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Abstract.
We recall that diagonals of rational functions naturally occur in lattice

statistical mechanics and enumerative combinatorics. We find that a seven-
parameter rational function of three variables with a numerator equal to one
(reciprocal of a polynomial of degree two at most) can be expressed as a pullbacked

2F1 hypergeometric function. This result can be seen as the simplest non-
trivial family of diagonals of rational functions. We focus on some subcases
such that the diagonals of the corresponding rational functions can be written
as a pullbacked 2F1 hypergeometric function with two possible rational functions
pullbacks algebraically related by modular equations, thus showing explicitely
that the diagonal is a modular form. We then generalise this result to eight, nine
and ten parameters families adding some selected cubic terms at the denominator
of the rational function defining the diagonal. We finally show that each of these
previous rational functions yields an infinite number of rational functions whose
diagonals are also pullbacked 2F1 hypergeometric functions and modular forms.
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1. Introduction

It was shown in [1, 2] that different physical related quantities, like the n-fold integrals
χ(n), corresponding to the n-particle contributions of the magnetic susceptibility of
the Ising model [3, 4, 5, 6], or the lattice Green functions [7, 8, 9, 10, 11], are diagonals
of rational functions [12, 13, 14, 15, 16, 17].

While showing that the n-fold integrals χ(n) of the susceptibility of the Ising
model are diagonals of rational functions requires some effort, seeing that the lattice
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Green functions are diagonals of rational functions nearly follows from their definition.
For example, the lattice Green functions (LGF) of the d-dimensional face-centred cubic
(fcc) lattice are given [10, 11] by:

1

πd

∫ π

0

· · ·
∫ π

0

dk1 · · · dkd
1 − x · λd

, with: λd =

(
d

2

)−1 d∑
i=1

d∑
j=i+1

cos(ki) cos(kj). (1)

The LGF can easily be seen to be a diagonal of a rational function: introducing the
complex variables zj = ei kj , j = 1, · · · , d, the LGF (1) can be seen as a d-fold
generalization of Cauchy’s contour integral [1]:

Diag(F) =
1

2πi

∮
γ

F(z1, z/z1)
dz1
z1
. (2)

Furthermore, the linear differential operators annihilating the physical quantities
mentioned earlier χ(n), are reducible operators. Being reducible they are “breakable”
into smaller factors [4, 5] that happen to be elliptic functions, or generalizations
thereof: modular forms, Calabi-Yau operators [18, 19]... Yet there exists a class of
diagonals of rational functions in three variables†† whose diagonals are pullbacked 2F1

hypergeometric functions, and in fact modular forms [21]. These sets of diagonals of
rational functions in three variables in [21] were obtained by imposing the coefficients
of the polynomial P (x, y, z) appearing in the rational function 1/P (x, y, z) defining
the diagonal to be 0 or 1¶.

While these constraints made room for exhaustivity, they were quite arbitrary,
which raises the question of randomness of the sample : is the emergence of modular
forms [20], with the constraints imposed in [21], an artefact of the sample?

Our aim in this paper is to show that modular forms emerge for a much larger
set of rational functions of three variables, than the one previously introduced in
[21], firstly because we obtain a whole family of rational functions whose diagonals
give modular forms by adjoining parameters, and secondly through considerations of
symmetry.

In particular, we will find that the seven-parameter rational function of three
variables, with a numerator equal to one and a denominator being a polynomial of
degree two at most, given by:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y
, (3)

can be expressed as a particular pullbacked 2F1 hypergeometric function†
1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P4(x)2

P2(x)3

)
, (4)

where P2(x) and P4(x) are two polynomials of degree two and four respectively. We
then focus on subcases where the diagonals of the corresponding rational functions can

††Diagonals of rational functions of two variables are just algebraic functions, so one must consider
at least three variables to obtain special functions.
¶ Or 0 or ±1 in the four variable case also examined in [21].
† The selected 2F1([1/12, 5/12], [1], P) hypergeometric function is closely related to modular
forms [22, 23]. This can be seen as a consequence of the identity with the Eisenstein series E4

and E6 and this very 2F1([1/12, 5/12], [1], P) hypergeometric function (see Theorem 3 page 226
in [24] and page 216 of [25]): E4(τ) = 2F1([1/12, 5/12], [1], 1728/j(τ))4 (see also equation (88)
in [22] for E6).
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be written as a pullbacked 2F1 hypergeometric function with two rational function
pullbacks that are algebraically related by modular equations†.

This seven-parameter family will then be generalized into an eight, nine and
finally ten parameters family of rational functions that are reciprocal of a polynomial
of three variables of degree at most three. We will finally show that each of the
previous results yields an infinite number of new exact pullbacked 2F1 hypergeometric
function results, through symmetry considerations on monomial transformations and
some function-dependent rescaling transformations.

2. Diagonals of rational functions of three variables depending on seven
parameters

2.1. Recalls on diagonals of rational functions

Let us recall the definition of the diagonal of a rational function in n variables
R(x1, . . . , xn) = P(x1, . . . , xn)/Q(x1, . . . , xn), where P and Q are polynomials of
x1, · · · , xn with integer coefficients such that Q(0, . . . , 0) 6= 0. The diagonal of R is
defined through its multi-Taylor expansion (for small xi’s)

R
(
x1, x2, . . . , xn

)
=

∞∑
m1 =0

· · ·
∞∑

mn =0

Rm1, ...,mn · x
m1
1 · · · xmn

n , (5)

as the series in one variable x:

Diag
(
R
(
x1, x2, . . . , xn

))
=

∞∑
m=0

Rm,m, ...,m · xm. (6)

Diagonals of rational functions of two variables are algebraic functions [27, 28].
Interesting cases of diagonals of rational functions thus require to consider rational
functions of at least three variables.

2.2. A seven parameters family of rational functions of three variables

We obtained the diagonal of the rational function in three variables depending on
seven parameters:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y
. (7)

This result was obtained by:

• Running the HolonomicFunctions [29] package in mathematica for arbitrary
parameters a, b1, · · · , c1, · · · and obtaining a large-sized second order linear
differential operator L2.

• Running the maple command “hypergeometricsols” [30] for different sets of values
of the parameters on the operator L2, and guessing¶ the Gauss hypergeometric
function 2F1 with general parameters solution of L2.

† Thus providing a nice illustration of the fact that the diagonal is a modular form [23].
¶ The program “hypergeometricsols” [30] does not run for arbitrary parameters, hence our recourse
to guessing.
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2.3. The diagonal of the seven parameters family of rational functions: the general
form

We find the following experimental results: all these diagonals are expressed in terms of
only one pullbacked hypergeometric function. This is worth noticing since, in general,
when an order-two linear differential operator has pullbacked 2F1 hypergeometric
function solutions, the “hypergeometricsols” command gives the two solutions as
sums of two 2F1 hypergeometric functions. Here, quite remarkably, the result is
“encapsulated” in just one pullbacked hypergeometric function. Furthermore we find
that all these diagonals are expressed as pullbacked hypergeometric functions of the
form

1

P4(x)1/6
· 2F1

(
[

1

12
,

7

12
], [1],

1728 · x3 · P5(x)

P4(x)2

)
, (8)

where the two polynomials P4(x) and P5(x), in the 1728x3 P5(x)/P4(x)2 pullback,
are polynomials of degree four and five in x respectively. The pullback in (8), given by
1728x3 P5(x)/P4(x)2, has the form 1 −Q̃ where Q̃ is given by the simpler expression

Q̃ =
P2(x)3

P4(x)2
, (9)

where P2(x) is a polynomial of degree two in x. Recalling the identity

2F1

(
[

1

12
,

7

12
], [1], x

)
= (1 − x)−1/12 · 2F1

(
[

1

12
,

5

12
], [1],

−x
1 − x

)
, (10)

the previous pullbacked hypergeometric function (8) can be rewritten as

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], − 1728 · x3 · P5(x)

P2(x)3

)
, (11)

where P5(x) is the same polynomial of degree five as the one in the pullback in
expression (8). This new pullback also has the form 1 −Q with Q given by‡:

− 1728 · x3 · P5(x)

P2(x)3
= 1 −Q where: Q =

P4(x)2

P2(x)3
. (12)

Finding the exact result for arbitrary values of the seven parameters now boils down
to a guessing problem.

2.4. Exact expression of the diagonal for arbitrary parameters a, b1, ..., c1, ...

Now that the structure of the result is understood “experimentally” we obtain the
result for arbitrary parameters a, b1, b2, b3, c1, c2, c3.

Assuming that the diagonal of the rational function (7) has the form explicited
in the previous subsection

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P4(x)2

P2(x)3

)
, (13)

where P2(x) and P4(x) are two polynomials of degree two and four respectively:

P4(x) = A4 x
4 + A3 x

3 + A2 x
2 + A1 x + A0, (14)

P2(x) = B2 x
2 + B1 x + B0, (15)

‡ Note that Q, given by (12), is the reciprocal of Q̃ given in (9): Q = 1/Q̃.
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one can write the order-two linear differential operator having this eight-parameter
solution (13), and identify this second order operator depending on eight arbitrary
parameters, with the second order linear differential operator obtained using the
HolonomicFunctions [29] program for arbitrary parameters. Using the results obtained
for specific values of the parameters, one easily guesses that A0 = a6 and B0 = a4.
One finally gets:

P2(x) =

8 ·
(

3 a c1 c2 c3 + 2 · (b21 c
2
1 + b22 c

2
2 + b23 c

2
3 − b1 b2 c1 c2 − b1 b3 c1 c3 − b2 b3 c2 c3)

)
· x2

− 8 · a ·
(
a · (b1 c1 + b2 c2 + b3 c3) − 3 b1 b2 b3

)
· x + a4, (16)

and

P4(x) = 216 · c21 c22 c23 · x4 − 16 ·
(

9 · a c1 c2 c3 · (b1 c1 + b2 c2 + b3 c3)

− 6 · (b21 b2 c
2
1 c2 + b1 b

2
2 c1 c

2
2 + b21 b3 c

2
1 c3 + b1 b

2
3 c1 c

2
3 + b22 b3 c

2
2 c3 + b2 b

2
3 c2 c

2
3)

+ 4 · (b31 c
3
1 + b32 c

3
2 + b33 c

3
3) − 3 b1 b2 b3 c1 c2 c3

)
· x3

+ 12 ·
(

3 a3 c1 c2 c3 + 4 · a2 · (b21 c
2
1 + b22 c

2
2 + b23 c

2
3)

+ 2 · a2 · (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3)

− 12 · a · b1 b2 b3 · (b1 c1 + b2 c2 + b3 c3) + 18 · b21 b22 b23
)
· x2

− 12 · a3 ·
(
a · (b1 c1 + b2 c2 + b3 c3) − 3 b1 b2 b3

)
· x + a6. (17)

The polynomial P5(x) in (12), given by P5(x) = (P4(x)2 − P2(x)3)/1728/x3, is a
slightly larger polynomial of the form

P5(x) = 27 · c41 c42 c43 · x5 + · · · + q1 · x + q0, where:

q0 = − b1 b2 b3 a3 · (a c1 − b2 b3) · (a c2 − b1 b3) · (a c3 − b1 b2). (18)

The coefficient q1 in x reads for instance:

q1 = c1 c2 c3 (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3) · a5

−
(
b21 b

2
2 c

2
1 c

2
2 + b21 b

2
3 c

2
1 c

2
3 + b22 b

2
3 c

2
2 c

2
3 − 8 b1 b2 b3 c1 c2 c3 · (b1 c1 + b2 c2 + b3 c3)

)
· a4

− b1 b2 b3 ·
(

57 b1 b2 b3 c1 c2 c3

+ 8 · (b21 b2 c21 c2 + b21 b3 c
2
1 c3 + b1 b

2
2 c1 c

2
2 + b1 b

2
3 c1 c

2
3 + b22 b3 c

2
2 c3 + b2 b

2
3 c2 c

2
3)
)
· a3

+ 8 b21 b
2
2 b

2
3 · (b21 c

2
1 + b22 c

2
2 + b23 c

2
3) · a2

+ 46 · b21 b22 b23 · (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3) · a2

− 36 · b31 b32 b33 · (b1 c1 + b2 c2 + b3 c3) · a + 27 b41 b
4
2 b

4
3. (19)

Having “guessed” the exact result, one can easily verify directly that this exact
pullbacked hypergeometric result is truly the solution of the large second order linear
differential operator obtained using the “HolonomicFunctions” program [29].

2.5. Selected subcases of these results

When P2(x)3 − P3(x)2 = −1728x3 · P5(x) = 0, the pullback in (13) (with (16),
(17)) vanishes, and the previous exact result (13), for the diagonal of the rational
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function (7), degenerates into a simple algebraic function (see (11) and (13)):

1

P2(x)1/4
=

1

P4(x)1/6
. (20)

The condition P 3
2 − P 2

3 = −1728x3 · P5(x) = 0 corresponds, for instance, to
c3 = 0, b1 = 0, with the rational function

1

a + b2 y + b3 z + c1 y z + c2 x z
, (21)

or to c3 = 0, c1 = b2 b3/a, c2 = b1 b3/a, with the rational function:

1

a2 + a b1 x + a b2 y + a b3 z + b2 b3 y z + b1 b3 x z
. (22)

One easily verifies that the diagonals of the corresponding rational functions read
respectively:

1√
a2 − 4 b2 c2 · x

,

√
a√

a3 + 4 b1 b2 b3 · x
. (23)

2.6. Simple symmetries of this seven-parameter result

The different pullbacks

P1 = − 1728 · x3 · P5(x)

P2(x)3
,

1728 · x3 · P5(x)

P4(x)2
, 1 − P4(x)2

P2(x)3
, (24)

must be compatible with some obvious symmetries. They verify the relations

P1(λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, x)

= P1(a, b1, b2, b3, c1, c2, c3, x). (25)

and

P1

(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

x

λ1 λ2 λ3

)
= P1(a, b1, b2, b3, c1, c2, c3, x), (26)

where λ, λ1, λ2 and λ3 are arbitrary complex numbers. A demonstration of these
symmetry-invariance relations (25) and (26) is sketched in Appendix A.

2.7. A symmetric subcase τ → 3 τ : 2F1([1/3, 2/3], [1],P)

2.7.1. A few recalls on Maier’s paper
We know from Maier [23] that the modular equation associated with† τ → 3 τ

corresponds to the elimination of the z variable between the two rational pullbacks:

P1(z) =
123 · z3

(z + 27) · (z + 243)3
, P2(z) =

123 · z
(z + 27) · (z + 3)3

. (27)

† τ denotes the ratio of the two periods of the elliptic functions that naturally emerge in the
problem [22].
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Following Maier [23] one can also write the identities¶:(
9 ·
( z + 27

z + 243

))1/4
· 2F1

(
[

1

12
,

5

12
],

1728 z3

(z + 27) · (z + 243)3

)
=

(1

9
·
(z + 27

z + 3

))1/4
· 2F1

(
[

1

12
,

5

12
],

1728 z

(z + 27) · (z + 3)3

)
(28)

= 2F1

(
[
1

3
,

2

3
], [1],

z

z + 27

)
. (29)

Having a hypergeometric function identity (28) with two rational pullbacks (27) related
by a modular equation provides a good heuristic way to see that we have a modular
form [22, 23]‡.

2.7.2. The symmetric subcase
Let us now consider the symmetric subcase b1 = b2 = b3 = b and c1 = c2 = c3 =

c. If we take that limit in our previous general expression (13), we obtain the solution
of the order-two linear differential operator annihilating the diagonal†† in the form

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P4(x)2

P2(x)3

)
=

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], − 1728 · x3 · P5(x)

P2(x)3

)
, (30)

with

P2(x) = a · (24 · c3 · x2 − 24 · b · (a c − b2) · x + a3), (31)

P4(x) = 216 · c6 · x4 − 432 · b c3 · (a c − b2) · x3

+ 36 · (a3 c3 + 6 · a2 b2 c2 − 12 · a b4 c + 6 · b6) · x2

− 36 · a3 b · (a c − b2) · x + a6. (32)

and:

P5(x) = (27 c3 x2 − 27 b · (a c − b2) · x + a3) · (c3 x − b · (a c − b2))3. (33)

In this symmetric case, one can write the pullback in (30) as follows:

− 1728 · x3 · P5(x)

P2(x)3
=

123 · z3

(z + 27) · (z + 243)3
, (34)

where z reads:

z = − 93 · x · (c3 · x − b · (a c − b2))

27 · c3 · x2 − 27 · b · (a c − b2) · x + a3
. (35)

Injecting the expression (35) for z in P2(z) given by (27), one gets another
pullback

P2(z) = − 1728 · x · P̃5

P̃2(x)3
, (36)

¶ One has hypergeometric identities on 2F1([1/3, 2/3], [1],P), however they are not associated with
the involutive transformation z → 729/z as one could expect from the fact that the two Hauptmoduls
in (28) are exchanged by this involution: see Appendix B.
‡ Something that is obvious here since we are dealing with a 2F1([1/12, 5/12], [1], x) hyperegeometric
function which is known to be related modular functions [22, 23] due to its relation with the Eisenstein
series E4, but is less clear for other hypergeometric functions.
††Called the “telescoper” [31, 32].
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with

P̃5(x) = (27 c3 x2 − 27 b · (a c − b2) · x + a3)3 · (c3 x − b · (a c − b2)). (37)

and:

P̃2(x) = a · (−216 · c3 · x2 + 216 · b · (a c − b2) · x + a3), (38)

In this case the diagonal of the rational function can be written as a single
hypergeometric function with two different pullbacks

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], − 1728 · x3 · P5(x)

P2(x)3

)
=

1

P̃2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], − 1728 · x · P̃5(x)

P̃2(x)3

)
, (39)

with the relation between the two pullbacks given by the modular equation associated
with [22, 23] τ → 3 τ :

227 · 59 · Y 3Z3 · (Y + Z) + 218 · 56 · Y 2Z2 · (27Y 2 − 45946Y Z + 27Z2)

+ 29 · 53 · 35 · Y Z · (Y + Z) · (Y 2 + 241433Y Z + Z2)

+ 729 · (Y 4 + Z4) − 779997924 · (Y Z3 + Y 3Z) + 31949606 · 310 · Y 2Z2

+ 29 · 311 · 31 · Y Z · (Y + Z) − 212 · 312 · Y Z = 0.

2.7.3. Alternative expression for the symmetric subcase
Alternatively, we can obtain the exact expression of the diagonal using directly

the “HolonomicFunctions” program [29] for arbitrary parameters a, b and c to get
an order-two linear differential operator annihilating that diagonal. Then, using
“hypergeometricsols”‡ we obtain the solution of this second order linear differential
operator in the form

1

a
· 2F1

(
[
1

3
,

2

3
], [1], − 27

a3
· x · (c3 x − b · (a c − b2))

)
, (40)

which looks, at first sight, different from (30) with (31) and (32). This last expression
(40) is compatible with the form (30) as a consequence of the identity:(9 − 8x

9

)1/4
· 2F1

(
[
1

3
,

2

3
], [1], x

)
= 2F1

(
[

1

12
,

5

12
],

64x3 · (1 − x)

(9 − 8x)3

)
. (41)

The reduction of the (generic) 2F1([1/12, 5/12], [1],P) hypergeometric function to
a 2F1([1/3, 2/3], [1],P) form corresponds to a selected τ → 3 τ modular equation
situation (27) well described in [23].

These results can also be expressed in terms of 2F1([1/3, 1/3], [1], P) pullbacked
hypergeometric functions [23] using the identities

2F1

(
[
1

3
,

1

3
], [1], x) = (1 − x)−1/3 · 2F1

(
[
1

3
,

2

3
], [1], − x

1 − x
) (42)

=
(

(1 − 9x)3 · (1 − x)
)−1/12

· 2F1

(
[

1

12
,

5

12
], [1], − 64 x

(1 − 9x)3 · (1 − x)

)
,

or:

2F1

(
[
1

3
,

1

3
], [1], − x

27
) =

(
1 +

x

27

)−1/3
· 2F1

(
[
1

3
,

2

3
], [1],

x

x + 27

)
(43)

=
( (x+ 3)3 · (x+ 27)

729

)−1/12
· 2F1

(
[

1

12
,

5

12
], [1],

1728x

(x+ 3)3 · (x+ 27)

)
.

‡ We use M. van Hoeij “hypergeometricsols” program [30] for many values of a, b and c, and then
perform some guessing.
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2.8. A non-symmetric subcase τ → 4 τ : 2F1([1/2, 1/2], [1],P).

Let us consider the non-symmetric subcase b1 = b2 = b3 = b and c1 = c2 = 0,
c3 = b2/a. The pullback in (30) reads:

P1 = − 1728 · x3 · P5(x)

P2(x)3
=

1728 · a3 b12 · x4 · (16 b3 x + a3)

(16 b6 x2 + 16 a3 b3 x + a6)3
. (44)

This pullback can be seen as the first of the two Hauptmoduls

P1 =
1728 · z4 · (z + 16)

(z2 + 256 z + 4096)3
, P2 =

1728 · z · (z + 16)

(z2 + 16 z + 16)3
, (45)

provided z is given by‡:

z =
256 b3 x

a3
or: z =

−256 b3 · x
a3 + 16 b3 x

. (46)

These exact expressions (46) of z in terms of x give exact rational expressions of the
second Hauptmodul P2 in terms of x:

P(1)
2 =

1728 · a12 b3 · x · (a3 + 16 b3 x)4

(4096 b6 x2 + 256 a3 b3 x + a6)3
or: (47)

P(2)
2 =

−1728 · a3 b3 · x · (a3 + 16 b3 x)4

(256 b6 x2 − 224 a3 b3 x + a6)3
. (48)

These two pullbacks (44), (47) and (48) (or P1 and P2 in (45)) are related by a
modular equation corresponding† to τ → 4 τ .

This subcase thus corresponds to the diagonal of the rational function being
expressed in terms of a modular form associated to an identity on a hypergeometric
function:

(16 b6 x2 + 16 a3 b3 x + a6)−1/4 · 2F1

(
[

1

12
,

5

12
], [1], P1

)
= (4096 b6 x2 + 256 a3 b3 x + a6)−1/4 · 2F1

(
[

1

12
,

5

12
], [1], P(1)

2

)
= (256 b6 x2 − 224 a3 x + a6)−1/4 · 2F1

(
[

1

12
,

5

12
], [1], P(2)

2

)
= 2F1

(
[
1

2
,

1

2
], [1], − 16 · b3

a3
· x
)
. (49)

The last equality is a consequence of the identity:

2F1

(
[
1

2
,

1

2
], [1], − x

16

)
(50)

= 2 · (x2 + 16x + 16)−1/4 · 2F1

(
[

1

12
,

5

12
], [1],

1728 · x · (x+ 16)

(x2 + 16x + 16)3

)
.

Similarly, the elimination of x between the pullback X = P1 (given by (44))

and Y = P(1)
2 gives the same modular equation (representing τ → 4 τ) than the

elimination of x between the pullback X = P1 (given by (44)) and Y = P(2)
2 ,

‡ These two expressions are related by the involution z ↔ − 16 z/(z + 16).
† See page 20 in [22].
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namely:

8259 · X6 Y 6 − 389 · 116 · 516 · 310 · 26 · X5 Y 5 · (X + Y )

+ 113 · 512 · 37 · 24 · X4 Y 4 ·
(

26148290096 · (X2 + Y 2) − 15599685235 · X Y
)

− 105955481959 · 510 · 37 · 215 · X3 Y 3 · (X + Y ) · (X2 + Y 2)

+ 503027637092599 · 510 · 37 · 26 · X4 Y 4 · (X + Y )

+ 56 · 34 · 216 · X2 Y 2 ·
(

1634268131 · (X4 + Y 4) + 1788502080642816 · X2 Y 2

+ 848096080668355 · (X3 Y +X Y 3)
)

− 54 · 34 · 222 · X Y · (X + Y ) ·
(

389 · (X4 + Y 4) + 41863592956503 · X2 Y 2

− 54605727143 · (X3 Y +X Y 3)
)

+ 224 ·
(
X6 + Y 6 + 561444609 · (X5 Y +X Y 5)

+ 1425220456750080 · (X4 Y 2 +X2 Y 4) + 2729942049541120 · X3 Y 3
)

− 5 · 37 · 234 · X Y · (X + Y ) · (391X2 − 12495392X Y + 391Y 2) (51)

+ 31 · 37 · 240 · X Y · (X + 2Y ) · (2X + Y ) − 39 · 242 · X Y · (X + Y ) = 0.

The elimination of x between the pullback X = P(1)
2 (given by (44)) and the pullback

Y = P(2)
2 also gives‡ the same modular equation (51).

2.9. 2F1([1/4, 3/4], [1],P) subcases: walks in the quarter plane

The diagonal of the rational function

2

2 + (x+ y + z) + x z + 1/2 · x y
=

4

4 + 2 · (x+ y + z) + 2x z + x y
, (52)

is given by the pullbacked hypergeometric function:(
1 +

3

4
· x2

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

27x4 · (x2 + 1)

(3x2 + 4)3

)
= 2F1

(
[
1

4
,

3

4
], [1], −x2), (53)

which is reminiscent of the hypergeometric series number 5 and 15 in Figure 10 of
Bostan’s HDR [33]. Such pullbacked hypergeometric function (53) corresponds to the
rook walk problems [34, 35, 36].

Thus the diagonal of the rational function corresponding to the simple rescaling
(x, y, z) −→ (±

√
−1x, ±

√
−1 y, ±

√
−1 z) of (52) namely

R± =
2

2 ±
√
−1 · (x+ y + z) − x z − 1/2 · x y

(54)

or the diagonal of the rational function (R+ + R−)/2 reading

4 · (4 − xy − 2xz)

y2x2 + 4x2yz + 4x2z2 + 4x2 − 8xz + 4 y2 + 8 yz + 4 z2 + 16
, (55)

‡ This result can be also seen in the z variable (see (46)): see the details in Appendix C.
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becomes (as a consequence of identity (53)):(
1 − 3

4
· x2

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

27x4 · (1 − x2)

(4 − 3x2)3

)
= 2F1

(
[
1

4
,

3

4
], [1], x2

)
. (56)

Remark: 2F1([1/4, 3/4], [1],P) hypergeometric functions can be also seen as
modular forms corresponding to identities with two pullbacks related by a modular
equation. For example the following identity:

2F1

(
[
1

4
,

3

4
], [1],

x2

(2 − x)2

)
=
( 2 − x

2 · (1 + x)

)1/2
· 2F1

(
[
1

4
,

3

4
], [1],

4x

(1 + x)2

)
, (57)

where the two rational pullbacks

A =
4x

(1 + x)2
, B =

x2

(2 − x)2
, (58)

are related by the asymmetric¶ modular equation:

81 · A2B2 − 18AB · (8B +A) + (A2 + 80 · AB + 64B2) − 64B = 0. (59)

The modular equation (59) gives the following expansion for B seen as an algebraic
series§ in A:

B =
1

64
A2 +

5

256
A3 +

83

4096
A4 +

163

8192
A5 +

5013

262144
A6 + · · · (60)

More details are given in Appendix D.

2.10. The generic case: modular forms, with just one rational pullback

The previous pullbacks in the pullbacked 2F1 hypergeometric functions can be
seen (and should be seen) as Hauptmoduls [23]. It is only in certain cases like in
sections (2.7) or (2.8) that we encounter the situation underlined by Maier [23] of a
representation of a modular form as a pullbacked hypergeometric function with two
possible rational pullbacks, related by a modular equation of genus zero. These selected
situations are recalled in Appendix E.

Simple examples of modular equations of genus zero with rational pullbacks
include reductions of the generic 2F1([1/12, 5/12], [1], P) hypergeometric function to
selected hypergeometric functions like 2F1([1/2, 1/2], [1], P), 2F1([1/3, 2/3], [1], P),

2F1([1/4, 3/4], [1], P), and also [25] 2F1([1/6, 5/6], [1], P) (see for instance [26]).
However, in the generic situation corresponding to (13) we have a single

hypergeometric function with two different pullbacks A and B

2F1

(
[

1

12
,

5

12
], [1], A

)
= G · 2F1

(
[

1

12
,

5

12
], [1], B

)
, (61)

with G an algebraic function of x, and where A and B are related by an algebraic
modular equation, but one of the two pullbacks say A is a rational function given by

¶ At first sight one expects the two pullbacks (58) in a relation like (59) to be on the same footing, the
modular equation between these two pullbacks being symmetric: see for instance [22]. This paradox
is explained in detail in Appendix D
§ We discard the other root expansion B = 1 +A + 5

4
A2 + 25

16
A3 + 31

16
A4 + · · · since B(0) 6= 0.
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(12) where P2(x) and P4(x) are given by (16), (17). The two pullbacks A and B are
also related by a Schwarzian equation that can be written in a symmetric way in A
and B:

1

72

32B2 − 41B + 36

B2 · (B − 1)2
·
(dB
dx

)2
+ {B, x}

=
1

72

32A2 − 41A + 36

A2 · (A − 1)2
·
(dA
dx

)2
+ {A, x}. (62)

One can rewrite the exact expression (13) in the form

1

P2(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P4(x)2

P2(x)3

)
= B · 2F1

(
[

1

12
,

5

12
], [1], B

)
, (63)

where B is an algebraic function, and B is another pullback related to the rational
pullback A = 1 − P4(x)2/P2(x)3 by a modular equation. The pullback B is an
algebraic function. In the generic case, only one of the two pullbacks (63) can be
expressed as a rational function: see Appendix E for more details.

3. Eight, nine and ten-parameters generalizations

Adding randomly terms in the denominator of (7) yields diagonals annihilated by
minimal linear differential operators of order higher than two: this is what happens
when quadratic terms like x2, y2 or z2 are added for example. This leads to irreducible
telescopers [31, 32] (i.e. minimal order linear differential operators annihilating the
diagonals) of higher orders than the previous order two, or to telescopers [31] of quite
high orders that are not irreducible, but factor into many irreducible factors, one of
them being of order larger than two.

With the idea of keeping the linear differential operators annihilating the diagonal
of order two, we were able to generalize the seven-parameter family (7) by carefully
choosing the terms added to the quadratic terms in (7) and still keep the linear
differential operator annihilating the diagonal of order two.

3.1. Eight-parameter rational functions giving pullbacked 2F1 hypergeometric
functions for their diagonals

Adding the cubic term x2 y to the denominator of (7) yields the rational function:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d x2 y
. (64)

After obtaining the diagonal of (64) for several sets of values of the parameters, one
can make the educated guess that the diagonal of the rational function (64) has the
form

1

P3(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P4(x)2

P3(x)3

)
, (65)

where P3(x) and P4(x) are two polynomials of degree three and four respectively:

P4(x) = A4 x
4 + A3 x

3 + A2 x
2 +A1 x +A0, (66)

P3(x) = B3 x3 + B2 x2 + B1 x + B0, (67)
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and where the coefficients Ai and Bj are at most quadratic expressions in the
parameter d appearing in the denominator of (64). The pullback in (65) has the
form

1 − P4(x)2

P3(x)3
=

1728x3 P6

P3(x)3
, (68)

where

P4 = p4 + 216 · b23 c21 · d2 · x4 + d · u1 · x4

+ a d · u2 · x3 − 144 · a b1 b3 c21 d · x3

− 144 · b2 b23 d · (b1 c1 + 4 b2 c2 − 2 b3 c3) · x3

+ 36 a2 · (a b3 c1 − 2 b2 b
2
3) · d · x2,

P3 = p2 − 48 · c21 c2 · d · x3 + 24 b3 · (a c1 − 2 b2 b3) · d · x2, (69)

with

u1 = 144 · (2 b1 c
3
1 c2 − 4 b2 c

2
1 c

2
2 − b3 c

2
1 c2 c3),

u2 = 72 · (10 b2 b3 c1 c2 − a c21 c2 − 2 b23 c1 c3), (70)

and where the polynomials p2 and p4 denote the polynomials P2(x) and P4(x) given
by (16) and (17) in section (2): p2 and p4 correspond to the d = 0 limit.

3.2. Nine-parameter rational functions giving pullbacked 2F1 hypergeometric
functions for their diagonals

Adding now another cubic term y z2 to the denominator of (64)

1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d x2 y + e y z2
, (71)

also yields linear differential operator annihilating the diagonal of (71) of order
two. After computing the second order linear differential operator annihilating the
diagonal of (71) for several values of the parameters with the “HolonomicFunctions”
program [29], and, in a second step, obtaining their pullbacked hypergeometric
solutions using the maple command “hypergeometricsols” [30], we find that the
diagonal of the rational function (71) has the form

1

P4(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P6(x)2

P4(x)3

)
, (72)

where P4(x) and P6(x) are two polynomials of degree four and six respectively:

P4(x) = p2 + 16 · d2 · e2 · x4

− 16 ·
(

3 · c2 · (c21 · d + c23 · e) + (b1 c1 + b3 c3 − 14 b2 c2) · d e
)
· x3

+ 8 · (3 a b3 c1 d + 3 a b1 c3 e − a2 d e − 6 b2 b
2
3 d − 6 b2 b

2
1 e) · x2, (73)

and



Diagonals of rational functions 14

P6(x) = p4 − 12 · a4 d e · x2

+ 36 · a2
(
b3 · (a c1 − 2 b2 b3) · d + b1 · (a c3 − 2 b1 b2) · e

)
· x2

− 72 · a c1 · (a c1 c2 − 10 b2 b3 c2 + 2 b23 c3) · d · x3

− 72 · a c3 · (a c2 c3 − 10 b1 b2 c2 + 2 b21 c1) · e · x3

− 144 · b2 b23 · (b1 c1 + 4 b2 c2 − 2 b3 c3) · d · x3

− 144 · b2 b21 · (b3 c3 + 4 b2 c2 − 2 b1 c1) · e · x3

− 144 · a b1 b3 · (c21 · d + c23 · e) · x3

+ 24 · a (a b3 c3 + a b1 c1 − 20 a b2 c2 + 30 b1 b2 b3) · d · e · x3

+ 216 · (b23 c
2
1 · d2 + b21 c

2
3 · e2) · x4

− 144 · c21 c2 · (b3 c3 + 4 b2 c2 − 2 b1 c1) · d · x4

− 144 · c23 c2 · (b1 c1 + 4 b2 c2 − 2 b3 c3) · e · x4

+ 48 · a2 d2 · e2 · x4 + 96 · (b21 c
2
1 + b23 c

2
3 + 22 b22 c

2
2) · d · e · x4

− 144 ·
(

(a b3 c1 + 4 b2 b
2
3) · d + (a b1 c3 + 4 b2 b

2
1) · e

)
· d · e · x4

+ 48 · (b1 b3 c1 c3 + 15 a c1 c2 c3 − 20 b1 b2 c1 c2 − 20 b2 b3 c2 c3) · d · e · x4

+ 96 · (b1 c1 + 22 b2 c2 + b3 c3) · d2 · e2 · x5

− 576 c2 · (c23 · e + c21 · d) · d e · x5

− 64 · d3 · e3 · x6, (74)

where the polynomials p2 and p4 are the polynomials P2(x) and P4(x) of degree two
and four in x given by (16) and (17) in section (2): p2 and p4 correspond to the
d = e = 0 limit

Note that the d ↔ e symmetry corresponds to keeping c2 fixed, but changing
c1 ↔ c3 (or equivalently y fixed, x ↔ z).

Remark 1: The nine-parameter family (71) singles out x and y, but of course,
similar families that single out x and z, or single out y and z exist, with similar
results (that can be obtained permuting the three variables x, y and z).

Remark 2: Note that the simple symmetries arguments displayed in section (2.6)
for the seven-parameter family straightforwardly generalize for this nine-parameter
family. The pullback H in (72) verifies (as it should)

H
(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

λ21 λ2 · d, λ23 λ2 · e,
x

λ1 λ2 λ3

)
= H(a, b1, b2, b3, c1, c2, c3, d, e, x), (75)

and:

H
(
λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, λ · d, λ · e, x)

= H(a, b1, b2, b3, c1, c2, c3, d, e, x). (76)
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3.3. Ten-parameter rational functions giving pullbacked 2F1 hypergeometric
functions for their diagonals

Adding the three cubic terms‡ x2 y, y2 z and z2 x to the denominator of (7) we get
the rational function:

R(x, y, z) = (77)

1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z + d3 z2 x
.

While (77) is not a generalization of (71), it is a generalization of (64) .
After computing the second order linear differential operator annihilating the

diagonal of (77) for several values of the parameters with the “HolonomicFunctions”
program [29], and, in a second step, their pullbacked hypergeometric solutions using
“hypergeometricsols” [30], we find that the diagonal of the rational function (77) has
the experimentally observed form:

1

P3(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P6(x)2

P3(x)3

)
. (78)

Furthermore, the pullback in (78) is seen to be of the form:

1 − P6(x)2

P3(x)3
=

1728x3 · P9

P3(x)3
. (79)

The polynomial P3(x) reads

P3(x) = p2 − 24 ·
(

9 · a · d1 d2 d3 − 6 · (b1 c3 · d2 d3 + b2 c1 · d1 d3 + b3 c2 · d1 d2)

+ 2 · (c21 c2 d1 + c1 c
2
3 d3 + c22 c3 d2)

)
· x3 (80)

+ 24 ·
(
a · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) − 2 · (b21 b3 d2 + b1 b

2
2 d3 + b2 b

2
3 d1)

)
· x2,

where p2 is the polynomial P2(x) of degree two in x given by (16) in section (2):
p2 corresponds to the d1 = d2 = d3 = 0 limit. The expression of the polynomial
P6(x) is more involved. It reads:

P6(x) = p4 + ∆6(x), (81)

where p4 is the polynomial P4(x) of degree four in x given by (17) in section (2).
The expression of polynomial ∆6(x) of degree six in x is quite large and is given in
Appendix F.

Remark 1: A set of results and subcases (sections (3.3.2) and (3.3.3)), can be
used to “guess” the general exact expressions of the polynomials P3(x) and P6(x)
in (78) for the ten-parameters family (77). From the subcase d3 = 0 of section
(3.3.1) below, it is easy to see that one can deduce similar exact results for d1 = 0 or
d2 = 0: it just amounts to performing some cyclic transformation x → y → z → x
which corresponds to transformation b1 → b2 → b3 → b1, c1 → c2 → c3 → c1,
d1 → d2 → d3 → d1. One can see P3 and P6(x) as p2 and p4 given by (16) and
(17) plus some corrections given, in Appendix G, by (G.1) and (G.2) for d3 = 0, and
similar corrections† for d1 = 0 and d2 = 0, plus corrections of the form d1 d2 d3×
something. These last terms are the most difficult to get. We already know some of

‡ An equivalent family of ten-parameter rational functions amounts to adding x y2, y z2 and z x2.
† Taking care of the double counting !
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these terms from (88) and (89) in section (3.3.2) below. Furthermore, the symmetry
constraints (83) and (82) below, as well as other constraints corresponding to the
symmetric subcase of section (3.3.3), give additional constraints on the kind of allowed
final correction terms.

Remark 2: Note, again, that the simple symmetries arguments displayed in
section (2.6) for the seven-parameter family straightforwardly generalize for this ten-
parameter family. The H pullback (79) in (78) verifies (as it should):

H
(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

λ21 λ2 · d1, λ22 λ3 · d2, λ23 λ1 · d3,
x

λ1 λ2 λ3

)
= H(a, b1, b2, b3, c1, c2, c3, d1, d2, d3, x), (82)

and:

H
(
λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, λ · d1, λ · d2, λ · d3, x)

= H(a, b1, b2, b3, c1, c2, c3, d1, d2, d3, x). (83)

Remark 3: Do note that adding arbitrary sets of cubic terms yields
telescopers [31] of order larger than two: the corresponding diagonals are no longer
pullbacked 2F1 hypergeometric functions.

Let us just now focus on simpler subcases whose results are easier to obtain than
in the general case (77).

3.3.1. Noticeable subcases of (77): a nine-parameter rational function
Instead of adding three cubic terms, let us add two cubic terms. This amounts to

restricting the rational function (77) to the d3 = 0 subcase

1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z
, (84)

which cannot be reduced to the nine parameter family (71) even if it looks similar. The
diagonal of the rational function (84) has the experimentally observed form

1

P3(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P5(x)2

P3(x)3

)
, (85)

where P3(x) and P5(x) are two polynomials of degree respectively three and five in
x. Furthermore the pullback in (85) has the form:

1 − P5(x)2

P3(x)3
=

1728x3 · P7

P3(x)3
. (86)

The two polynomials P3(x) and P5(x) are given in Appendix G.

3.3.2. Cubic terms subcase of (77)
A simple subcase of (77) corresponds to b1 = b2 = b3 = c1 = c2 = c3 = 0,

namely to the rational function:

R(x, y, z) =
1

a + d1 · x2 y + d2 · y2 z + d3 · z2 x
,
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whose diagonal reads

2F1

(
[
1

3
,

2

3
], [1], −27 · d1 d2 d3

a3
· x3

)
(87)

=
(

1 − 216 · d1 d2 d3
a3

· x3
)−1/4

· 2F1

(
[

1

12
,

5

12
], [1], 1 − P6(x)2

P3(x)3

)
,

with:

P3(x) = −216 · a d1 d2 d3 · x3 + a4, (88)

P6(x) = − 5832 · d21 d22 d23 · x6 + 540 · a3 d1 d2 d3 · x3 + a6. (89)

Relation (87) actually corresponds to the hypergeometric identities:

2F1

(
[
1

3
,

2

3
], [1], −27X

)
(90)

=
(

1 − 216X
)−1/4

· 2F1

(
[

1

12
,

5

12
], [1], − 1728X · (1 + 27X)3

(1 − 216X)3

)
=
(

1 − 216 · X
)−1/4

· 2F1

(
[

1

12
,

5

12
], [1], 1 − (1 + 540X − 5832X2)2

(1 − 216X)3

)
.

3.3.3. A symmetric subcase of (77)
Let us also consider another simple very symmetric subcase of (77). For b1 = b2 =

b3 = b, c1 = c2 = c3 = c, d1 = d2 = d3 = d, the diagonal reads‡
1

a − 6 d · x
· 2F1

(
[
1

3
,

2

3
], [1], P

)
, (91)

where the pullback P reads:

P = −
27x ·

(
a2 d − a b c + b3 + (c3 − 3 b c d − 3 a d2) · x + 9 d3 · x2

)
(a − 6 d · x)3

. (92)

At first sight the hypergeometric result (91) with the pullback (92) does not seem to
be in agreement with the hypergeometric result (87) of section (3.3.2). In fact these
two results are in agreement as a consequence of the hypergeometric identity:

1

1 − 6X
· 2F1

(
[
1

3
,

2

3
], [1], −27 · X · (1 − 3X + 9X2)

(1 − 6X)3

)
= 2F1

(
[
1

3
,

2

3
], [1], −27 · X3

)
with: X =

d · x
a

. (93)

This hypergeometric result (87) can also be rewritten in the form (78) where the two
polynomials P3(x) and P6(x) read respectively:

P3(x) = − 72 · d · (3 ad2 − 6 bcd + 2 c3) · x3 + 24 · (3 abc d + ac3 − 6 b3 d) · x2

− 24 · a b · (ac − b2) · x + a4, (94)

P6(x) = − 5832 · d6 · x6 + 3888 · c d3 · (3 b d − c2) · x5

− 216 · (18 abc d3 + 18 b3 d3 − 12 ac3d2 − 9 b2c2 d2 + 6 bc4 d − c6) · x4

+ 108 · (5 a3 d3 − 18 a2bc d2 − 2 a2c3 d + 12 ab2c2 d + 24 ab3 d2 − 4 a bc4

− 12 b4c d+ 4 b3c3) · x3

+ 36 · (3 a3bc d − 6 a2b3 d + a3c3 + 6 a2b2c2 − 12 ab4c+ 6 b6) · x2

− 36 · a3 b · (ac − b2) · x + a6. (95)

‡ Note that trying to mix the two previous subcases imposing b1 = b2 = b3 = b, c1 = c2 = c3 = c
with d1, d2 , d3 no longer equal, do not yield a 2F1([1/3, 2/3], [1],P) hypergeometric function.
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4. Transformation symmetries of the diagonals of rational functions

The previous results can be expanded through symmetry considerations.
We are first going to see that performing monomial transformations on each

of the previous (seven-parameter, eight, nine or ten-parameter) rational functions
yields an infinite number of rational functions whose diagonals are pullbacked 2F1

hypergeometric functions.

4.1. (x, y, z) → (xn, yn, zn) symmetries

We have a first remark: once we have an exact result for a diagonal, we immediately
get another diagonal by changing (x, y, z) into (xn, yn, zn) for any positive integer
n in the rational function. As a result we obtain a new expression for the diagonal
changing x into xn.

A simple example amounts to revisiting the fact that the diagonal of (54) given
below is the hypergeometric function (56). Changing (x, y, z) into (8x2, 8 y2, 8 z2)
in (54), one obtains the pullbacked 2F1 hypergeometric function number 5 or 15 in
Figure 10 of Bostan’s HDR [33] (see also [34, 35, 36])

2F1

(
[
1

4
,

3

4
], [1], 64x4), (96)

can be seen as the diagonal of
1

2 + 8
√
−1 · (x2 + y2 + z2) − 64x2 z2 − 32 · x2 y2

, (97)

which is tantamount to saying that the transformation (x, y, z) → (xn, yn, zn) is a
symmetry.

4.2. Monomial transformations on rational functions

More generally, let us consider the monomial transformation

(x, y, z) −→ M(x, y, z) = (xM , yM , zM )

=
(
xA1 · yA2 · zA3 , xB1 · yB2 · zB3 , xC1 · yC2 · zC3

)
, (98)

where the Ai’s, Bi’s and Ci’s are positive integers such that A1 = A2 = A3 is
excluded (as well as B1 = B2 = B3 as well as C1 = C2 = C3), and that the
determinant of the 3 × 3 matrix

A1 B1 C1

A2 B2 C2

A3 B3 C3

 , (99)

is not equal to zero††, and that:

A1 +B1 + C1 = A2 +B2 + C2 = A3 +B3 + C3. (100)

We will denote by n the integer in these three equal† sums (100): n = Ai +Bi +Ci.
The condition (100) is introduced in order to impose that the product¶ of xM yM zM
is an integer power of the product of x y z: xM yM zM = (x y z)n.

††We want the rational function R̃ = R(M(x, y, z)) deduced from the monomial transformation
(98) to remain a rational function of three variables and not of two, or one, variables.
† For n = 1 the 3×3 matrix (99) is stochastic and transformation (98) is a birational transformation.
¶ Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor
expansion (5), only the terms that are n-th power of the product x y z.
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If we take a rational functionR(x, y, z) in three variables and perform a monomial
transformation (98) (x, y, z) → M(x, y, z), on the rational function R(x, y, z), we
get another rational function that we denote by R̃ = R(M(x, y, z)). Now the
diagonal of R̃ is the diagonal of R(x, y, z) where we have changed x into xn:

Φ(x) = Diag
(
R
(
x, y, z

))
, Diag

(
R̃
(
x, y, z

))
= Φ(xn). (101)

A demonstration of this result is sketched in Appendix H.

From the fact that the diagonal of the rational function

1

1 + x + y + z + 3 · (x y + y z + x z)
, (102)

is the hypergeometric function

2F1

(
[
1

3
,

2

3
], [1], 27x · (2 − 27x)

)
, (103)

one deduces immediately that the diagonal of the rational function (104) transformed
by the monomial transformation (x, y, z) −→ (z, x2 y, y z)

1

1 + y z + x2 y + 3 · (y z2 + x2 y z + x2 y2 z)
, (104)

is the pullbacked hypergeometric function

2F1

(
[
1

3
,

2

3
], [1], 27x2 · (2 − 27x2)

)
, (105)

which is (103) where x → x2.

To illustrate the point further, from the fact that the diagonal of the rational
function

1

1 + x + y + z + 3x y + 5 y z + 7x z
, (106)

is the hypergeometric function

1

(2712 x2 − 96 x + 1)1/4
(107)

× 2F1

(
[

1

12
,

5

12
], [1], 1 − (2381400x4 − 181440x3 + 7524x2 − 144x+ 1)2

(2712 x2 − 96 x + 1)3

)
,

one deduces immediately that the diagonal of the rational function (106) transformed
by the monomial transformation (x, y, z) → (x z, x2 y, y2 z2)

1

1 + x z + x2 y + y2 z2 + 3x2 y3 + 5x y2 z3 + 7x3 y z
, (108)

is the hypergeometric function

1

(2712 x6 − 96 x3 + 1)1/4
(109)

× 2F1

(
[

1

12
,

5

12
], [1], 1 − (2381400x12 − 181440x9 + 7524x6 − 144x3 + 1)2

(2712 x6 − 96 x3 + 1)3

)
,

which is nothing but (107) where x has been changed into x3.
We have the same result for more involved rational functions and more involved

monomial transformations.
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4.3. More symmetries on diagonals

Other transformation symmetries of the diagonals include the function-dependent
rescaling transformation

(x, y, z) −→
(
F (x y z) · x, F (x y z) · y, F (x y z) · z

)
, (110)

where F (x y z) is a rational function† of the product of the three variables x, y and
z. Under such a transformation the previous diagonal ∆(x) becomes ∆(x · F (x)3).

For instance, changing

(x, y, z) −→
( x

1 + 7 x y z
,

y

1 + 7 x y z
,

z

1 + 7 x y z

)
, (111)

the rational function
1

1 − x − y − z + y z
, (112)

whose diagonal is 2F1([1/2, 1/2], [1], 16x), becomes the rational function

(1 + 7 x y z)2

1 − x− y − z + y z + 14x y z − 7x2 y z − 7x y2 z − 7x y z2 + 49x2 y2 z2
, (113)

which has the following diagonal:

2F1

(
[
1

2
,

1

2
], [1],

16x

(1 + 7 x)3

)
= 1 + 4x − 48x2 + 64x3 + 3024x4

− 13524x5 − 245196x6 + 1933152x7 + 21288192x8 − 263440460x9

− 1758664568x10 + 34575759792x11 + · · · (114)

To illustrate the point further take

(x, y, z) −→
(
x · F, y · F, z · F

)
, with: (115)

F =
1 + 2x y z

1 + 3x y z + 5x2 y2 z2
= Φ(x y z), (116)

where: Φ(x) =
1 + 2x

1 + 3x + 5x2
, (117)

the rational function
1

1 + x + y + z + y z + x z + x y
, (118)

whose diagonal is 2F1([1/3, 2/3], [1], −27x2), becomes the rational function
P (x, y, z)/Q(x, y, z), where the numerator P (x, y, z) and the denominator
Q(x, y, z), read respectively:

P (x, y, z) = (1 + 3x y z + 5x2 y2 z2)2, (119)

Q(x, y, z) = 25x4y4z4 + 10 · (x4y3z3 + x3y4z3 + x3y3z4) + 30x3y3z3

+ 4 · (x3y3z2 + x3y2z3 + x2y3z3) + 11 · (x3y2z2 + x2y3z2 + x2y2z3)

+ 19x2y2z2 + 4 · (x2y2z + x2yz2 + xy2z2) + 5 · (x2yz + xy2z + xyz2)

+ 6xyz + xy + xz + yz + x+ y + z + 1. (120)

† More generally one can imagine that F (x y z) is the series expansion of an algebraic function.
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The diagonal of this last rational function is equal to:

2F1

(
[
1

3
,

2

3
], [1], −27 ·

(
x · Φ(x)3

)2)
= 2F1

(
[
1

3
,

2

3
], [1], − 27x2 ·

( 1 + 2x

1 + 3x + 5x2

)6)
. (121)

Let us give a final example: let us consider again the rational function (106) whose
diagonal is (107), and let us consider the same function-rescaling transformation (115)
with (116). One finds that the diagonal of the rational function

1

1 + F · x + F · y + F · z + 3 · F 2 · x y + 5 · F 2 · y z + 7 · F 2 · x z
, (122)

is the hypergeometric function

1

(2712 x2 Φ(x)6 − 96 x Φ(x)3 + 1)1/4
× 2F1

(
[

1

12
,

5

12
], [1], 1 −H

)
, (123)

where the pullback 1 −H reads:

1 − (2381400x4 Φ(x)12 − 181440x3 Φ(x)9 + 7524x2 Φ(x)6 − 144xΦ(x)3 + 1)2

(2712 x2 Φ(x)6 − 96 xΦ(x)3 + 1)3

)
.

The pullbacked hypergeometric function (124) is nothing but (107) where x has been
changed into xΦ(x)3.

A demonstration of these results is sketched in Appendix I.

Thus for each rational function belonging to one of the seven, eight, nine or ten
parameters families of rational functions yielding a pullbacked 2F1 hypergeometric
function one can deduce from the transformations (110) an infinite number of other
rational functions, with denominators of degree much higher than two or three.

One can combine these two sets of transformations, the monomial transformations
(98) and the function-dependent rescaling transformations (110), thus yielding from
each of the (seven, eight, nine or ten parameters) rational functions of the paper
an infinite number of rational functions of quite high degree yielding pullbacked 2F1

hypergeometric (modular form) exact results for their diagonals.

5. Conclusion

We found here that a seven-parameter rational function of three variables with a
numerator equal to one and a of polynomial denominator of degree two at most,
can be expressed as a pullbacked 2F1 hypergeometric function. We generalized that
result to eight, then nine and ten parameters, by adding specific cubic terms. We
focused on subcases where the diagonals of the corresponding rational functions are
pullbacked 2F1 hypergeometric function with two possible rational function pullbacks
algebraically related by modular equations, thus obtaining the result that the diagonal
is a modular form†.

We have finally seen that simple monomial transformations, as well as a simple
function rescaling of the three (resp. N) variables, are symmetries of the diagonals
of rational functions of three (resp. N) variables. Consequently each of our previous
families of rational functions, once transformed by these symmetries yield an infinite

† Differently from the usual definition of modular forms in the τ variables.
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number of families of rational functions of three variables (of higher degree) whose
diagonals are also pullbacked 2F1 hypergeometric functions and, in fact, modular
forms.

Since diagonals of rational functions emerge naturally in integrable lattice
statistical mechanics and enumerative combinatorics, exploring the kind of exact
results we obtain for diagonals of rational functions (modular forms, Calabi-Yau
operators, pullbacked nFn−1 hypergeometric functions, ...) is an important systematic
work to be performed to provide results and tools in integrable lattice statistical
mechanics and enumerative combinatorics.
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Appendix A. Simple symmetries of the diagonal of the rational function
(7)

Let us recall the pullbacks (24) in section (2.6), that we denote P1.

Appendix A.1. Overall parameter symmetry

The seven parameters are defined up to an overall parameter (they must be seen as
homogeneous variables). Changing (a, b1, b2, b3, c1, c2, c3) into (λ · a, λ · b1, λ · b2,
λ· b3, λ· c1, λ· c2, λ· c3) the rational function R given by (7) and its diagonal Diag(R)
are changed into R/λ and Diag(R)/λ. It is thus clear that the previous pullbacks
(24), which totally “encode” the exact expression of the diagonal as a pullbacked
hypergeometric function, must be invariant under this transformation. This is actually
the case:

P1(λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, x)

= P1(a, b1, b2, b3, c1, c2, c3, x). (A.1)

This result corresponds to the fact that P2(x) (resp. P4(x)) is a homogeneous
polynomial in the seven parameters a, b1, · · · , c1, · · · of degree two (resp. four ).

Appendix A.2. Variable rescaling symmetry

On the other hand, the rescaling of the three variables (x, y, z) in (7), (x, y, z) →
(λ1 ·x, λ2 · y, λ3 · z) is a change of variables that is compatible with the operation of
taking the diagonal of the rational function R.

When taking the diagonal and performing this change of variables, the monomials
in the multi-Taylor expansion of (7) transform as:

am,n, p · xm yn zp −→ am,n, p · λm1 · λn2 · λ
p
3 · xm yn zp. (A.2)
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Taking the diagonal yields

am,m,m · xm −→ am,m,m · (λ1 λ2 λ3)m · xm. (A.3)

Therefore it amounts to changing x → λ1 λ2 λ3 · x. With that rescaling (x, y, z) →
(λ1 · x, λ2 · y, λ3 · z) the diagonal of the rational function remains invariant if one
changes the seven parameters as follows:

(a, b1, b2, b3, c1, c2, c3) −→
(a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3). (A.4)

One deduces that the pullbacks (24) verify:

P1

(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

x

λ1 λ2 λ3

)
= P1(a, b1, b2, b3, c1, c2, c3, x). (A.5)

Appendix B. Comment on 2F1([1/3, 2/3], [1],P) as a modular form

From identity (28) of section (2.7)

2F1

(
[
1

3
,

2

3
], [1],

z

z + 27

)
(B.1)

=
(

9 ·
( z + 27

z + 243

))1/4
· 2F1

(
[

1

12
,

5

12
],

1728 z3

(z + 27) · (z + 243)3

)
(B.2)

=
(1

9
·
(z + 27

z + 3

))1/4
· 2F1

(
[

1

12
,

5

12
],

1728 z

(z + 27) · (z + 3)3

)
, (B.3)

it is tempting to imagine an identity relating 2F1([1/3, 2/3], [1],P) with two different
pullbacks.

Since switching the last two Hauptmoduls in (B.2) and (B.3) amounts to
performing the involutive transformation z → 729/z, it is tempting to imagine that
the first 2F1 hypergeometric function (B.1) is related to itself with z → 729/z,
namely that

2F1

(
[
1

3
,

2

3
], [1],

27

z + 27

)
= 2F1

(
[
1

3
,

2

3
], [1], 1 − z

z + 27

)
, (B.4)

is related to‡

2F1

(
[
1

3
,

2

3
], [1],

27

729/z + 27

)
= 2F1

(
[
1

3
,

2

3
], [1],

z

z + 27

)
. (B.5)

This is the case, since (B.4) and (B.5) are solutions of the same linear ODE, but
this does not mean that one can deduce an identity on the different pullbacks (B.4)
and (B.5): the relation between these two hypergeometric functions (B.4) and (B.5)
corresponds to a connection matrix [37]. A direct identity on 2F1([1/3, 2/3], [1],P),
does however exist:

2F1([
1

3
,

2

3
], [1], x3)

=
1

1 + 2x
· 2F1

(
[
1

3
,

2

3
], [1],

9x · (1 + x + x2)

(1 + 2x)3

)
. (B.6)

‡ It corresponds to a trivial pullback change p = z/(z + 27) → 1 − p.
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Identity (B.6) corresponds¶ to the identity on 2F1([1/3, 1/3], [1],P):

2F1

(
[
1

3
,

1

3
], [1], − x3

1 − x3
)

=
(1 + x + x2

(1 − x)2

)1/3
· 2F1

(
[
1

3
,

1

3
], [1], − 9x · (1 + x + x2)

(1 − x)3

)
. (B.7)

Appendix C. Comments on the τ → 4 τ modular equation (51).

The fact that in section (2.8), the three Hauptmoduls (44), (47) and (48) can be
introduced for the τ → 4 τ modular equation (51), can be revisited in the z variable.
(see equation (45). Recalling P1 and P2 given in (45), and performing the (involutive)
change of variable z → −16 z/(z + 16), on P2, we get a third Hauptmodul P3

P3 = − 1728 · z · (z + 16)4

(z2 − 224 z + 256)3
=
( 1728 · z

(z + 16)3

)
◦
(
− 4096 z

(z + 16)2

)
, (C.1)

to be compared† with:

P2 =
1728 · z · (z + 16)

(z2 + 16 z + 16)3
=
( 1728 · z

(z + 16)3

)
◦
(
z · (z + 16)

)
. (C.2)

One also has:

P1 =
1728 · z4 · (z + 16)

(z2 + 256 z + 4096)3
=
( 1728 · z

(z + 16)3

)
◦
(4096 · (z + 16)

z2

)
(C.3)

=
( 1728 · z2

(z + 256)3

)
◦
( z2

z + 16

)
. (C.4)

These three Hauptmoduls have to be compared with the Hauptmodul:

P0 =
1728 · z2 · (z + 16)2

(z2 + 16 z + 256)3
=
( 1728 · z

(z + 16)3

)
◦
( z2

z + 16

)
(C.5)

=
( 1728 · z2

(z + 256)3

)
◦
(
z · (z + 16)

)
. (C.6)

Note that the elimination of z, between this last Hauptmodul P0 and each of the three
Hauptmoduls P1, P2 , P3, gives the τ → 2 τ modular equation (see (E.9) below)
instead of the τ → 4 τ modular equation (51).

The decomposition of the Hauptmoduls P3, P2 and P1 given by (C.1), (C.2)
and (C.3) suggests to substitute

X =
1728X̃

(X̃ + 16)3
, Y =

1728Ỹ

(Ỹ + 16)3
, (C.7)

in the τ → 4 τ modular equation (51). This change of variable transforms the LHS
of the modular equation (51) into the product of four polynomials:

p̂1(X̃, Ỹ ) = X̃2 Ỹ 2 − 3 · 216 · X̃ Ỹ − 224 · (X̃ + Ỹ ), (C.8)

p̂2,1(X̃, Ỹ ) = p̂2,2(Ỹ , X̃) = X̃4 Ỹ 3 + 96 X̃3 Ỹ 3 + 196608 X̃3 Ỹ 2 + 2352 X̃2 Ỹ 3

+ 16777216 X̃3 Ỹ − 7335936 X̃2 Ỹ 2 + 10496 X̃ Ỹ 3 − Ỹ 4 + 805306368 X̃2 Ỹ

+ 9633792 X̃ Ỹ 2 + 1610612736 X̃ Ỹ + 68719476736 X̃, (C.9)

¶ Using the relation (43).
† As it should z → −16 z/(z + 16) changes z · (z + 16) into −4096 z/(z + 16)2.
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p̂4(X̃, Ỹ ) = X̃7 Ỹ 5 + X̃5 Ỹ 7 + 96 X̃7 Ỹ 4 + 144 X̃6 Ỹ 5 + 144 X̃5 Ỹ 6 + 96 X̃4 Ỹ 7

+ 2352 X̃7 Ỹ 3 − 182784 X̃6 Ỹ 4 + 13968 X̃5 Ỹ 5 − 182784 X̃4 Ỹ 6 + 2352 X̃3 Ỹ 7

+ X̃8 Ỹ + 10496 X̃7 Ỹ 2 + 7674625 X̃6 Ỹ 3 − 1300992 X̃5 Ỹ 4 − 1300992 X̃4 Ỹ 5

+ 7674625 X̃3 Ỹ 6 + 10496 + 7674625 X̃3 Ỹ 6 + 10496 X̃2 Ỹ 7 + X̃ Ỹ 8 + 192 X̃7 Ỹ

− 8122320 X̃6 Ỹ 2 + 1526542992 X̃5 Ỹ 3 + 700465152 X̃4 Ỹ 4 + 1526542992 X̃3 Ỹ 5

− 8122320 X̃2 Ỹ 6 + 192 X̃ Ỹ 7 + 13920 X̃6 Ỹ + 759331584 X̃5 Ỹ 2

+ 56157592368 X̃4 Ỹ 3 + 56157592368 X̃3 Ỹ 4 + 759331584 X̃2 Ỹ 5 + 13920 X̃ Ỹ 6

+ 472576 X̃5 Ỹ − 13144356607 X̃4 Ỹ 2 + 229377672192 X̃3 Ỹ 3

− 13144356607 X̃2 Ỹ 4 + 472576 X̃ Ỹ 5 + 7547184 X̃4 Ỹ + 39849037920 X̃3 Ỹ 2

+ 39849037920 X̃2 Ỹ 3 + 7547184 X̃ Ỹ 4 + 49771008 X̃3 Ỹ

− 13195144656 X̃2 Ỹ 2 + 49771008 X̃ Ỹ 3 + 95607040 X̃2 Ỹ + 95607040 X̃ Ỹ 2

+ 19771392 X̃ Ỹ − 4096. (C.10)

The elimination of z in

X̃ = − 4096 z

(z + 16)2
, Ỹ = z · (z + 16), (C.11)

or in

X̃ = − 4096 · z
(z + 16)2

, Ỹ =
4096 · (z + 16)

z2
, (C.12)

or in

X̃ =
4096 · (z + 16)

z2
, Ỹ = z · (z + 16), (C.13)

corresponds to (C.8), the first polynomial p̂1(X̃, Ỹ ) = 0.
The elimination of z between any two Hauptmoduls among the three

Hauptmoduls P1, P2, or P3, yields the same modular equation (51). In general for
modular equations representing τ → N τ , one Hauptmodul is of the form α ·z + · · ·
when the other one is of the form α · zN + · · · (see [22]). Here with P2 and P3, we
have two Hauptmoduls algebraically related by the modular equation (51) representing
τ → 4 τ , but each of them is of the form ±α · z + · · · This result is reminiscent of
the involutive series solution of (51), (given by equation (104) in [22]):

Y = −X − 31X2

36
− 961

1296
· X3 − 203713

314928
· X4 − 4318517

7558272
· X5

− 832777775

1632586752
· X6 − 729205556393

1586874322944
· X7 − 2978790628903

7140934453248
· X8 + . . . (C.14)

Replacing in (C.14), (X, Y ) by† (P2, P3), one verifies that the expansions in z, of
LHS and RHS of (C.14) are equal.

† Or replacing (X, Y ) by (P(1)
2 , P(1)

2 ).
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Appendix D. 2F1([1/4, 3/4], [1],P) hypergeometric as modular forms

Appendix D.1. 2F1([1/4, 1/4], [1],P) and 2F1([1/2, 1/2], [1],P) as modular forms

In Table 15 of Maier [23], one sees that 2F1([1/4, 1/4], [1], x) hypergeometric functions
are related to τ → 2 τ :

2F1

(
[
1

4
,

1

4
], [1], − x

64

)
=

(x + 16

16

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

1728 · x
(x + 16)3

)
=
(x + 256

256

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

1728 · x2

(x + 256)3

)
. (D.1)

One has the following identity†:

2F1

(
[
1

4
,

1

4
], [1], − 1

64
· x2

x + 16

)
=

(x+ 16

16

)1/4
· 2F1

(
[
1

4
,

1

4
], [1], − x · (x + 16)

64

)
. (D.2)

One also sees in Table 15 of Maier [23] that 2F1([1/2, 1/2], [1], x) hypergeometric
functions are related to a τ → 4 τ isogeny[22]:

2F1

(
[
1

2
,

1

2
], [1], − x

16

)
(D.3)

=
(x2 + 16x + 16

16

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

1728 · x · (x+ 16)

(x2 + 16x + 16)3

)
=
(x2 + 256x + 4096

4096

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1],

1728 · x4 · (x+ 16)

(x2 + 256x + 4096)3

)
.

One has the following identity:

2F1

(
[
1

2
,

1

2
], [1],

8x · (1 + x2)

(1 + x)4

)
= (1 + x)2 · 2F1

(
[
1

2
,

1

2
], [1], x4

)
. (D.4)

Appendix D.2. 2F1([1/4, 3/4], [1],P) hypergeometric as modular forms

Let us now focus on the 2F1([1/4, 3/4], [1],P) hypergeometric function:

2F1

(
[
1

4
,

3

4
], [1], x

)
= (1 + 3x)−1/4 · 2F1

(
[

1

12
,

5

12
],

27x · (1 − x)2

(1 + 3x)3

)
. (D.5)

The emergence of 2F1([1/4, 3/4], [1],P) hypergeometric functions in physics, walk
problems in the quarter of a plane [34, 35, 36] in enumerative combinatorics,
or in interesting subcases of diagonals (see section (2.9)), raises the question if

2F1([1/4, 3/4], [1],P) should be seen as associated to the isogenies [22] τ → 2 τ or
τ → 4 τ . The identity

2F1

(
[
1

4
,

3

4
], [1], 64x2

)
= (1 + 8x)−1/2 · 2F1

(
[
1

2
,

1

2
], [1],

16x

1 + 8x

)
, (D.6)

or equivalently

2F1

(
[
1

4
,

3

4
], [1],

( x

2 − x

)2)
=

(2 − x
2

)1/2
· 2F1

(
[
1

2
,

1

2
], [1], x

)
, (D.7)

† It can be deduced from (D.1) together with (C.2) with (C.5), or (C.4) with (C.6).
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seems to relate 2F1([1/4, 3/4], [1],P) to 2F1([1/2, 1/2], [1], x), and thus seems to relate

2F1([1/4, 3/4], [1],P) rather τ → 4 τ . Yet things are more subtle.
Let us see how 2F1([1/4, 3/4], [1],P) can be described as a modular form

corresponding to pullbacked 2F1([1/4, 3/4], [1],P) hypergeometric functions with two
different rational pullbacks. For instance, one deduces from (D.4) combined with
(D.7), several identities on the hypergeometric function 2F1([1/4, 3/4], [1],P) like

2F1

(
[
1

4
,

3

4
], [1],

x2

(2 − x)2

)
=
( 2 − x

2 · (1 − 2x)

)1/2
· 2F1

(
[
1

4
,

3

4
], [1], − 4 · x · (1 − x)

(1 − 2x)2

)
, (D.8)

or

2F1

(
[
1

4
,

3

4
], [1],

x2

(2 − x)2

)
=
( 2 − x

2 · (1 + x)

)1/2
· 2F1

(
[
1

4
,

3

4
], [1],

4x

(1 + x)2

)
. (D.9)

and thus:

2F1

(
[
1

4
,

3

4
], [1],

4x

(1 + x)2

)
=
( 1 + x

1 − 2x

)1/2
· 2F1

(
[
1

4
,

3

4
], [1], − 4 · x · (1 − x)

(1 − 2x)2

)
. (D.10)

One also has the identity:

2F1

(
[
1

4
,

3

4
], [1],

x4

(2 − x2)2

)
(D.11)

=
( 2 − x2

2 · (1 + 6x + x2)

)1/2
· 2F1

(
[
1

4
,

3

4
], [1],

16 · x · (1 + x)2

(1 + 6x + x2)2

)
.

Recalling the viewpoint developed in our previous paper [22] these identities can be
seen to be of the form

2F1

(
[
1

4
,

3

4
], [1], B

)
= G · 2F1

(
[
1

4
,

3

4
], [1], A

)
,

where G is some algebraic factor. For instance in the case of the last identity (D.11)

A =
16 · x · (1 + x)2

(1 + 6x + x2)2
, B =

x4

(2 − x2)2
, (D.12)

we have

B =
A4

262144
+

5A5

524288
+

1069A6

67108864
+

6003A7

268435456
+

1961123A8

68719476736
+ · · · (D.13)

and G is an algebraic factor

G = 1 − 3

16
A − 69A2

1024
− 633A3

16384
− 55209A4

2097152
− 659109A5

33554432
+ · · · (D.14)

solution of:

65536 · G8 − 16384 · G6 + 1536 · (27A − 26) · G4 + 64 · (135A − 136) · G2

+ 3969A2 − 3456A − 512 = 0. (D.15)
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The important result of [22] is that after elimination of the algebraic factor G one
finds that the two pullbacks A and B verify the following Schwarzian equation:

− 1

8

3A2 − 3A+ 4

A2 (A− 1)
2 +

1

8

3B2 − 3B + 4

B2 (B − 1)
2 ·

(dB
dA

)2
+ {B, A} = 0, (D.16)

where {B, A} denotes the Schwarzian derivative.
Do note that 2F1([1/4, 3/4], [1],P) is a selected hypergeometric function since the

rational function in the Schwarzian derivative (D.16)

W (A) = −1

8

3A2 − 3A + 4

A2 · (A− 1)2
, (D.17)

is invariant under the A → 1 −A transformation: W (A) = W (1 −A).
This Schwarzian equation can be written in a more symmetric way between A

and B, namely:

1

8

3B2 − 3B + 4

B2 (B − 1)
2 ·

(dB
dx

)2
+ {B, x}

=
1

8

3A2 − 3A+ 4

A2 (A− 1)
2 ·

(dA
dx

)2
+ {A, x}. (D.18)

Let us denote ρ(x) the rational function of the LHS or the RHS of equality (D.18).
For the three identities (D.8), (D.9), (D.10) this rational function is (of course†) the
same rational function, namely

ρ(x) =
1

2
· x

2 − x + 1

x · (x− 1)2
, (D.19)

when the last identity (D.11) corresponds to:

ρ(x) =
1

2
· (x2 + 1)2

x2 · (x2 − 1)2
. (D.20)

Let us consider the first two identities (D.8) and (D.9), denoting by A and B the
corresponding pullbacks:

A = − 4 · x · (1 − x)

(1 − 2x)2
, or:

4x

(1 + x)2
, B =

x2

(2 − x)2
(D.21)

These two pullbacks are related by the asymmetric modular equation:

81 · A2B2 − 18AB · (8B +A) + (A2 + 80 · AB + 64B2) − 64B = 0. (D.22)

giving the following expansion forA seen as an algebraic series‡ in B:

B =
1

64
A2 +

5

256
A3 +

83

4096
A4 +

163

8192
A5 +

5013

262144
A6 + · · · (D.23)

We will denote M2(A, B) the LHS of the modular equation (D.22): such an
algebraic series is clearly†† a τ → 2 τ (or q → q2 in the nome q) isogeny [22].
Composing this algebraic transformation with itself in order to have a τ → 4 τ (or
q → q4) representation, amounts to eliminating¶ X between M2(A, X) = 0 and

† Since these identities share one pullback.
‡ We discard the other root expansion B = 1 +A + 5

4
A2 + 25

16
A3 + 31

16
A4 + · · ·

††From (D.23) see [22].
¶ Performing the resultant: resultant(M2(A, X),M2(X, B), X).
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M2(X, B) = 0 (i.e. two times the modular equation (59)). This elimination gives
the following asymmetric modular curve corresponding to identity (D.11):

15752961A4B4 − 428652A3B3 · (64B + 83A)

+ 162A2B2 · (48640B2 + 494208AB + 124051A2)

+ 108 AB · (32768B3 − 500480B2A− 491200BA2 − 83A3)

+ 262144B4 + 10354688B3A+ 46715904B2A2 + 159488BA3 +A4

− 3072B · (256B2 + 4736AB + 177A2)

+ 131072B · (6B + 5A) − 262144B = 0, (D.24)

parametrised by

A =
16 · x · (1 + x)2

(1 + 6x + x2)2
, B =

x4

(2 − x2)2
, (D.25)

where:

B =
A4

262144
+

5A5

524288
+

1069A6

67108864
+

6003A7

268435456
+

1961123A8

68719476736
+ · · · (D.26)

Note that B in (D.25) is nothing but the composition of B in ( 58) by x → x2 and
that A in (D.25) in nothing but the composition of A in (D.25) with itself:

16 · x · (1 + x)2

(1 + 6x + x2)2
=

4x

(1 + x)2
◦ 4x

(1 + x)2
. (D.27)

The modular curve (59) is unpleasantly asymmetric: the two pullbacks are not
on the same footing. Note that, using the A ↔ 1 − A symmetry (see (D.17)) on the
Schwarzian equations (D.18), and changing A → 1 − A in the asymmetric modular
curve (59), one gets the symmetric modular curve:

81 · A2B2 − 18 · (A2B +AB2) +A2 − 44AB +B2

− 2 · (A +B) + 1 = 0. (D.28)

Changing B → 1 − B in the asymmetric modular curve (59), one also gets another
symmetric modular curve:

81 · A2B2 − 144 · (A2B +AB2)

+ 208AB + 64 · (A2 +B2 −A −B) = 0. (D.29)

The two pullbacks for (D.29) read:

A =
4x

(1 + x)2
, B =

4 · (1 − x)

(2 − x)2
. (D.30)

Similarly the asymmetric modular curve (D.24) can be turned back into a symmetric
modular curve by changing A ↔ 1 − A, or B ↔ 1 − B. The price to pay to restore
the symmetry between the two pullbacks (D.30) is that the corresponding pullbacks
do not yield hypergeometric identities expandable for x small.

Finally, the identity (D.10) corresponds to a symmetric relation between these
two-pullbacks which reads:

81 · C2D2 − 144 · (C2D + CD2) + 16 · (4C2 + 13C D + 4D2)

− 64 · (C + D) = 0. (D.31)
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The corresponding series expansion

D = −C − 5

4
C2 − 25C3

16
− 31C4

16
− 305C5

128
− 2979C6

1024
− 14457C7

4096

− 17445C8

4096
− 167615C9

32768
− 801941C10

131072
− 3822989C11

524288
+ · · · (D.32)

is an involutive series.

Appendix E. Modular forms: recalls on Maier’s paper [23] and the
associated Schwarzian equations

In fact, the previous pullbacks in the pullbacked 2F1 hypergeometric functions can be
seen (and should be seen) as Hauptmoduls [23].

In [23], Maier underlined the representation of a selected set of modular forms
as pullbacked hypergeometric functions with two possible rational pullbacks (related
by a genus zero modular equation). In [22], we revisited that viewpoint: an identity
on a hypergeometric function with a pullback and the same hypergeometric function
with another pullback, the (algebraic) map‡, changing one pullback into the other
one, being a symmetry of infinite order†, is such a strong constraint that it is almost
characteristic of modular forms [22]: the hypergeometric functions can be seen as
automorphic functions with respect to these infinite order symmetries.

The two different modular equations (40), (51) corresponding respectively to
τ → 3 τ and τ → 4 τ , suggest that a genus zero modular equation, corresponding
to τ → N τ , could encapsulate these two subcases. In such a scenario, N must
be a multiple of 3, 4, 5, ... In fact, the set of values of N corresponding to
modular equations with a (genus zero) rational parametrization is obtained for a finite
set [23, 41, 42] of integer values: 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18 and
25. Some canonical rational parametrizations of these selected genus zero modular
equations are given in [23]. The two Hauptmoduls read respectively for these selected
values 2, 3, 4, 5, ..., 25:

N = 2 :
1728 · z2

(z + 256)3
,

1728 · z
(z + 16)3

, (E.1)

N = 3 :
1728 · z3

(z + 27) · (z + 243)3
,

1728 · z
(z + 27) · (z + 3)3

, (E.2)

N = 4 :
1728 · z4 · (z + 16)

(z2 + 256 z + 4096)3
,

1728 · z · (z + 16)

(z2 + 16 z + 16)3
, (E.3)

N = 5 :
1728 · z5

(z2 + 250 z + 3125)3
,

1728 · z
(z2 + 10 z + 5)3

, (E.4)

N = 6 :
1728 · z6 · (z + 8)2 · (z + 9)3

(z + 12)3 · (z3 + 252 z2 + 3888 z + 15552)3
,

1728 · z · (z + 8)3 (z + 9)2

(z + 6)3 · (z3 + 18 z2 + 84 z + 24)3
, (E.5)

‡ Called by Veselov [40] in a mapping framework, “correspondence”.
† Of course hypergeometric functions have finite order symmetries like x → 1 − x, that we discard.
With infinite order symmetries one can associate some discrete dynamical map: in these particular
cases algebraic function maps [22, 38, 40].
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N = 7 :
1728 · z7

(z2 + 13 z + 49) · (z2 + 245 z + 2401)3
,

1728 · z
(z2 + 13 z + 49) · (z2 + 5 z + 1)3

, · · · (E.6)

The seven-parameter pullbacked 2F1 hypergeometric function (11) cannot
correspond generically to rationally parametrized (genus zero) modular equations.
One cannot imagine to identify the Hauptmodul pullback in (11) with expressions [23]
like (27) or (45) for N a multiple of 3, 4, 5, ... In the generic seven-parameters case
one gets the expression (11) for the diagonal of the seven-parameters rational function
(7) as a pullbacked 2F1 hypergeometric function with a rational pullback (12), the
other pullback being algebraic and deduced from the various modular equations [22]
(see section (2.10)).

Appendix E.1. Landen transformation: τ → 2 τ .

To describe this situation let us recall the result detailed in [22] for τ → 2 τ .
The emergence of a modular form [1, 19] corresponds to the identity on the same
hypergeometric function but where the pullback x is changed x → y(x) = y
according to modular equations [43, 44, 45, 46, 47, 48]. Let us consider the modular
equation (E.9) below corresponding to the Landen transformation [49, 50], or inverse
Landen transformation, and consider the corresponding 2F1 hypergeometric identity

2F1

(
[

1

12
,

5

12
], [1], y

)
= A(x) · 2F1

(
[

1

12
,

5

12
], [1], x

)
, (E.7)

where A(x) is an algebraic function given by:

1024 A(x)12 − 1152 A(x)8 + 132 A(x)4 + 125x − 4 = 0. (E.8)

The relation between x and y in (E.7) is given by the modular equation [43, 44, 45,
46, 47, 48]:

1953125 · x3y3 − 187500 · x2y2 · (x+ y) + 375 · xy · (16x2 − 4027xy + 16 y2)

− 64 · (x+ y) · (x2 + 1487xy + y2) + 110592 · xy = 0. (E.9)

Using this algebraic relation between x and y one can rewrite (E.7) with (E.8) as

2F1

(
[

1

12
,

5

12
], [1], x

)
= Ã(y) · 2F1

(
[

1

12
,

5

12
], [1], y

)
, (E.10)

where Ã(y) is an algebraic function given¶ by:

Ã(y)12 − 18 Ã(y)8 + 33 Ã(y)4 + 500 y − 16 = 0. (E.11)

Using the fact that Ã(y) is the reciprocal of A(x), one can rewrite (E.11) as:

4 A(x)12 · (125 y − 4) + 33 A(x)8 − 18A(x)4 + 1 = 0. (E.12)

In other words the elimination of A(x) between (E.8) and (E.12) gives the modular
curve (E.9). Thus, introducing A = A(x)4, (E.8) and (E.12) can be seen as
alternative rational parametrizations of the modular equation (E.9):

x =
4

125
· (1 −A) · (1 − 16A)2, y = − 1

500
· (1 −A)2 · (1 − 16A)

A3
. (E.13)

¶ This result breaking the symmetry between the two variables x and y may look paradoxical. In
fact assuming (E.8) and (E.11) and the modular equation (E.9) one has Ã(y) · A(x) = 1.
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Note that y, in terms of A is nothing but x, in terms of A, A taken to be
1/16/A. The two variables x and y are thus on the same footing: permuting x
and y corresponds to the involutive transformation A ↔ 1/16/A. Finally changing
A into A = (z + 256)/(z+ 16)/16, the previous parametrization (E.13) becomes the
known parametrization [22, 23] of the fundamental modular equation (E.9), namely
x = 1728 z/(z + 16)3 and y = 1728 z2/(z + 256)3.

Appendix E.2. Schwarzian equations

In general, one can rewrite a remarkable hypergeometric identity like (39), (49), in
the form

A(x) · 2F1

(
[α, β], [γ], x

)
= 2F1

(
[α, β], [γ], y(x)

)
, (E.14)

where A(x) is an algebraic function and where y(x) is an algebraic function
(more precisely an algebraic series) corresponding to the previous modular equation
M(x, y(x)) = 0.

The Gauss hypergeometric function 2F1([α, β], [γ], x) is solution of the second
order linear differential operator†:

Ω = D2
x + A(x) · Dx + B(x), where:

A(x) =
(α+ β + 1) · x − γ

x · (x − 1)
=

u′(x)

u(x)
, B(x) =

αβ

x · (x − 1)
. (E.15)

A straightforward calculation enables us to find the algebraic function A(x) in terms
of the algebraic function pullback y(x) in (E.14):

A(x) =
( u(x)

u(y(x))
· y′(x)

)−1/2
. (E.16)

The identification of the two operators, 1/v(x) · Ω · v(x) and Ωpull (the pullback
of operator Ω for a pullback y(x)), thus corresponds (beyond (E.16)) to just one
condition that can be rewritten (after some algebra ...) in the following Schwarzian
form [22, 38]:

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (E.17)

or:

W (x)

y′(x)
−W (y(x)) · y′(x) +

{y(x), x}
y′(x)

= 0, (E.18)

where

W (x) = A′(x) +
A(x)2

2
− 2 · B(x), (E.19)

and where {y(x), x} denotes the Schwarzian derivative [39]:

{y(x), x} =
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)

y′(x)

)2
=

d

dx

(y′′(x)

y′(x)

)
− 1

2
·
(y′′(x)

y′(x)

)2
. (E.20)

For (E.15) the function W (x) reads:

(α− β + 1) · (α− β − 1) · x2 + 2 · (2α β − αγ − β γ + γ) · x + γ · (γ − 2)

2 · x2 · (x − 1)2
. (E.21)

† Note that A(x) is the log-derivative of u(x) = xγ · (1 − x)α+β+1−γ .



Diagonals of rational functions 33

The hypergeometric functions such that W (x) = W (1 − x) correspond to the two
conditions:

α + β = 1 or: α + β = 2 γ − 1. (E.22)

This is the case, for instance [26], with the hypergeometric functions

2F1([1/2, 1/2][1], x), 2F1([1/3, 2/3][1], x), 2F1([1/4, 3/4][1], x), 2F1([1/6, 5/6][1], x).

Remark: Denoting WH(x) the rational function W (x) given by (E.19) for the
second order linear differential operator annihilating (13), i.e. 2F1([1/12, 5/12], [1],H(x))
where H(x) is the Hauptmodul 1 − P4(x)2/P2(x)3 in (13), with P2 and P4 given by
(16) and (17). WH(x) can be deduced from the W (x) for the order-two linear differ-
ential operator annihilating 2F1([1/12, 5/12], [1], x), from the relation [38]

WH(x) = W
(
H(x)

)
− {H(x), x}, W (x) = −32x2 − 41x + 36

72 · (x − 1)2 · x2
, (E.23)

where {H(x), x} denotes the Schwarzian derivative of H(x). WH(x) is of the form

WH(x) =
p16(x)

x2 · p3(x)2 · p5(x)2
= − 1

2x2
+ · · · (E.24)

where p16(x), p3(x) and p5(x) are polynomials of degree respectively sixteen, three
and five in x. These polynomials are homomogeneous polynomials in the seven
parameters a, bi, ci of (7). For instance p16(x) is a homogeneous polynomial of
homogeneous degree 44, p3(x) is a homogeneous polynomial of homogeneous degree
10 and p5(x) is a homogeneous polynomial of homogeneous degree 12.

Appendix F. Exact expression of polynomial P6 for the ten-parameter
rational function (77)

The diagonal of the ten-parameters rational function (77) is the pullbacked
hypergeometric function

1

P3(x)1/4
· 2F1

(
[

1

12
,

5

12
], [1], 1 − P6(x)2

P3(x)3

)
, (F.1)

where P3(x) is given by (80) and P6(x) is a polynomial of degree six in x of the form

P6(x) = p4 + ∆6(x), (F.2)

where p4 is the polynomial P4(x) given by (17) in section (2), and where ∆6(x) is
the following polynomial of degree six in x:

∆6(x) = −5832 · d21 d22 d23 · x6

+ 3888 · d1 d2 d3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x5

− 864 · (c31 d
2
1 d3 + c32 d1 d

2
2 + c33 d2 d

2
3) · x5

− 1296 · c1 c2 c3 d1 d2 d3 · x5
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− 1296 · b1 b2 b3 d1 d2 d3 · x4

− 1296 · a · d1 d2 d3 (b1 c1 + b2 c2 + b3 c3) · x4

− 1296 · (b1 b2 c2 c3 d2 d3 + b1 b3 c1 c2 d1 d2 + b2 b3 c1 c3 d1 d3) · x4

+ 864 · (c21 c3 d1 d3 + c1 c
2
2 d1 d2 + c2 c

2
3 d2 d3) · a · x4

− 864 · (b31 d
2
2 d3 + b32 d1 d

2
3 + b33 d

2
1 d2) · x4

+ 864 ·
(
b21 c1 c3 d2 d3 + b1 b2 c

2
1 d1 d3 + b1 b3 c

2
3 d2 d3

+ b22 c1 c2 d1 d3 + b2 b3 c
2
2 d1 d2 + b23 c2 c3 d1 d2

)
· x4

+ 216 · (b21 c
2
2 d

2
2 + b22 c

2
3 d

2
3 + b23 c

2
1 d

2
1) · x4

+ 288 · (b1 c
3
1 c2 d1 + b2 c

3
2 c3 d2 + b3 c1 c

3
3 d3) · x4

− 576 · (b1 c
2
1 c

2
3 d3 + b2 c

2
1 c

2
2 d1 + b3 c

2
2 c

2
3 d2) · x4

− 144 · c1 c2 c3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x4

+ 540 · d1 d2 d3 a3 · x3

− 648 · (b1 c3 d2 d3 + b2 c1 d1 d3 + b3 c2 d1 d2) · a2 · x3

− 72 · (c21 c2 d1 + c1 c
2
3 d3 + c22 c3 d2) · a2 · x3

+ 288 · (b31 b3 c1 d2 + b1 b
3
2 c2 d3 + b2 b

3
3 c3 d1) · x3

− 576 · (b21 b
2
2 c1 d3 + b21 b

2
3 c3 d2 + b22 b

2
3 c2 d1) · x3

− 144 · b1 b2 b3 (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x3

+ 864 · (b21 b2 d2 d3 + b1 b
2
3 d1 d2 + b22 b3 d1 d3) · a · x3

− 144 ·
(
b21 c1 c2 d2 + b1 b2 c

2
2 d2 + b1 b3 c

2
1 d1

+ b22 c2 c3 d3 + b2 b3 c
2
3 d3 + b23 c1 c3 d1

)
· a · x3

+ 720 · (b1 b2 c1 c3 d3 + b1 b3 c2 c3 d2 + b2 b3 c1 c2 d1) · a · x3

+ 36 · a3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x2

− 72 · a2 · (b21 b3 d2 + b1 b
2
2 d3 + b2 b

2
3 d1) · x2. (F.3)

Appendix G. Polynomials P3(x) and P5(x) for the nine-parameter rational
function (77)

The two polynomials P3(x) and P5(x) encoding the pullback of the pullbacked
hypergeometric function (85) for the nine-parameter rational function (77) in section
(3.3.1), read

P3(x) = p2 + 48 · c2 · (3 b3 d1 d2 − c21 d1 − c2 c3 d2) · x3

+ 24 · (a b1 c2 d2 + a b3 c1 d1 − 2 b21 b3 d2 − 2 b2 b
2
3 d1) · x2, (G.1)
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and

P5(x) = p4 − 864 · c32 d1 d22 · x5

+ 864 · (a c1 c
2
2 d1 d2 + b2 b3 c

2
2 d1 d2 + b23 c2 c3 d1 d2 − b33 d

2
1 d2) · x4

− 576 · (b2 c
2
1 c

2
2 d1 + b3 c

2
2 c

2
3 d2) · x4

+ 288 · (b1 c
3
1 c2 d1 + b2 c

3
2 c3 d2) · x4

− 144 · (b1 c1 c
2
2 c3 d2 + b3 c

2
1 c2 c3 d1) · x4

+ 216 · (b21 c
2
2 d

2
2 + b23 c

2
1 d

2
1 − 6 b1 b3 c1 c2 d1 d2) · x4

− 72 · (9 a2 b3 c2 d1 d2 + a2 c21 c2 d1 + a2 c22 c3 d2) · x3

− 144 · a · (b21 c1 c2 d2 + b1 b2 c
2
2 d2 + b1 b3 c

2
1 d1 + b23 c1 c3 d1) · x3

− 144 · (b21 b2 b3 c2 d2 + b1 b2 b
2
3 c1 d1) · x3

+ 720 · (a b1 b3 c2 c3 d2 + a b2 b3 c1 c2 d1) · x3

− 576 · (b21 b
2
3 c3 d2 + b22 b

2
3 c2 d1) · x3

+ 288 · (b31 b3 c1 d2 + b2 b
3
3 c3 d1 + 3 a b1 b

2
3 d1 d2) · x3

+ 36 · a2 · (a b1 c2 d2 + a b3 c1 d1 − 2 b21 b3 d2 − 2 b2 b
2
3 d1) · x2, (G.2)

where the polynomials p2 and p4 are the polynomials P2(x) and P4(x) of degree two
and four in x given by (16) and (17) in section (2): p2 and p4 correspond to the
d1 = d2 = 0 limit.

Appendix H. Monomial symmetries on diagonals

Let us sketch the demonstration of the monomial symmetry results of section (98),
with the condition that the determinant of (99) is not zero and the conditions
(100) are verified. We will denote by n the integer in the three equal sums (100):
n = Ai + Bi + Ci. The diagonal of the rational function of three variables R is
defined through its multi-Taylor expansion (for small x, y and z):

R
(
x, y, z

)
=

∞∑
m1 =0

∞∑
m2 =0

∞∑
m3 =0

Rm1, ...,mn · xm1 · ym2 · zm3 , (H.1)

as the series in one variable x:

Φ(x) = Diag
(
R
(
x, y, z

))
=

∞∑
m=0

Rm,m,m · xm. (H.2)

The monomial transformation (98) changes the multi-Taylor expansion (H.1) into

R̃
(
x, y, z

)
=

∞∑
M1 =0

∞∑
M2 =0

∞∑
M3 =0

R̃M1,M2M3 · xM1 · yM2 · zM3 =

∞∑
m1 =0

∞∑
m2 =0

∞∑
m3 =0

Rm1,m2m3 ·
(
xA1 yA2 zA3

)m1
(
xB1 yB2 zB3

)m2
(
xC1 yC2 zC3

)m3

=

∞∑
m1 =0

∞∑
m2 =0

∞∑
m3 =0

Rm1,m2m3 · xM1 · yM2 · zM3

where:

M1 = A1 · m1 +B1 · m2 + C1 · m3, (H.3)

M2 = A2 · m1 +B2 · m2 + C2 · m3, (H.4)

M3 = A3 · m1 +B3 · m2 + C3 · m3. (H.5)
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Taking the diagonal amounts to forcing the exponents m1, m2 and m3 to be equal.
It is easy to see that when condition (100) is verified, m1 = m2 = m3 yields
M1 = M2 = M3. Conversely if the determinant of (99) is not zero it is straightforward
to see that the conditions M1 = M2 = M3 yield m1 = m2 = m3.

Then if one knows an exact expression for the diagonal of a rational function, the
diagonal of this rational function changed by the monomial transformation (98) reads

Diag
(
R̃
(
x, y, z

))
=

∞∑
M =0

R̃M,M,M · xM =

∞∑
m=0

Rm,m,m · xn·m = Φ(xn), (H.6)

and thus equal to the previous exact expression Φ(x), where we have changed
x → xn, where n is the integer n = A1 +B1 +C1 = A2 +B2 +C2 = A3 +B3 +C3.
These monomial symmetries for diagonal of rational functions are not specific of
rational functions of three variables: they can be straightforwardly generalized to
an arbitrary number of variables.

Appendix I. Rescaling symmetries on diagonals

We sketch the demonstration of the result in section (4.3). One recalls that the
diagonal of the rational function of three variables R is defined through its multi-
Taylor expansion (for small x, y and z)

R
(
x, y, z

)
=

∞∑
m1 =0

∞∑
m2 =0

∞∑
m3 =0

Rm1, ...,mn
· xm1 · ym2 · zm3 , (I.1)

as the series in one variable x:

Φ(x) = Diag
(
R
(
x, y, z

))
=

∞∑
m=0

Rm,m,m · xm. (I.2)

The (function rescaling) transformation (110) transforms the multi-Taylor expansion
(I.1) into:

R
(
x, y, z

)
= (I.3)

∞∑
m1 =0

∞∑
m2 =0

∞∑
m3 =0

Rm1, ...,mn · xm1 · ym2 · zm3 · F (x y z)m1 +m2 +m3 .

We assume that the function F (x) has some simple Taylor series expansion. Each
time taking the diagonal of (I.3) forces the exponents m1, m2 and m3 to be equal
in the term xm1 · ym2 · zm3 of the multi-Taylor expansion (I.3), one gets a factor
F (x y z)m1 +m2 +m3 = F (x y z)3m. Consequently, the diagonal of (I.3) becomes:

Diag
(
R̃
(
x, y, z

))
=

∞∑
m=0

Rm,m,m · xn · F (x)3n

= Diag
(
R
(
x, y, z

))(
x · F (x)3

)
. (I.4)

Clearly, these function-dependent rescaling symmetries for diagonals of rational
functions are not specific of rational functions of three variables: they can be
straightforwardly generalized to an arbitrary number of variables.
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