

1

36
,

19

36
], [

8

9
], − 1728 · x3 · (1 − 27x)

(1 − 36x + 216x2)2

)
. (A.3)

The Gauss hypergeometric function 2F1

(
[ 1
36 ,

19
36 ], [ 89 ], x

)
can be also expressed as:

2F1

(
[

1

36
,

19

36
], [

8

9
], x

)
= (1 − x)−1/36 · 2F1

(
[

1

36
,

13

36
], [

8

9
], − x

1 − x

)
. (A.4)

Now the Gauss hypergeometric function 2F1([ 1
36 ,

13
36 ], [ 89 ], x) which occurs in p.14

of [33], corresponds to a hypergeometric function related to a Shimura curve since it
has exponent differences† (1/9, 1/2, 1/3), and these exponent differences are listed
in the exhaustive list of hypergeometric functions that are associated with Shimura
curves appearing in Table 1 of [29]. Other 3F2 functions that are unresolved examples
to Christol’s conjecture that we found to be related to 2F1 hypergeometric functions
related to Shimura curves are given by:

3F2

(
[
1

9
,

4

9
,

7

9
], [

4

3
, 1], 36 x

)
= (1 − x)−1/9 ? 2F1

(
[
4

9
,

7

9
], [

4

3
], 36 x

)
, (A.5)

3F2

(
[
2

9
,

5

9
,

7

9
], [

2

3
, 1], 36 x

)
= (1 − x)−7/9 ? 2F1

(
[
2

9
,

5

9
], [

2

3
], 36 x

)
, (A.6)

† See [34] p.10 for a definition of exponent difference.
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3F2

(
[
4

9
,

5

9
,

8

9
], [

2

3
, 1], 33 x

)
= (1 − x)−8/9 ? 2F1

(
[
4

9
,

5

9
], [

2

3
], 33 x

)
, (A.7)

3F2

(
[
1

7
,

2

7
,

4

7
], [

1

2
, 1], 74 x

)
= (1 − x)−4/7 ? 2F1

(
[
1

7
,

2

7
], [

1

2
], 74 x

)
, (A.8)

Besides two hypergeometric functions, the 3F2([ 29 ,
5
9 ,

8
9 ], [ 23 , 1], 27x) and the 3F2

hypergeometric 3F2([ 19 ,
4
9 ,

7
9 ], [ 43 , 1], 27x), and the three globally bounded 3F2

hypergeometric series (A.6), (A.7) and (A.8), we were not able to write the other
examples given in this section as a Hadamard product involving a 2F1 hypergeometric
function associated to a Shimura curve. In any case, since the class of potential
counterexamples formulated by Christol is infinite, while the list of Shimura in Table
1 of [29] is finite, a list of 3F2 functions both related to Shimura curves and to Christol’s
conjecture is bound to be finite.
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[21] G. Christol, Fonctions hypergéométriques bornées, Groupe de travail d’analyse ultramétrique,

14 (1986-1987), Exposé No. 8, 16 pp.
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