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History

1990: D. Zeilberger's “Holonomic Systems Approach”
1998: extensions and refinements by F. Chyzak

2008: Mathematica implementation by CK
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Notation

K: field of characteristic 0

A, = A, (K): the n-th Weyl algebra

D,: differential operator w.r.t. z, i.e., Dy o f(z) = f'(x)
S, shift operator w.r.t. n, i.e.,, S, f(n) = f(n+1)
O: an Ore algebra

Anng f: the ideal of annihilating operators of f in O, i.e.,
Anng f={P € O|Pe f=0}
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Definition: Ore Algebra (1)
Let F be a K-algebra (of “functions”), and let 0,0 € Endg F with
3(fg)=0(f)o(g) +6(f)g forall f,g e F (skew Leibniz law).

The endomorphism ¢ is called a o-derivation.

Let A be a K-subalgebra of F (e.g., A = K[z] or A = K(z)) and
assume that o, d restrict to a o-derivation on A.
Define the skew polynomial ring O := A[9; 0, d]:

e polynomials in 0 with coefficients in A

e usual addition

e product that makes use of the commutation rule

da = o(a)0 + d6(a) for all a € A
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Definition: Ore Algebra (2)

We turn F into an O-module by defining an action of elements in
O on a function f € F:

aef = a-f,
de f = 4(f).
Remark: In special cases we define the action e f := o(f).
Example 1: A =Kjz|, 0 =1, = %.

Then K[z][D,; 1 = K[z]|[Dy; 1, D,] is the Weyl algebra A;.

aﬂ]
Example 2: A =Kin], o(n) =n+1, 0(c) =cforce K, § =0.

Then K[n][S,; S,, 0] is a shift algebra.

Example 3: K(n,z,y)[S,; Sy, 0][Dy; 1, Dy)[Dy; 1, D]
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Holonomic functions

Definition:
A function f(z1,...,x,) € F is said to be holonomic if
A/ Anny, f is a holonomic module.

Definition:
A sequence f(k1,..., k) € CY" is holonomic if its multivariate
generating function

F(zy,...,x,) = Z Zf(kl,...,kT)x’fl---xfr.

k1=0 k=0

is a holonomic function.
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Properties of holonomic functions

Closure properties:

e sum
e product
o definite integration
Elimination property:
Given an ideal I in A, s.t. A,,/I is holonomic; then for any choice
of n 4+ 1 among the 2n generators of A,, there exists a nonzero

operator in I that depends only on these. In other words, we can
eliminate n — 1 variables.
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Integration via elimination

Given: Anng f, the annihilator of a holonomic function f(x,y) in
the Ore algebra O = Kz, y|[Dy; 1, D,][Dy; 1, D).
Task: Compute F(y) = f; f(z,y)dx

Since Anng f is holonomic, there exists P € Anng f that does not
contain x (“elimination property”):

P(y, Dy, Dy) = Q(% Dy) + DxR(yy Dy, Dy)

Apply [°... dzto Pef=0:

Q. D) e F(o) + [R. Do D) o ) |

Tr=a
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Summation via elimination

Given: Anng f, the annihilator of a holonomic sequence f(k,n) in
the Ore algebra O = K[k, n)[Sk; Sk, 0][Sn; S, 0].

Task: Compute F(n) = Y0_ f(k,n)

By the elimination property there exists P € Anng f that does not
contain k:

P(n, S, S) = Q(n,S,) + (S — 1)R(n, S, Sy)

Sum over this equation:

k=b

Q(n, %) o F(n) + [R(n, S, $) o f(k,n) |

k=a
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Example: Orthogonality of Hermite Polynomials (1)

Compute the integral

/ e Hyy(2)Hp () dz = OmnV/m2"n!

—0o0

First we compute an annihilator of the integrand:

ann = Annihilator [Exp[-x"2]*HermiteH[m,x]*HermiteH[n,x],

{S[m], S[n], Der([x]}]

{—=2x+ Dy + Spm, + Sn,
D2 +2m — 2n + (—2x)D, + 28, D, — 2,
S2 4+ 2n — 228, + 2,
D3 + 4mz — dnz — 4z + (4n — 4m)S, + (—42% 4+ 2m + 6n + 4) D, }
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Example: Orthogonality of Hermite Polynomials (2)

Next step is to compute a Grobner basis w.r.t. lexicographical
order in order to eliminate x:

gb = OreGroebnerBasis[
ann, OreAlgebralx, m, n, S[m], S[n], Der([x]],

MonomialOrder -> Lexicographic]

{2n — 5,8, — Sp Dy + 2,
2m — Sy Dy — SpSn + 2,
D, —2x+ S, +5, }
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Example: Orthogonality of Hermite Polynomials (3)

In the first operator, the part R = —S,D,, in the second
R = -85, D,. We have to check that [R e f]?Z°° indeed vanishes:

x
r=—00

Limit [D[Exp[-x"2] *HermiteH [m,x]*HermiteH [n+1,x], %],
x —> Infinity]

0

Hence we take the first two operators (which do not involve the
integration variable ) and set R to 0:

OrePolynomialSubstitute[Take[gb, 2], {Der[x] -> 0}]

{2n — 5,8, + 2,2m — S, Sy, + 2}
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Example: Orthogonality of Hermite Polynomials (4)

By computing a last Grobner basis, we get the result:
OreGroebnerBasis[%, OreAlgebra[m, n, S[m], S[n]l]]

{m —n,2n - S,,S, + 2}
This proves that the right hand side can only be nonzero if m = n.
By similar computations we obtain the recurrence

(4n® + 8n+4) f(n) + (=4n —6)f(n+ 1) + f(n+2) =0

for the right hand side when we set m to n.
Together with the initial values f(0) = /7 and f(1) = 2\/7 we
have a full and simple description of the desired result.
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Definite integration with Takayama

Given: Anng f, the annihilator of a holonomic function f(x,y)
(with natural boundaries) in the Ore algebra

O =Kz, y][Dr; 1; D] [Dy; 1, D -

Find: The annihilator of F(y f f(x,y)dz in the Ore algebra
0" =K[y|[Dy; 1, Dy]

Find P € Anng f which can be written in the form

P(a:, Y, Dy, Dy) = Q(y) Dy) + DxR(xv Y, Dy, Dy)

Apply [°... dzto Pe f=0:

b b
/ Qy, D) f (2. ) do + / DuR(z,y, Dy, D,)f(z,y) da

Hence Q(y, D,)F(y) =0

The operator () can be computed with Takayama'’s algorithm. .g}.



Comparison

Zeilberger:
1. eliminate =
2. reduce modulo D, O

Takayama (variant due to Chyzak/Salvy):

1. reduce modulo D,O

2. eliminate
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How to eliminate x7?

Problem: After reducing modulo D, 0, no multiplication by x is
allowed!

Example: P+ D,Q
X mod D,O
P + (Dyx — 1)Q P
mod D,O X
P —Q #* xP
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Takayama's algorithm

Eliminate x by computing a Groebner basis in the Q’-module w.r.t.
the basis %, a € N:

?(I+y)+aD, = 2*(1+y)+ Dyz—1=2%(1+y) —1 mod DO
— gives (—1,0,1+y,0,...)

x4+ DDy +y=x+y mod DO
— gives (y,1,0,...)

We have to include also multiples by x® to the generators of
Anng f:

2? + 2D, D, +zy = 2° + DyxDy — 2Dy + xy = 2° — 2(D, +y)
— gives (0,D, +y,1,0,...)
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Takayama's algorithm

Input: a set of generators {G1,...,G,,} for Anng f
Output: Anng/ F

1. setd = maxi<i<m degx G;
2.set A ={G1,....,Gn} UUL {z*Gi |1 < o < deg, G}
3. reduce all elements in A’ modulo D,O

4. compute a Groebner basis in the corresponding module
eliminating x
5. if no (P,0,...,0) is found, increase d

Since f is holonomic the algorithm is guaranteed to terminate.
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Example: Victor Moll's irresistible integral (1)

Compute a closed form for the integral

e 1
T d
0o (z*+2azx?+1)

Again, we start by computing annihilating operators for the
integrand:

ann = Annihilator([1/(x"4 + 2*%a*x”2 + 1) " (m+1),
{Der[x], S[m], Der[al}]

{2ma? + 22% + (2* + 2a2® + 1) D,,
(;U4 + 2ax? + 1) Sm — 1,
dma® + 427 + daz + damz + (2* 4 2a2® + 1) Dy}
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Example: Victor Moll's irresistible integral (2)

Although the integral does not have natural boundaries (e.g. the
integrand does not vanish for x = 0), Takayama's algorithm gives
the correct result here:

Takayama[ann, {x}, Saturate -> Truel

{4m + (2a)D, + (—4m — 4)S,, + 3,
4m + (40 — 4) D3 + (8ma + 12a) D, + 3}
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Example: Victor Moll's irresistible integral (3)

The second operator is an ordinary differential equation in a:

de = ApplyOreOperator[%[[2]], Int([al]
(4m + 3)Int(a) + (8ma + 12a)Int’(a) + (4a® — 4) Int”(a)

This ODE can be automatically solved by using Mathematica's
DSolve command (also the initial values can be computed

automatically), giving the final result

27T (2m+ 2) P2 (a)

1
(I+d)yim2 ™ 2(a>—1) 2 4x
I'(m+1)
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O-finite functions

Definition: A function f(x1,...,z,,) is called O-finite w.r.t.
0= K(‘Th s 7xm)[817 01, 51] e [a’ﬂh Om; 5m] if (O)/ Ann@ f is a
finite-dimensional K(z1, ..., x,,)-vector space.

In other words, f is O-finite if its "derivatives” span a
finite-dimensional K(z1, ..., z,,)-vector space.

Example: All derivatives (w.r.t. = and y) of sin ( +y) are of the

form
. T T+
rl(x,y)sm <_‘_y> +T2(l‘ay) COS( y) )
x—y x—y

e.g.,

32(3z44+12yx3 —30y2 22 —4y3x4+9y*) sin 2ty
D;’Djosin (i—fy) = ( —0 ) ( y>

y (z—y)
16(6;185—33y:v4+80y3x2—54y4x+3y )cos( +y)
N (z—y)1?

78
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Chyzak's extension of Zeilberger's fast algorithm

Given: Anng f, the annihilator of a 9-finite function f(z,y) in
the rational Ore algebra O = K(z,y)[Dy; 1; D,|[Dy; 1, D,].
Find: Q(y, D,) and R(x,y, Dy, D,) such that Q + D, R € Anng f.

1. compute a Grobner basis G of Anng f in order to know the

set U = {uy,...,ur} of monomials that can not be reduced
by Anng f, i.e., the elements under the stairs.

2. make an ansatz for Q(y, D,) = Z;‘i:o ni(y)D; and
R(z,y, Ds. D) = Y, (. y)uy
3. reduce the ansatz with G and set all coefficients to zero

4. solve the corresponding coupled system of differential
equations (for rational solutions)
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Example: Victor Moll's irresistible integral (4)

As mentioned before, Moll's integral does not have natural
boundaries, hence we should not use Takayama's algorithm but
Chyzak's creative telescoping algorithm:

CreativeTelescoping[1/(x"4 + 2*a*x"2 + 1)~ (m+1),
Der[x], Derl[al]

{ {4m + (4 (a® = 1)) D2 + (4(2ma + 3a)) D, + 3}

{ % —2ax3 —4ama’ —4dmz—3x }
x4 4+2ax2+1

The first operator corresponds to ) and the second operator to R
as before, meaning that Q + D, R € Anng f where f is the
integrand.
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Example: Victor Moll's irresistible integral (5)

We now have to check what [R e f]7—° gives:
ApplyOreOperator[%[[2,1]1], 1/(x"4 + 2*a*xx"2 + 1)~ (m+1)]

(z* + 2a2® + 1) 2 (2° — 2a2® — dama® — 4mz — 3x)
Limit[%, x -> Infinity, Assumptions -> m >= 0]

0

and also for x = 0 the value of R e f is 0. Hence the first operator
annihilates the whole integral (observe that it is the same as
obtained by Takayama's algorithm).
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Thanks for your attention!



