Twisting *q*-holonomic sequences by complex roots of unity

Christoph Koutschan (joint work with Stavros Garoufalidis)

MSR-INRIA Joint Centre, Orsay, France (research was carried out at RISC, Linz, Austria)

June 28, 2012 Applications of Computer Algebra (AADIOS session) Sofia, Bulgaria

Motivation

In quantum topology the properties of knots are studied.

- The central question is to decide whether two knots are equivalent or not.
- For this purpose knot invariants are studied.
- Example: the **colored Jones polynomial** $J_{K,n}(q)$ of a knot K; it is a (q-holonomic) sequence of Laurent polynomials (Garoufalidis+Lê 2005).
- The **Kashaev invariant** $\langle K \rangle_n$ of a knot K is defined as

$$\langle K \rangle_n = J_{K,n}(e^{2\pi i/n}).$$

Definition: *q*-Holonomic Sequence

Notation:

- K: field of characteristic zero
- q: indeterminate, transcendental over K

A univariate sequence $(f_n(q))_{n\in\mathbb{N}}$ is called **q-holonomic** if it satisfies a nontrivial linear recurrence with coefficients that are polynomials in q and q^n :

$$\sum_{j=0}^{d} c_j(q, q^n) f_{n+j}(q) = 0 \qquad (n \in \mathbb{N})$$

where d is a nonnegative integer and $c_j(u,v) \in \mathbb{K}[u,v]$ are bivariate polynomials for $j=0,\ldots,d$ with $c_d(u,v)\neq 0$.

(Zeilberger 1990)

Closure Properties for q-Holonomic Sequences

Let $f_n(q)$ and $g_n(q)$ be two q-holonomic sequences. Then:

- 1. The sum $f_n(q) + g_n(q)$ is q-holonomic.
- 2. The product $f_n(q) \cdot g_n(q)$ is q-holonomic.
- 3. The sequence $f_{an+b}(q)$ with $a,b\in\mathbb{N}_0$ is q-holonomic.

(Chyzak 1998), (Koepf+Rajkovic+Marinkovic 2007)

Closure Properties for q-Holonomic Sequences

Let $f_n(q)$ and $g_n(q)$ be two q-holonomic sequences. Then:

- 1. The sum $f_n(q) + g_n(q)$ is q-holonomic.
- 2. The product $f_n(q) \cdot g_n(q)$ is q-holonomic.
- 3. The sequence $f_{an+b}(q)$ with $a,b \in \mathbb{N}_0$ is q-holonomic.

(Chyzak 1998), (Koepf+Rajkovic+Marinkovic 2007)

These closure properties can be executed algorithmically, on the level of recurrence equations.

Software:

- qGeneratingFunctions for Mathematica (Kauers+Koutschan 2009)
- qFPS for Maple (Koepf+Sprenger 2010)

Multivariate q-Holonomy, ∂ -Finiteness

A generalization of q-holonomy to a multivariate setting was introduced by (Sabbah 1990).

A different generalization of univariate q-holonomic sequences to several variables was given by ∂ -finite functions (Chyzak 2000).

Definition: ∂ -Finite Sequence (in the q-Setting)

A multivariate sequence $f_{\mathbf{n}}(\mathbf{q})$ is ∂ -finite if for every variable $\mathbf{n}=n_1,\ldots,n_r$ it satisfies a linear recurrence of the form

$$\sum_{j=0}^{d_k} c_{k,j}(\mathbf{q}, q_{a_1}^{n_1}, \dots, q_{a_r}^{n_r}) f_{\mathbf{n}+j\mathbf{e}_k}(\mathbf{q}) = 0$$

for $k = 1, \ldots, r$, where

- the indeterminates $\mathbf{q} = q_1, \dots, q_s$ with $1 \leq s \leq r$ are transcendental over \mathbb{K} ,
- the d_k 's are nonnegative integers,
- the $c_{k,j}$'s are multivariate polynomials in $\mathbb{K}[\mathbf{u}, \mathbf{v}]$ with $c_{k,d_k} \neq 0$,
- the indices a_1, \ldots, a_r are between 1 and s,
- and e_k denotes the k-th unit vector of length r.

Closure Properties for ∂-Finite Sequences

Like q-holonomic sequences, the class of ∂ -finite sequences is closed under addition, multiplication and integer-linear substitution.

Again, these closure properties can be executed algorithmically on the level of recurrence equations.

Software:

- Mgfun for Maple (Chyzak 1998)
- HolonomicFunctions for Mathematica (Koutschan 2009)

Twisting by Roots of Unity

We're now going to establish two new closure properties:

1. Twisting by roots of unity:

For complex numbers $\boldsymbol{\omega} = \omega_1, \ldots, \omega_s \in \mathbb{C}$, we call $f_{\mathbf{n}}(\omega_1 q_1, \ldots, \omega_s q_s)$ the **twist** of the sequence $f_{\mathbf{n}}(\mathbf{q})$ by $\boldsymbol{\omega}$; we will show that ∂ -finiteness is preserved under twisting by complex roots of unity.

Twisting by Roots of Unity

We're now going to establish two new closure properties:

1. Twisting by roots of unity:

For complex numbers $\omega = \omega_1, \ldots, \omega_s \in \mathbb{C}$, we call $f_{\mathbf{n}}(\omega_1 q_1, \ldots, \omega_s q_s)$ the **twist** of the sequence $f_{\mathbf{n}}(\mathbf{q})$ by ω ; we will show that ∂ -finiteness is preserved under twisting by complex roots of unity.

2. Taking n-th roots of q:

For rational numbers $\alpha_1,\ldots,\alpha_s\in\mathbb{Q}$, we consider the sequence $f_{\mathbf{n}}(q_1^{\alpha_1},\ldots,q_s^{\alpha_s})$; ∂ -finiteness is also preserved under this substitution.

Twisting by Roots of Unity

We're now going to establish two new closure properties:

1. Twisting by roots of unity:

For complex numbers $\omega = \omega_1, \ldots, \omega_s \in \mathbb{C}$, we call $f_{\mathbf{n}}(\omega_1 q_1, \ldots, \omega_s q_s)$ the **twist** of the sequence $f_{\mathbf{n}}(\mathbf{q})$ by ω ; we will show that ∂ -finiteness is preserved under twisting by complex roots of unity.

2. Taking n-th roots of q:

For rational numbers $\alpha_1, \ldots, \alpha_s \in \mathbb{Q}$, we consider the sequence $f_{\mathbf{n}}(q_1^{\alpha_1}, \ldots, q_s^{\alpha_s})$; ∂ -finiteness is also preserved under this substitution.

Convention: For sake of simplicity, we will assume from now on that the ground field $\mathbb K$ contains all roots of unity.

Operator Notation

For the calculations we write recurrences as operators, using the following notation: we consider the operators L and M which act on a sequence $f_n(q)$ by

$$Lf_n(q) = f_{n+1}(q),$$

$$Mf_n(q) = q^n f_n(q),$$

and which satisfy the q-commutation relation LM = qML.

Operator Notation

For the calculations we write recurrences as operators, using the following notation: we consider the operators L and M which act on a sequence $f_n(q)$ by

$$Lf_n(q) = f_{n+1}(q),$$

$$Mf_n(q) = q^n f_n(q),$$

and which satisfy the q-commutation relation LM = qML.

Analogously in the multivariate setting:

$$L_k f_{\mathbf{n}}(\mathbf{q}) = f_{\mathbf{n} + \mathbf{e}_k}(\mathbf{q}),$$

$$M_k f_{\mathbf{n}}(\mathbf{q}) = q_{a_k}^{n_k} f_{\mathbf{n}}(\mathbf{q}),$$

with

$$\begin{split} L_k M_k &= q_{a_k} M_k L_k, \\ L_j M_k &= M_k L_j \quad \text{for } j \neq k. \end{split}$$

Left Ideals

We denote by $\mathbb O$ the (noncommutative) Ore algebra $\mathbb K(\mathbf q,\mathbf M)\langle \mathbf L\rangle$. Given a multivariate sequence $f_{\mathbf n}(\mathbf q)$, the set

$$\operatorname{Ann}_{\mathbb{O}}(f) = \{ P \in \mathbb{O} \mid Pf = 0 \}$$

is a left ideal of $\mathbb O,$ the so-called annihilator of f with respect to the algebra $\mathbb O.$

Left Ideals

We denote by $\mathbb O$ the (noncommutative) Ore algebra $\mathbb K(\mathbf q,\mathbf M)\langle \mathbf L\rangle$. Given a multivariate sequence $f_{\mathbf n}(\mathbf q)$, the set

$$\operatorname{Ann}_{\mathbb{O}}(f) = \{ P \in \mathbb{O} \mid Pf = 0 \}$$

is a left ideal of $\mathbb O$, the so-called annihilator of f with respect to the algebra $\mathbb O$.

In this terminology, a multivariate sequence $f_{\mathbf{n}}(\mathbf{q})$ is ∂ -finite with respect to \mathbb{O} if $\mathrm{Ann}_{\mathbb{O}}(f)$ is a zero-dimensional left ideal in \mathbb{O} .

Left Ideals

We denote by $\mathbb O$ the (noncommutative) Ore algebra $\mathbb K(\mathbf q,\mathbf M)\langle \mathbf L\rangle$. Given a multivariate sequence $f_{\mathbf n}(\mathbf q)$, the set

$$\operatorname{Ann}_{\mathbb{O}}(f) = \{ P \in \mathbb{O} \mid Pf = 0 \}$$

is a left ideal of $\mathbb O$, the so-called annihilator of f with respect to the algebra $\mathbb O$.

In this terminology, a multivariate sequence $f_{\mathbf{n}}(\mathbf{q})$ is ∂ -finite with respect to \mathbb{O} if $\mathrm{Ann}_{\mathbb{O}}(f)$ is a zero-dimensional left ideal in \mathbb{O} .

The dimension of the \mathbb{K} -vector space \mathbb{O}/I is called the **rank** of the ideal I.

Theorem 1

Theorem

Let $f_{\mathbf{n}}(\mathbf{q}) = f_{n_1,\dots,n_r}(q_1,\dots,q_s)$ be a multivariate ∂ -finite sequence, and let $\omega_j \in \mathbb{C}$ be an m_j -th root of unity $(1 \leq j \leq s)$. Then the twisted sequence $g_{\mathbf{n}}(\mathbf{q}) = f_{\mathbf{n}}(\omega_1 q_1,\dots,\omega_s q_s)$ is ∂ -finite as well.

Moreover, let I be a zero-dimensional left ideal of rank R such that If=0. From a generating set of I, a Gröbner basis of a zero-dimensional left ideal J with Jg=0 can be obtained and its rank is at most $R\cdot m_{a_1}\cdots m_{a_r}$.

Corollary

Let $f_n(q)$ be a q-holonomic sequence that satisfies a recurrence of order d. Then for any root of unity $\omega \in \mathbb{C}$ of order m the sequence $f_n(\omega q)$ is q-holonomic as well and satisfies a recurrence of order at most $m \cdot d$.

Idea of the Proof (Univariate Setting)

Naive approach: substitute $q \rightarrow \omega q$ in the recurrence!

Example:
$$(q^{2n}+q^{n+1}-1)f_{n+1}(q)-q^2f_n(q)=0$$
 leads to
$$(\omega^{2n}q^{2n}+\omega\omega^nq^{n+1}-1)f_{n+1}(\omega q)-\omega^2q^2f_n(\omega q)=0.$$

Idea of the Proof (Univariate Setting)

Naive approach: substitute $q \to \omega q$ in the recurrence!

Example:
$$(q^{2n}+q^{n+1}-1)f_{n+1}(q)-q^2f_n(q)=0$$
 leads to
$$(\omega^{2n}q^{2n}+\omega\omega^nq^{n+1}-1)f_{n+1}(\omega q)-\omega^2q^2f_n(\omega q)=0.$$

Idea: Let m be the order of ω ; find a recurrence for $f_n(q)$ in which all powers of $M=q^n$ are divisible by m.

Idea of the Proof (Univariate Setting)

Naive approach: substitute $q \to \omega q$ in the recurrence!

Example:
$$(q^{2n}+q^{n+1}-1)f_{n+1}(q)-q^2f_n(q)=0$$
 leads to
$$(\omega^{2n}q^{2n}+\omega\omega^nq^{n+1}-1)f_{n+1}(\omega q)-\omega^2q^2f_n(\omega q)=0.$$

Idea: Let m be the order of ω ; find a recurrence for $f_n(q)$ in which all powers of $M=q^n$ are divisible by m.

Strategy:

- Rewrite M^{am+b} into N^aM^b where b < m and $N = M^m$ is a new variable.
- Eliminate M.
- This can be done by pure linear algebra (no Gröbner basis calculation is necessary)!

Algorithm (Input)

Input:

- $\mathbb{O} = \mathbb{K}(\mathbf{q}, \mathbf{M})\langle \mathbf{L} \rangle = \mathbb{K}(q_1, \dots, q_s, M_1, \dots, M_r)\langle L_1, \dots, L_r \rangle$
- a monomial order

 for
- a finite set $F \subset \mathbb{O}$ such that F is a left Gröbner basis w.r.t. \prec and the left ideal $\mathbb{O}\langle F \rangle$ is zero-dimensional; let U denote the set of monomials under the stairs of F.
- for $1\leq j\leq s$: $m_j\in\mathbb{N}$, $\omega_j\in\mathbb{C}$ with $\omega_j^{m_j}=1$ and $\omega_j^\ell\neq 1$ for all $\ell< m_j$

Algorithm

$$\begin{split} &G=\emptyset,\quad V=\emptyset,\quad T=\{1\}\\ &\text{while } T\neq\emptyset\\ &T_0=\min_{\prec}T,\quad T=T\setminus\{T_0\}\\ &A=c_0T_0+\sum_{j=1}^{|V|}c_jV_j\\ &A'=A \text{ reduced with } F\\ &\text{clear denominators of } A'\\ &\text{substitute } M_k^a\to M_k^{a\mod m(k)}N_k^{\lfloor a/m(k)\rfloor} \text{ in } A'\\ &\text{write } A'\text{ as } \sum_{i=1}^{|U|}\sum_{j_1=0}^{m(1)-1}\cdots\sum_{j_r=0}^{m(r)-1}d_{i,\mathbf{j}}M_1^{j_1}\cdots M_r^{j_r}U_i\\ &\text{equate all } d_{i,\mathbf{j}} \text{ to zero}\\ &\text{solve this linear system for } c_0,\ldots,c_{|V|} \text{ over } \mathbb{K}(\mathbf{q},\mathbf{N})\\ &\text{if a solution exists } \mathbf{then}\\ &\text{substitute the solution into } A\\ &G=G\cup\{A\}\\ &T=T\cup\{T_0L_k:1\leq k\leq r\}\\ &T=T\setminus\{T_j:1\leq j\leq |T|\wedge\exists_k \operatorname{Im}_{\prec}(G_k)\mid T_j\}\\ &\text{else}\\ &V=V\cup\{T_0\} \end{split}$$

Algorithm (Final Steps)

```
: substitute N_k \to M_k^{m(k)} and q_j \to \omega_j q_j in G return G
```

Example

Recall the definition for the q-binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q)(1-q^2)\cdots(1-q^k)}.$$

Let $f_n(q)$ be the central q-binomial coefficient $\binom{2n}{n}_q$. It satisfies the recurrence

$$(1 - q^{n+1})f_{n+1}(q) = (1 + q^{n+1} - q^{2n+1} - q^{3n+2})f_n(q)$$

which translates to the operator

$$(qM-1)L - q^2M^3 - qM^2 + qM + 1.$$

The twisted sequence $f_n(-q)$ is annihilated by the operator

$$(q^{4}M^{2}-1) L^{2} + ((q^{7}-q^{6}) M^{4} - q + 1) L - q^{7}M^{6} - (q^{6}-q^{5}+q^{4}) M^{4} + (q^{4}-q^{3}+q^{2}) M^{2} + q.$$

Computation with HolonomicFunctions

qbin = Annihilator[QBinomial[2n, n, q], QS[M, q^n]]
$$\left\{(qM-1)S_{M,q}+(-q^2M^3-qM^2+qM+1)\right\}$$

DFiniteQSubstitute[qbin, {q, 2}]

$$\left\{ (q^4M^2 - 1)S_{M,q}^2 + (q^7M^4 - q^6M^4 - q + 1)S_{M,q} + (-q^7M^6 - q^6M^4 + q^5M^4 - q^4M^4 + q^4M^2 - q^3M^2 + q^2M^2 + q) \right\}$$

Example 2

The $q\text{-Pochhammer symbol }(q;q)_n:=\prod_{k=1}^n(1-q^k)$ satisfies the simple recurrence

$$(q;q)_{n+1} = (1-q^{n+1})(q;q)_n.$$

We want to study the twisted sequence $(\omega q; \omega q)_n$ for ω being a third root of unity. Therefore we have to compute a recurrence for $(q;q)_n$ in which all exponents of $M=q^n$ are divisible by 3:

$$(q;q)_{n+3} - (q^2 + q + 1) (q;q)_{n+2} + (q^3 + q^2 + q) (q;q)_{n+1} + (q^{3n+6} - q^3) (q;q)_n = 0.$$

Substituting $q \to \omega q$ delivers a recurrence for the twist $(\omega q; \omega q)_n$.

Computation with HolonomicFunctions

qp = Annihilator[QPochhammer[q, q, n], QS[M, q^n]]
$$\left\{ S_{M,q} + (qM-1) \right\}$$

DFiniteQSubstitute[qp, {q, 3}, Return -> Backsubstitution]
$$\left\{S_{M,q}^3 + (-q^2 - q - 1)S_{M,q}^2 + (q^3 + q^2 + q)S_{M,q} + (q^6M^3 - q^3)\right\}$$

Theorem 2

Theorem

Let $f_{\mathbf{n}}(\mathbf{q}) = f_{n_1,\dots,n_r}(q_1,\dots,q_s)$ be a multivariate ∂ -finite sequence, and let $\alpha_1,\dots,\alpha_s\in\mathbb{Q}$. Then the sequence $g_{\mathbf{n}}(\mathbf{q}) = f_{\mathbf{n}}(q_1^{\alpha_1},\dots,q_s^{\alpha_s})$ is ∂ -finite as well. Moreover, let I be a zero-dimensional left ideal of rank R such that If=0. From a generating set of I, a Gröbner basis of a zero-dimensional left ideal J with Jg=0 can be obtained and its rank is at most $R\cdot m_1\cdots m_s\cdot m_{a_1}\cdots m_{a_r}$, where $m_j\in\mathbb{N}$ denotes the denominator of α_j .

Corollary

Let $f_n(q)$ be a q-holonomic sequence that satisfies a recurrence of order d. Then for $\alpha \in \mathbb{Q}$ the sequence $f_n(q^\alpha)$ is q-holonomic as well and satisfies a recurrence of order at most $m^2 \cdot d$, where $m \in \mathbb{N}$ is the denominator of α .

Idea of the Proof

Write $\alpha_j = \ell_j/m_j$ for all $1 \leq j \leq s$.

Idea: Find recurrences in I in which all powers of q_j are divisble by m_j , as well as all powers of M_k for which $a_k = j$.

Then the substitutions $q_j \to q_j^{\alpha_j}$ can be safely performed, i.e., the resulting recurrences will have polynomial coefficients in q_1,\ldots,q_s and M_1,\ldots,M_r .

Example 3

The substitution $q \to \sqrt{q}$ is performed on the q-Pochhammer symbol $(q;q)_n$.

Theorem 2 predicts that the resulting recurrence is of order at most 4. As an intermediate result, the operator

$$L^{4} - (q^{2} + 1)L^{3} - (q^{8}M^{2} + q^{6}M^{2} - q^{4} - q^{2})L$$
$$- q^{10}M^{4} + q^{8}M^{2} + q^{6}M^{2} - q^{4}$$

is found in $\mathbb{O}\langle L+qM-1\rangle$, the annihilator of $(q;q)_n$.

The final result for $f_n = \left(\sqrt{q}; \sqrt{q}\right)_n$ is the recurrence

$$f_{n+4} - (q+1)f_{n+3} - (q^{n+4} + q^{n+3} - q^2 - q)f_{n+1} + (-q^{2n+5} + q^{n+4} + q^{n+3} - q^2)f_n = 0.$$

Computation with HolonomicFunctions

qp = Annihilator[QPochhammer[q, q, n], QS[M, q^n]]
$$\left\{ S_{M,q} + (qM-1) \right\}$$

$$\left\{S_{M,q}^4 - (q+1)S_{M,q}^3 + (-q^4M - q^3M + q^2 + q)S_{M,q} + (-q^5M^2 + q^4M + q^3M - q^2)\right\}$$