Diagonals and hypergeometric functions¹ ACA 2021, S13

Sergey Yurkevich

Inria Saclay and University of Vienna

Monday 26th July, 2021

¹Joint work with Alin Bostan, arxiv.org/abs/2008.12809

A motivating example

Consider
$$f(x, y) := \sqrt{1-x}/(1-x-y) = \sum_{i,j>0} f_{i,j}x^iy^j$$
.

$$f(x,y) = \begin{cases} \vdots & \vdots & \vdots & \vdots \\ x^{0}y^{3} & \frac{7}{2}x^{1}y^{3} & \frac{63}{8}x^{2}y^{3} & \frac{231}{16}x^{3}y^{3} & \cdots \\ x^{0}y^{2} & \frac{5}{2}x^{1}y^{2} & \frac{35}{8}x^{2}y^{2} & \frac{105}{16}x^{3}y^{2} & \cdots \\ x^{0}y^{1} & \frac{3}{2}x^{1}y^{1} & \frac{15}{8}x^{2}y^{1} & \frac{35}{16}x^{3}y^{1} & \cdots \\ x^{0}y^{0} & \frac{1}{2}x^{1}y^{0} & \frac{3}{8}x^{2}y^{0} & \frac{5}{16}x^{3}y^{0} & \cdots \end{cases}$$

New identities and results

A motivating example

Consider
$$f(x, y) := \sqrt{1-x}/(1-x-y) = \sum_{i,j \ge 0} f_{i,j} x^i y^j$$
.

New identities and results

Consider
$$f(x,y) := \sqrt{1-x}/(1-x-y) = \sum_{i,j>0} f_{i,j}x^iy^j$$
.

We also have that

$$_{2}F_{1}\left(\left[\frac{1}{4},\frac{3}{4}\right];\left[\frac{1}{2}\right];4t\right)=\sqrt{\frac{1+\sqrt{1-4t}}{2-8t}}=1+\frac{3}{2}t+\frac{35}{8}t^{2}+\frac{231}{16}t^{3}+\cdots$$

A motivating example

Proof.

$$\operatorname{Diag}(f) = [x^0]f(x, t/x) = \frac{1}{2\pi i} \oint \frac{f(x, t/x)}{x} dx.$$

- > with(DEtools):
- > F:=sqrt(1-x)/(1-x-y);
- > G:=normal(1/x*subs(y=t/x.F));
- > Zeilberger(G, t, x, Dt)[1];
- Gives that h = Diag(f) satisfies $(16t^2 4t)h''(t) + (32t 2)h'(t) + 3h(t) = 0$.

A motivating example

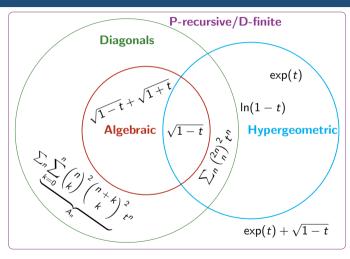
Proof.

$$\operatorname{Diag}(f) = [x^0]f(x, t/x) = \frac{1}{2\pi i} \oint \frac{f(x, t/x)}{x} dx.$$

- > with(DEtools):
- > F:=sqrt(1-x)/(1-x-y);
- > G:=normal(1/x*subs(y=t/x,F));
- > Zeilberger(G, t, x, Dt)[1];

Gives that
$$h = \text{Diag}(f)$$
 satisfies $(16t^2 - 4t)h''(t) + (32t - 2)h'(t) + 3h(t) = 0$. \square

- Investigate general setting.
- Find and classify similar identities.
- Need "inverse" creative telescoping.



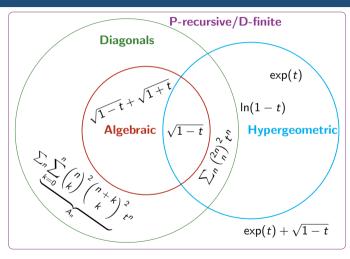
A sequence $(u_n)_{n\geq 0}$ is P-recursive, if it satisfies a linear recurrence with polynomial coefficients:

New identities and results

$$c_d(n)u_{n+d}+\cdots+c_0(n)u_n=0.$$

 $(u_n)_{n\geq 0}$ is hypergeometric if d=1.

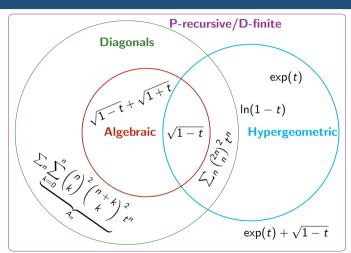
$$u_n = 1/n!$$
 satisfies $nu_n = u_{n-1}$.



A power series $f(t) \in \mathbb{Q}[\![t]\!]$ is called D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$p_n(t)f^{(n)}(t) + \cdots + p_0(t)f(t) = 0.$$

$$\exp(t)$$
 satisfies $\exp'(t) = \exp(t)$.



For a multivariate power series

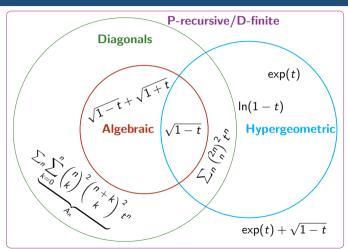
$$f(x_1,...,x_n) = \sum_{i_1,...,i_n} f_{j_1,...,j_n} x_1^{j_1} \cdots x_n^{j_n}$$

the diagonal is given by

$$\mathrm{Diag}(f) = \sum_{i} f_{j,j,\dots,j} t^{j} \in \mathbb{Q}[\![t]\!].$$

Diagonals are series which can be written as diagonals of multivariate rational (equivalently algebraic [Denef, Lipshitz, 1987]) functions.

$$\operatorname{Diag}\left(\frac{1}{1-x-y}\right) = \operatorname{Diag}\sum_{i,j} \binom{i+j}{j} x^i y^j = \sum_n \binom{2n}{n} t^n = (1-4t)^{-\frac{1}{2}} \frac{2}{2} \frac{2$$



[Abel, 1827]:

Algebraic \subseteq D-finite.

[Furstenberg, 1967]: **Algebraic** ⊂ **Diagonals**.

[Lipshitz, 1988]:

Diagonals \subseteq D-finite.

[Beukers, Heckman, 1989]:

Algebraic ∩ **Hypergeometric**.

[Bostan, Lairez, Salvy, 2017]: Diagonals = Multiple binomial sums.

Christol's Conjecture [Christol, 1987]: A convergent D-finite power series with integer coefficients is a diagonal.

Globally bounded series

 $f(t) \in \mathbb{Q}[t]$ is globally bounded if f has non-zero radius of convergence and there exist $\alpha, \beta \in \mathbb{N}^*$ such that $\alpha \cdot f(\beta \cdot t) \in \mathbb{Z}[t]$.

Proposition (Eisenstein's theorem)

If $g(x_1, ..., x_n) \in \mathbb{Q}[x_1, ..., x_n]$ rational or algebraic, then Diag(g) is globally bounded.

Globally bounded series

 $f(t) \in \mathbb{Q}[t]$ is globally bounded if f has non-zero radius of convergence and there exist $\alpha, \beta \in \mathbb{N}^*$ such that $\alpha \cdot f(\beta \cdot t) \in \mathbb{Z}[t]$.

Proposition (Eisenstein's theorem)

If $g(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n]$ rational or algebraic, then Diag(g) is globally bounded.

$$f(t) = \sqrt{\frac{1+\sqrt{1-4t}}{2-8t}} = 1 + \frac{3}{2}t + \frac{35}{8}t^2 + \frac{231}{16}t^3 + \cdots \notin \mathbb{Z}[\![t]\!],$$

but

$$f(4t) = \sqrt{\frac{1 + \sqrt{1 - 16t}}{2 - 32t}} = 1 + 6t + 70t^2 + 924t^3 + \dots \in \mathbb{Z}[t].$$

- (C) If a power series $f \in \mathbb{Q}[t]$ is **D-finite** and **globally bounded** then f is a diagonal.
- (C') If a hypergeometric function and globally bounded then it is a diagonal.
- (C") The function

$$_{3}F_{2}\left(\left[\frac{1}{9},\frac{4}{9},\frac{5}{9}\right],\left[\frac{1}{3},1\right];729\ t\right)=1+60\ t+20475\ t^{2}+9373650\ t^{3}+\cdots$$

is a diagonal.

Clearly $(C) \Rightarrow (C') \Rightarrow (C'')$, but all open.

More on hypergemetric functions

Let $(x)_j := x(x+1)\cdots(x+j-1)$ be the rising factorial. The hypergeometric function $_{p}F_{q}$ with rational parameters a_{1},\ldots,a_{p} and b_{1},\ldots,b_{q} is the univariate power series

$$_{p}F_{q}([a_{1},\ldots,a_{p}],[b_{1},\ldots,b_{q}];t) := \sum_{j\geq 0} \frac{(a_{1})_{j}\cdots(a_{p})_{j}}{(b_{1})_{j}\cdots(b_{q})_{j}} \frac{t^{j}}{j!} \in \mathbb{Q}[\![t]\!].$$

More on hypergemetric functions

Let $(x)_j := x(x+1)\cdots(x+j-1)$ be the rising factorial. The hypergeometric function ${}_pF_q$ with rational parameters a_1,\ldots,a_p and b_1,\ldots,b_q is the univariate power series

$$_{p}F_{q}([a_{1},\ldots,a_{p}],[b_{1},\ldots,b_{q}];t)\coloneqq\sum_{j\geq0}\frac{(a_{1})_{j}\cdots(a_{p})_{j}}{(b_{1})_{j}\cdots(b_{q})_{j}}\frac{t^{j}}{j!}\in\mathbb{Q}[\![t]\!].$$

- \blacksquare $_pF_q$ is not a polynomial and globally bounded $\Rightarrow q=p-1$.
- Elegant criterion for testing whether a hypergeometric function is globally bounded or algebraic [Christol, 1986], [Beukers, Heckman, 1989].
- (C''^*) List of 116 ${}_3F_2$'s which are potential counter examples to Christol's conjecture [Bostan, Boukraa, Christol, Hassani, Maillard, 2011]:

BBCHM =
$$\{{}_{3}F_{2}([1/3,5/9,8/9],[1/2,1];t),{}_{3}F_{2}([1/4,3/8,5/6],[2/3,1];t),\ldots, \ldots,{}_{3}F_{2}([1/9,4/9,5/9],[1/3,1];t),\ldots\}.$$

■ Hypergeometric functions are excellent for testing Christol's conjecture. ■ → ■ ■

Result of Abdelaziz, Koutschan and Maillard, 2020

$$_{3}F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right], \left[\frac{1}{3}, 1\right]; 27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{2/3}}{1-x-y-z}\right), \quad \text{and}$$
 $_{3}F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right], \left[\frac{2}{3}, 1\right]; 27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{1/3}}{1-x-y-z}\right).$

More generally,

$$_{3}F_{2}\left(\left[\frac{1-R}{3},\frac{2-R}{3},\frac{3-R}{3}\right],[1,1-R];27\ t\right)=\mathrm{Diag}\left(\frac{(1-x-y)^{R}}{1-x-y-z}\right),$$

for all $R \in \mathbb{O}$.

Proof by expanding the rhs and using creative telescoping to simplify sums.

Result of Abdelaziz, Koutschan and Maillard, 2020

$$_{3}F_{2}\left(\left[\frac{1}{9},\frac{4}{9},\frac{7}{9}\right],\left[\frac{1}{3},1\right];27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{2/3}}{1-x-y-z}\right), \quad \text{and}$$
 $_{3}F_{2}\left(\left[\frac{2}{9},\frac{5}{9},\frac{8}{9}\right],\left[\frac{2}{3},1\right];27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{1/3}}{1-x-y-z}\right).$

More generally,

$$_{3}F_{2}\left(\left[\frac{1-R}{3},\frac{2-R}{3},\frac{3-R}{3}\right],[1,1-R];27t\right)=\operatorname{Diag}\left((1-x-y)^{R}(1-x-y-z)^{-1}\right),$$

for all $R \in \mathbb{O}$.

Decidability

- (i) Given an algebraic $g(x_1, \ldots, x_n)$ one can algorithmically decide whether f(t) = Diag(g) is hypergeometric:
 - Creative telescoping: differential equation for f(t).
 - Recurrence relation for $(f_n)_{n\geq 0}$.
 - Petkovšek's algorithm finds all hypergeometric solutions [Petkovšek, 1992].

New identities and results

•000000

(ii) Given a hypergeometric f(t), finding an algebraic $g(x_1, \ldots, x_n)$ with Diag(g) = f(t) is completely open.

Try
$$f(t) = \text{Diag}((1-x-y)^{1/3}(1-x-y-z)^{-1/2}) = 1 + \frac{91}{72}t + \frac{191425}{13824}t^2 + \cdots$$

Creative telescoping or guessing implies/suggests that

$$91 f + (44084t - 72) f' + 216t(698t - 9) f'' + 72t^{2}(1242t - 31) f''' + 432t^{3}(27t - 1) f^{(iv)} = 0$$

It follows that

$$\frac{f_{n+1}}{f_n} = \frac{(18n+7)(2n+1)(18n+1)(18n+13)}{72(6n+1)(n+1)^3}$$

New identities and results

000000

 \blacksquare f(t) is hypergeometric!

Try $f(t) = \text{Diag}((1-x-y)^{1/3}(1-x-y-z)^{-1/2}) = 1 + \frac{91}{72}t + \frac{191425}{13824}t^2 + \cdots$

Creative telescoping or guessing implies/suggests that

$$91 f + (44084t - 72) f' + 216t(698t - 9) f'' + 72t^{2}(1242t - 31) f''' + 432t^{3}(27t - 1) f^{(iv)} = 0$$

It follows that

$$\frac{f_{n+1}}{f_n} = \frac{(18n+7)(2n+1)(18n+1)(18n+13)}{72(6n+1)(n+1)^3}$$

Try
$$f(t) = \text{Diag}((1-x-y)^{1/3}(1-x-y-z-w)^{-1}) = 1 + \frac{176}{9}t + \frac{54740}{27}t^2 + \cdots$$

Guessing suggests that

$$\frac{f_{n+1}}{f_n} = \frac{8(12n+11)(3n+2)(2n+1)(12n+5)(6n+1)}{9(6n+5)(3n+1)(n+1)^3}$$

 \blacksquare f(t) is hypergeometric!

Try
$$f(t) = \text{Diag}((1-x)^{1/2}(1-x-y)^{1/3}(1-x-y-z)^{-1}) = 1 + \frac{65}{18}t + \frac{8525}{162}t^2 + \cdots$$

Guessing suggests that

$$\frac{f_{n+1}}{f_n} = \frac{(6n+5)(18n+1)(18n+13)(3n+1)(18n+7)}{9(3n+2)(12n+1)(12n+7)(n+1)^2}$$

New identities and results

0000000

 \blacksquare f(t) is hypergeometric!

Try
$$f(t) = \text{Diag}((1-x)^{1/2}(1-x-y)^{1/3}(1-x-y-z)^{-1}) = 1 + \frac{65}{18}t + \frac{8525}{162}t^2 + \cdots$$

Guessing suggests that

$$\frac{f_{n+1}}{f_n} = \frac{(6n+5)(18n+1)(18n+13)(3n+1)(18n+7)}{9(3n+2)(12n+1)(12n+7)(n+1)^2}$$

 \blacksquare f(t) is hypergeometric!

Try
$$f(t) = \text{Diag}((1-x-y)^{-1}(1-x-z)^{-1}(1-y-z)^{-1}) = 1 + 14t + 145t^2 + \cdots$$

Guessing suggests that

$$2n(5n-4)(2n+1) f_n = (295n^3 - 156n^2 - 61n + 6) f_{n-1} + 24(5n+1)(3n-1)(3n-2) f_{n-2}$$

 \bullet f(t) is **not** hypergeometric!

Main result

Theorem (Bostan and Y., 2020)

Let $N \in \mathbb{N} \setminus \{0\}$ and $b_1, \ldots, b_N \in \mathbb{Q}$ with $b_N \neq 0$. Then

$$Diag((1-x_1)^{b_1}(1-x_1-x_2)^{b_2}\cdots(1-x_1-\cdots-x_N)^{b_N})$$

New identities and results

0000000

is a hypergeometric function.

Complete identity

Let
$$B(k) := -(b_k + \cdots + b_N)$$
.

$$u^{k} := \left(\frac{B(k)}{N-k+1}, \frac{B(k)+1}{N-k+1}, \dots, \frac{B(k)+N-k}{N-k+1}\right), \quad k = 1, \dots, N,$$

$$v^{k} := \left(\frac{B(k)}{N-k}, \frac{B(k)+1}{N-k}, \dots, \frac{B(k)+N-k-1}{N-k}\right), \quad k = 1, \dots, N-1.$$

Set $v^N := (1, 1, \dots, 1)$ with N-1 ones, $u := [u^1, \dots, u^N]$ and $v := [v^1, \dots, v^N]$.

Theorem (Bostan and Y., 2020)

Let $N \in \mathbb{N} \setminus \{0\}$ and $b_1, \ldots, b_N \in \mathbb{Q}$ with $b_N \neq 0$. Then

$$Diag((1-x_1)^{b_1}(1-x_1-x_2)^{b_2}\cdots(1-x_1-\cdots-x_N)^{b_N})$$

is hypergeometric and equal to

$$\binom{N+1}{2} F_{\binom{N+1}{2}-1}(u; v; N^N t).$$

If N=2 we have

$$\operatorname{Diag}\left((1-x)^{R}(1-x-y)^{S}\right) = {}_{3}F_{2}\left(\left[\frac{-(R+S)}{2}, \frac{-(R+S)+1}{2}, -S\right]; [-(R+S), 1]; 4t\right).$$

0000000

- Hence Diag $((1-x)^{1/2}(1-x-y)^{-1}) = {}_{2}F_{1}(\left[\frac{1}{4}, \frac{3}{4}\right]; \left[\frac{1}{2}\right]; 4t)$.
- Letting N=3 we obtain

Diag
$$((1-x)^R(1-x-y)^S(1-x-y-z)^T)$$
:

$$\operatorname{Diag}\left((1-x)^{R}(1-x-y)^{S}(1-x-y-z)^{T}\right) = \frac{1}{6}F_{5}\left(\left[\frac{-(R+S+T)}{3}, \frac{-(R+S+T)+1}{3}, \frac{-(R+S+T)+2}{3}, \frac{-(S+T)+1}{2}, \frac{-(S+T)+1}{2}, -T\right] = \frac{1}{6}F_{5}\left(\left[\frac{-(R+S+T)}{3}, \frac{-(R+S+T)+1}{3}, \frac{-(R+S+T)+2}{3}, \frac{-(R+S+T)+1}{2}, \frac{-($$

$$\left[\frac{-(R+S+T)}{2}, \frac{-(R+S+T)+1}{2}, -(S+T), 1, 1\right]; 27t\right).$$

■ Hence Diag
$$\left(\frac{(1-x-y)^S}{1-x-y-z}\right) = {}_3F_2\left(\left[\frac{1-S}{3}, \frac{2-S}{3}, \frac{3-S}{3}\right], [1, 1-S]; 27\ t\right)$$
.

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}] (1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}} (1+x_1+\cdots+x_N)^{b_N}$$

$$=$$

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}] (1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}} (1+x_1+\cdots+x_N)^{b_N}$$

$$= \binom{b_N}{k_N}$$

New identities and results

000000

000000

Motivating example

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}](1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}}(1+x_1+\cdots+x_N)^{b_N}$$

$$= \binom{b_N}{k_N} \binom{b_{N-1}+b_N-k_N}{k_{N-1}}$$

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}] (1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}} (1+x_1+\cdots+x_N)^{b_N}$$

$$= {b_N \choose k_N} {b_{N-1}+b_N-k_N \choose k_{N-1}} \cdots {b_1+\cdots+b_{N-1}+b_N-k_N-k_{N-1}-\cdots-k_2 \choose k_1}.$$

000000

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}] (1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}} (1+x_1+\cdots+x_N)^{b_N}$$

$$= {b_N \choose k_N} {b_{N-1}+b_N-k_N \choose k_{N-1}} \cdots {b_1+\cdots+b_{N-1}+b_N-k_N-k_{N-1}-\cdots-k_2 \choose k_1}$$

By definition:

$$[t^n]_M F_{M-1}(u; v; (-N)^N t) = (-1)^{Nn} N^{Nn} \frac{\prod_{i,j} (u_j^{(i)})_n}{\prod_{i,j} (v_j^{(i)})_n \cdot n!}.$$

Proof

Proof.

$$[x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} \cdot x_N^{k_N}] (1+x_1)^{b_1} \cdots (1+x_1+\cdots+x_{N-1})^{b_{N-1}} (1+x_1+\cdots+x_N)^{b_N}$$

$$= {b_N \choose k_N} {b_{N-1}+b_N-k_N \choose k_{N-1}} \cdots {b_1+\cdots+b_{N-1}+b_N-k_N-k_{N-1}-\cdots-k_2 \choose k_1}.$$

By definition:

$$[t^n]_M F_{M-1}(u; v; (-N)^N t) = (-1)^{Nn} N^{Nn} \frac{\prod_{i,j} (u_j^{(i)})_n}{\prod_{i,j} (v_j^{(i)})_n \cdot n!}.$$

Finally,

$$\binom{b_{N}}{n}\cdots\binom{b_{1}+\cdots+b_{N}-(N-1)n}{n}=(-1)^{Nn}N^{Nn}\frac{\prod_{i,j}(u_{j}^{(i)})_{n}}{\prod_{i,j}(v_{j}^{(i)})_{n}\cdot n!}.$$

Summary and conclusion

- The functions N(N+1)/2 = P(N+1)/2 = P(Nglobally bounded and diagonals.
- The functions $\operatorname{Diag}((1-x_1)^{b_1}\cdots(1-x_1-\cdots-x_N)^{b_N})$ are hypergeometric.
- The main identities of [Abdelaziz, Koutschan, Maillard, 2020] fit in a larger picture.

New identities and results

• Christol's conjecture is still widely open, but we are getting (a bit) closer.

Bonus: Globally bounded hypergeometric functions

Theorem (Christol, 1986)

Motivating example

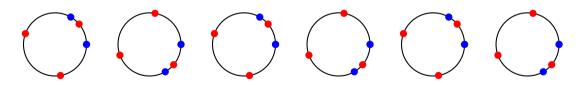
Assume that the rational parameters $\{a_1, \ldots, a_p\}$ and $\{b_1, \ldots, b_{p-1}, b_p = 1\}$ are disjoint modulo \mathbb{Z} . Let N be their common denominator. Then

$$_{p}F_{p-1}([a_{1},\ldots,a_{p}],[b_{1},\ldots,b_{p-1}];t)$$

is globally bounded if and only if for all $1 \le r \le N$ with gcd(r, N) = 1, one does not encounters less numbers in $\{\exp(2\pi i r a_i), 1 \le j \le p\}$ than in $\{\exp(2\pi i r b_i), 1 \le j \le p\}$ when running through the unit circle $(1, \exp(2\pi i)]$.

- Is $f(t) = {}_{3}F_{2}([1/9, 4/9, 5/9], [1/6, 1]; t)$ globally bounded?
- Common denominator of the parameters: N = 18.

- We have $\varphi(18) = 6$, and each $r \in \{1, 5, 7, 11, 13, 17\} =: S$ is coprime to 18.
- For each $r \in S$ we look at $\{\exp(2\pi i r \cdot 1/9), \exp(2\pi i r \cdot 4/9), \exp(2\pi i r \cdot 7/9)\}$ and $\{\exp(2\pi i r \cdot 1/6), \exp(2\pi i r \cdot 1), \exp(2\pi i r \cdot 1)\}$.



 $\Rightarrow f(t)$ is globally bounded.

Theorem (Bostan and Y., 2020)

Let $N \in \mathbb{N} \setminus \{0\}$ and $b_1, \ldots, b_N \in \mathbb{Q}$ with $b_N \neq 0$ and $b_{N-1} + b_N = -1$. Then for any $b \in \mathbb{Q}$,

$$Diag((1+x_1)^{b_1}(1+x_1+x_2)^{b_2}\cdots(1+x_1+\cdots+x_N)^{b_N}\cdot(1+x_1+\cdots+2x_{N-1})^b)$$

is a hypergeometric function.

Bonus: Complete identity

Let
$$B(k) := -(b_k + \cdots + b_N + b)$$
.

$$u^{k} := \left(\frac{B(k)}{N-k+1}, \frac{B(k)+1}{N-k+1}, \dots, \frac{B(k)+N-k}{N-k+1}\right), \quad k = 1, \dots, N-2$$
$$v^{k} := \left(\frac{B(k)}{N-k}, \frac{B(k)+1}{N-k}, \dots, \frac{B(k)+N-k-1}{N-k}\right), \quad k = 1, \dots, N-2.$$

Set
$$u^{N-1} := -(b_{N-1} + b_N + b)/2 = (1-b)/2$$
, $u^N = -b_N$ and $v^{N-1} := (1, 1, ..., 1)$ with $N-1$. $M := N(N+1)/2$ and define $u := [u^1, ..., u^N]$ and $v := [v^1, ..., v^{N-1}]$.

Theorem (Bostan and Y., 2020)

It holds that

$$\begin{aligned} \operatorname{Diag}((1+x_1)^{b_1}(1+x_1+x_2)^{b_2}\cdots(1+x_1+\cdots+x_N)^{b_N}(1+x_1+\cdots+2x_{N-1})^b) \\ &= {}_{M}F_{M-1}(u;v;(-N)^Nt). \end{aligned}$$