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History

1990: D. Zeilberger’s “Holonomic Systems Approach”

1998: extensions and refinements by F. Chyzak

2008: Mathematica implementation by CK



Notation

• K: field of characteristic 0

• An = An(K): the n-th Weyl algebra

• Dx: differential operator w.r.t. x, i.e., Dx • f(x) = f ′(x)
• Sn: shift operator w.r.t. n, i.e., Sn • f(n) = f(n + 1)
• O: an Ore algebra

• AnnO f : the ideal of annihilating operators of f in O, i.e.,
AnnO f = {P ∈ O |P • f = 0}



Definition: Ore Algebra (1)

Let F be a K-algebra (of “functions”), and let σ, δ ∈ EndKF with

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (skew Leibniz law).

The endomorphism δ is called a σ-derivation.

Let A be a K-subalgebra of F (e.g., A = K[x] or A = K(x)) and
assume that σ, δ restrict to a σ-derivation on A.

Define the skew polynomial ring O := A[∂;σ, δ]:
• polynomials in ∂ with coefficients in A
• usual addition

• product that makes use of the commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A



Definition: Ore Algebra (2)

We turn F into an O-module by defining an action of elements in
O on a function f ∈ F :

a • f := a · f,

∂ • f := δ(f).

Remark: In special cases we define the action ∂ • f := σ(f).

Example 1: A = K[x], σ = 1, δ = d
dx .

Then K[x][Dx; 1, d
dx ] = K[x][Dx; 1, Dx] is the Weyl algebra A1.

Example 2: A = K[n], σ(n) = n + 1, σ(c) = c for c ∈ K, δ = 0.

Then K[n][Sn;Sn, 0] is a shift algebra.

Example 3: K(n, x, y)[Sn;Sn, 0][Dx; 1, Dx][Dy; 1, Dy]



Holonomic functions

Definition:
A function f(x1, . . . , xn) ∈ F is said to be holonomic if
An/ AnnAn f is a holonomic module.

Definition:
A sequence f(k1, . . . , kr) ∈ CNr

is holonomic if its multivariate
generating function

F (x1, . . . , xr) =
∞∑

k1=0

· · ·
∞∑

kr=0

f(k1, . . . , kr)xk1
1 · · ·xkr

r .

is a holonomic function.



Properties of holonomic functions

Closure properties:

• sum

• product

• definite integration

Elimination property:
Given an ideal I in An s.t. An/I is holonomic; then for any choice
of n + 1 among the 2n generators of An there exists a nonzero
operator in I that depends only on these. In other words, we can
eliminate n− 1 variables.



Integration via elimination

Given: AnnO f , the annihilator of a holonomic function f(x, y) in
the Ore algebra O = K[x, y][Dx; 1, Dx][Dy; 1, Dy].
Task: Compute F (y) =

∫ b
a f(x, y) dx

Since AnnO f is holonomic, there exists P ∈ AnnO f that does not
contain x (“elimination property”):

P (y, Dx, Dy) = Q(y, Dy) + DxR(y, Dx, Dy)

Apply
∫ b
a . . . dx to P • f = 0:

Q(y, Dy) • F (y) +
[
R(y, Dx, Dy) • f(x, y)

]x=b

x=a



Summation via elimination

Given: AnnO f , the annihilator of a holonomic sequence f(k, n) in
the Ore algebra O = K[k, n][Sk;Sk, 0][Sn;Sn, 0].
Task: Compute F (n) =

∑b
k=a f(k, n)

By the elimination property there exists P ∈ AnnO f that does not
contain k:

P (n, Sk, Sn) = Q(n, Sn) + (Sk − 1)R(n, Sk, Sn)

Sum over this equation:

Q(n, Sn) • F (n) +
[
R(n, Sk, Sn) • f(k, n)

]k=b

k=a



Example: Orthogonality of Hermite Polynomials (1)

Compute the integral∫ ∞

−∞
e−x2

Hm(x)Hn(x) dx = δm,n

√
π2nn!

First we compute an annihilator of the integrand:

ann = Annihilator[Exp[-x^2]*HermiteH[m,x]*HermiteH[n,x],
{S[m], S[n], Der[x]}]

{−2x + Dx + Sm + Sn,
D2

x + 2m− 2n + (−2x)Dx + 2SnDx − 2,
S2

n + 2n− 2xSn + 2,
D3

x + 4mx− 4nx− 4x + (4n− 4m)Sn +
(
−4x2 + 2m + 6n + 4

)
Dx}



Example: Orthogonality of Hermite Polynomials (2)

Next step is to compute a Gröbner basis w.r.t. lexicographical
order in order to eliminate x:

gb = OreGroebnerBasis[
ann, OreAlgebra[x, m, n, S[m], S[n], Der[x]],
MonomialOrder -> Lexicographic]

{2n− SmSn − SnDx + 2,
2m− SmDx − SmSn + 2,
Dx − 2x + Sm + Sn }



Example: Orthogonality of Hermite Polynomials (3)

In the first operator, the part R = −SnDx, in the second
R = −SmDx. We have to check that [R • f ]x=∞

x=−∞ indeed vanishes:

Limit[D[Exp[-x^2]*HermiteH[m,x]*HermiteH[n+1,x], x],
x -> Infinity]

0

Hence we take the first two operators (which do not involve the
integration variable x) and set R to 0:

OrePolynomialSubstitute[Take[gb, 2], {Der[x] -> 0}]

{2n− SmSn + 2, 2m− SmSn + 2}



Example: Orthogonality of Hermite Polynomials (4)

By computing a last Gröbner basis, we get the result:

OreGroebnerBasis[%, OreAlgebra[m, n, S[m], S[n]]]

{m− n, 2n− SmSn + 2}

This proves that the right hand side can only be nonzero if m = n.
By similar computations we obtain the recurrence(

4n2 + 8n + 4
)
f(n) + (−4n− 6)f(n + 1) + f(n + 2) = 0

for the right hand side when we set m to n.
Together with the initial values f(0) =

√
π and f(1) = 2

√
π we

have a full and simple description of the desired result.



Definite integration with Takayama

Given: AnnO f , the annihilator of a holonomic function f(x, y)
(with natural boundaries) in the Ore algebra
O = K[x, y][Dx; 1; Dx][Dy; 1, Dy].
Find: The annihilator of F (y) =

∫ b
a f(x, y)dx in the Ore algebra

O′ = K[y][Dy; 1, Dy]
Find P ∈ AnnO f which can be written in the form

P (x, y, Dx, Dy) = Q(y, Dy) + DxR(x, y, Dx, Dy)

Apply
∫ b
a . . . dx to P • f = 0:∫ b

a
Q(y, Dy)f(x, y) dx +

∫ b

a
DxR(x, y, Dx, Dy)f(x, y) dx

Hence Q(y, Dy)F (y) = 0

The operator Q can be computed with Takayama’s algorithm.



Comparison

Zeilberger:

1. eliminate x

2. reduce modulo DxO
Takayama (variant due to Chyzak/Salvy):

1. reduce modulo DxO
2. eliminate x



How to eliminate x?

Problem: After reducing modulo DxO, no multiplication by x is
allowed!

Example: P + DxQ
�

�
�

��	

·x

xP + (Dxx− 1)Q

?

mod DxO

xP −Q

@
@

@
@@R

mod DxO

P

?

·x

xP6=



Takayama’s algorithm

Eliminate x by computing a Groebner basis in the O′-module w.r.t.
the basis xα, α ∈ N:

x2(1+ y)+xDx = x2(1+ y)+Dxx− 1 ≡ x2(1+ y)− 1 mod DxO
−→ gives (−1, 0, 1 + y, 0, . . . )

x + DxDy + y ≡ x + y mod DxO
−→ gives (y, 1, 0, . . . )

We have to include also multiples by xα to the generators of
AnnO f :
x2 + xDxDy + xy = x2 + DxxDy − xDy + xy ≡ x2 − x(Dy + y)
−→ gives (0, Dy + y, 1, 0, . . . )



Takayama’s algorithm

Input: a set of generators {G1, . . . , Gm} for AnnO f
Output: AnnO′ F

1. set d = max1≤i≤m degx Gi

2. set A′ = {G1, . . . , Gm} ∪
⋃m

i=1{xαGi | 1 ≤ α ≤ degx Gi}
3. reduce all elements in A′ modulo DxO
4. compute a Groebner basis in the corresponding module

eliminating x

5. if no (P, 0, . . . , 0) is found, increase d

Since f is holonomic the algorithm is guaranteed to terminate.



Example: Victor Moll’s irresistible integral (1)

Compute a closed form for the integral∫ ∞

0

1
(x4 + 2ax2 + 1)m+1 dx

Again, we start by computing annihilating operators for the
integrand:

ann = Annihilator[1/(x^4 + 2*a*x^2 + 1)^(m+1),
{Der[x], S[m], Der[a]}]

{2mx2 + 2x2 +
(
x4 + 2ax2 + 1

)
Da,(

x4 + 2ax2 + 1
)
Sm − 1,

4mx3 + 4x3 + 4ax + 4amx +
(
x4 + 2ax2 + 1

)
Dx}



Example: Victor Moll’s irresistible integral (2)

Although the integral does not have natural boundaries (e.g. the
integrand does not vanish for x = 0), Takayama’s algorithm gives
the correct result here:

Takayama[ann, {x}, Saturate -> True]

{4m + (2a)Da + (−4m− 4)Sm + 3,
4m +

(
4a2 − 4

)
D2

a + (8ma + 12a)Da + 3}



Example: Victor Moll’s irresistible integral (3)

The second operator is an ordinary differential equation in a:

de = ApplyOreOperator[%[[2]], Int[a]]

(4m + 3)Int(a) + (8ma + 12a)Int′(a) +
(
4a2 − 4

)
Int′′(a)

This ODE can be automatically solved by using Mathematica’s
DSolve command (also the initial values can be computed
automatically), giving the final result

(1 + i)im2−m−2
(
a2 − 1

)−m
2
− 1

4 πΓ
(
2m + 3

2

)
P
−m− 1

2
m (a)

Γ(m + 1)



∂-finite functions
Definition: A function f(x1, . . . , xm) is called ∂-finite w.r.t.
O = K(x1, . . . , xm)[∂1;σ1, δ1] · · · [∂m;σm, δm] if O/ AnnO f is a
finite-dimensional K(x1, . . . , xm)-vector space.

In other words, f is ∂-finite if its “derivatives” span a
finite-dimensional K(x1, . . . , xm)-vector space.

Example: All derivatives (w.r.t. x and y) of sin
(

x+y
x−y

)
are of the

form

r1(x, y) sin
(

x + y

x− y

)
+ r2(x, y) cos

(
x + y

x− y

)
,

e.g.,

D3
x D2

y • sin
(

x+y
x−y

)
=

32(3x4+12yx3−30y2x2−4y3x+9y4) sin
“

x+y
x−y

”
(x−y)9

−
16(6x5−33yx4+80y3x2−54y4x+3y5) cos

“
x+y
x−y

”
(x−y)10



Chyzak’s extension of Zeilberger’s fast algorithm

Given: AnnO f , the annihilator of a ∂-finite function f(x, y) in
the rational Ore algebra O = K(x, y)[Dx; 1; Dx][Dy; 1, Dy].
Find: Q(y, Dy) and R(x, y, Dx, Dy) such that Q + DxR ∈ AnnO f .

1. compute a Gröbner basis G of AnnO f in order to know the
set U = {u1, . . . , uk} of monomials that can not be reduced
by AnnO f , i.e., the elements under the stairs.

2. make an ansatz for Q(y, Dy) =
∑d

i=0 ηi(y)Di
y and

R(x, y, Dx, Dy) =
∑k

j=1 φj(x, y)uj

3. reduce the ansatz with G and set all coefficients to zero

4. solve the corresponding coupled system of differential
equations (for rational solutions)



Example: Victor Moll’s irresistible integral (4)

As mentioned before, Moll’s integral does not have natural
boundaries, hence we should not use Takayama’s algorithm but
Chyzak’s creative telescoping algorithm:

CreativeTelescoping[1/(x^4 + 2*a*x^2 + 1)^(m+1),
Der[x], Der[a]]{

{4m +
(
4

(
a2 − 1

))
D2

a + (4(2ma + 3a))Da + 3}

{x5−2ax3−4amx3−4mx−3x
x4+2ax2+1

}
}

The first operator corresponds to Q and the second operator to R
as before, meaning that Q + DxR ∈ AnnO f where f is the
integrand.



Example: Victor Moll’s irresistible integral (5)

We now have to check what [R • f ]x=∞
x=0 gives:

ApplyOreOperator[%[[2,1]], 1/(x^4 + 2*a*x^2 + 1)^(m+1)](
x4 + 2ax2 + 1

)−m−2 (
x5 − 2ax3 − 4amx3 − 4mx− 3x

)
Limit[%, x -> Infinity, Assumptions -> m >= 0]

0

and also for x = 0 the value of R • f is 0. Hence the first operator
annihilates the whole integral (observe that it is the same as
obtained by Takayama’s algorithm).



Thanks for your attention!


