Combinatorics of truncated partition theorems

Ae Ja Yee

The Pennsylvania State University

26TH INTERNATIONAL CONFERENCE ON APPLICATIONS OF COMPUTER ALGEBRA SPECIAL SESSION ON ALGORITHMIC COMBINATORICS

July 23-27, 2021

Integer partitions

•
$$\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$$
: partition of *n* if
 $n = \lambda_1 + \lambda_2 + \lambda_3 + \cdots$ and $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots$.

Example. n = 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

$$4 = 4$$

= 3 + 1
= 2 + 2
= 2 + 1 + 1
= 1 + 1 + 1 + 1

• p(n): total number of partitions of n.

$$p(4)=5.$$

The generating function of p(n)

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(1-q)(1-q^2)(1-q^3)\cdots}.$$

Euler's pentagonal number theorem:

$$\prod_{n=1}^{\infty} (1-q^n) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2}$$

Recurrence of p(n):

$$p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - \dots = 0.$$

Observation of Andrews-Merca

$$p(n) - p(n-1) \ge 0$$

$$p(n) - p(n-1) - p(n-2) + p(n-5) \le 0$$

$$p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) \ge 0$$

$$\vdots$$

$$(-1)^{k} \sum_{j=0}^{k} (-1)^{j} \left(p\left(n - \frac{j(3j+1)}{2}\right) - p\left(n - \frac{j(3j+1)}{2} - 2j - 1\right) \right) \ge 0$$

(Andrews (1971), Bressoud (1980) - Partition Sieves - Connection to partition rank)

Truncated pentagonal number theorem

Theorem (Andrews-Merca (2012))

$$\frac{1}{(q;q)_{\infty}} \sum_{j=0}^{k} (-1)^{j} q^{\frac{j(3j+1)}{2}} (1-q^{2j+1}) = 1 + (-1)^{k} \sum_{n=k+1}^{\infty} \frac{q^{\binom{k+1}{2}} + (k+2)^{n}}{(q;q)_{n}} {n-1 \brack k}.$$

Notation

$$\begin{aligned} & (a;q)_n := (1-a)(1-aq)\cdots(1-aq^{n-1}), \\ & (a;q)_{\infty} := \lim_{n \to \infty} (a;q)_n, \\ & \begin{bmatrix} n \\ k \end{bmatrix} := \begin{bmatrix} n \\ k \end{bmatrix}_q := \begin{cases} \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}}, & \text{if } n \ge k \ge 0, \\ 0, & \text{otherwise.} \end{cases} \end{aligned}$$

Two identities of Gauss

$$\frac{(q;q)_{\infty}}{(-q;q)_{\infty}} = \sum_{j=-\infty}^{\infty} (-1)^{j} q^{j^{2}},$$
$$\frac{(q^{2};q^{2})_{\infty}}{(-q;q^{2})_{\infty}} = \sum_{j=-\infty}^{\infty} (-1)^{j} q^{j(2j+1)}.$$

$$\frac{(-q;q)_{\infty}}{(q;q)_{\infty}} = \sum_{n=0}^{\infty} \overline{p}(n)q^n$$
$$\frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} = \sum_{n=0}^{\infty} pod(n)q^n.$$

Truncated theorems on Gauss' identities

Theorem (Guo-Zeng (2012))

$$\begin{split} & \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{j=-k}^{k} (-1)^{j} q^{j^{2}} \\ & = 1 + (-1)^{k} \sum_{n=k+1}^{\infty} \frac{(-q;q)_{k}(-1;q)_{n-k} q^{(k+1)n}}{(q;q)_{n}} {n-1 \brack k}, \\ & \frac{(-q;q^{2})_{\infty}}{(q^{2};q^{2})_{\infty}} \sum_{j=0}^{k} (-1)^{j} q^{j(2j+1)} (1-q^{2j+1}) \\ & = 1 + (-1)^{k} \sum_{n=k+1}^{\infty} \frac{(-q;q^{2})_{k+1}(-q;q^{2})_{n-(k+1)} q^{2(k+2)n-(k+1)}}{(q^{2};q^{2})_{n}} {n-1 \brack k}_{q^{2}}. \end{split}$$

Conjecture of Andrews-Merca and Guo-Zeng

For
$$1 \le S \le R/2$$
,
$$\frac{(-1)^k}{(q^R, q^S, q^{R-S}; q^R)_{\infty}} \sum_{n=0}^k (-1)^n q^{\binom{n+1}{2}R-nS} (1 - q^{(2n+1)S}) + (-1)^{k-1}$$

has nonnegative coefficients.

For convenience, we will say a truncated series satisfies positivity property.

Note.

$$\frac{(-1)^k}{(q;q)_{\infty}} \sum_{n=0}^k (-1)^n q^{\binom{n+1}{2}R-nS} \left(1-q^{(2n+1)S}\right)$$

satisfies positivity property. (Andrews and Bressoud - Partition Sieves)

Note. This conjecture was proved by R. Mao and Y. independently in 2015, and reproved by C. Wang and Y. in 2019.

Papers on this topic

- Andrews, Merca: The truncated pentagonal number theorem (JCTA, 119 (2012), 1639–1643)
- Guo, Zeng: Two truncated identities of Gauss (JCTA, 120 (2013), 700–707)
- Mao: Proofs of two conjectures on truncated series (JCTA, 130 (2015), 15-25)
- Y.: A truncated Jacobi triple product theorem (JCTA, 130 (2015), 1–14)
- Kolitsch: Another approach to the truncated pentagonal number theorem (Int. J. Number Theory 11 (2015) 1563–1569)
- He, Ji, Zang: Bilateral truncated Jacobi's identity (European J. Combin., 51 (2016), 255-267)
- Chan, Ho, Mao: Truncated series from the quintuple product identity (J. Number Theory, 169 (2016), 420–438)
- Andrews, Merca: Truncated theta series and a problem of Guo and Zeng (JCTA, 154 (2018), 610–619)
- Ballantine, Merca, Passary, Y.: Combinatorial proofs of two truncated theta series theorems (JCTA, 160 (2018), 168–185)
- Merca, Wang, Y. : A truncated theta identity of Gauss and overpartitions into odd parts (Ann. Comb. 23 (2019), 907–915)
- Wang, Y. : Truncated Jacobi triple product series (JCTA, 166 (2019), 382-392)
- Wang, Y. : Truncated Hecke-Rogers type series (Adv. Math, 365 (2020), 107051, 19 pp)

Analytic approach

Transformation formulas are main tools.

• Andrews' formula for the truncated pentagonal number theorem:

$$\sum_{n=0}^{m} (-1)^n q^{n(3n+1)/2} (1-q^{2n+1}) = (-1)^m q^{\binom{m+1}{2}} \sum_{n=0}^{m} \frac{(q^{-m};q)_n (q^{m+1};q)_{n+1}}{(q;q)_n} dq^{m+1} + \frac{1}{2} \sum_{n=0}^{m} \frac{(q^{m};q)_n (q^{m};q)_n}{(q;q)_n} dq^{m+1} + \frac{1}{2} \sum_{n=0}^{m} \frac{(q^{m};q)_n (q^{m};q)_n}{(q;q)_n} dq^{m+1} + \frac{1}$$

Shank's formula for the work of Guo and Zeng:

$$\sum_{n=0}^{m} (-1)^n q^{n(2n+1)} (1-q^{2n+1}) = (-1)^m q^{2\binom{m+1}{2}} \sum_{n=0}^{m} \frac{(q^{-2m};q^2)_n (q^{2m+2};q^2)_{n+1}}{(q^2;q^2)_n (-q;q^2)_{n+1}}$$

• Liu's formula: For an arbitrary sequence $\{A_n\}$,

$$\sum_{n=0}^{m} (-1)^n q^{\binom{n}{2}} (1-q^{2n+1}) \sum_{j=0}^{n} (q^{-n}, q^{n+1}; q)_j q^j A_j$$
$$= (-1)^m q^{\binom{m+1}{2}} \sum_{n=0}^{m} (q^{-m}; q)_n (q^{m+1}; q)_{n+1} A_n.$$

Sketch of the proof of Andrews-Merca

$$\begin{split} \frac{1}{(q;q)_{\infty}} \sum_{j=0}^{k-1} (-1)^{j} q^{\frac{j(3j+1)}{2}} (1-q^{2j+1}) \\ &= \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{\infty}} \sum_{n=0}^{k-1} \frac{(q^{-k+1};q)_{n}(q^{k};q)_{n+1}}{(q;q)_{n}} \qquad \text{(by Andrews' formula)} \\ &= \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{k-1}} \sum_{n=0}^{k-1} \frac{(q^{-k+1};q)_{n}}{(q;q)_{n}(q^{k+n+1};q)_{\infty}} \\ &= \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{k-1}} \sum_{n=0}^{k-1} \frac{(q^{-k+1};q)_{n}}{(q;q)_{n}} \sum_{j=0}^{\infty} \frac{q^{(k+n+1)j}}{(q;q)_{n}} \\ &= \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{k-1}} \sum_{j=0}^{\infty} \frac{q^{(k+1)j}}{(q;q)_{j}} \sum_{n=0}^{k-1} \frac{(q^{-k+1};q)_{n} q^{jn}}{(q;q)_{n}} \\ &= \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{k-1}} \sum_{j=0}^{\infty} \frac{q^{(k+1)j}}{(q;q)_{j}} (q^{-k+1+j};q)_{k-1} \\ &= 1 + \frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q;q)_{k-1}} \sum_{j=k}^{\infty} \frac{q^{(k+1)j}}{(q;q)_{j}} (q^{j-k+1};q)_{k-1} \\ &= 1 + (-1)^{k-1} q^{\binom{k}{2}} \sum_{j=k}^{\infty} \frac{q^{(k+1)j}}{(q;q)_{j}} \frac{(q;q)_{j-1}}{(q;q)_{j-k}}. \end{split}$$

Combinatorial approach

Papers with more combinatorial flavors:

- Y.: A truncated Jacobi triple product theorem (JCTA, 130 (2015), 1-14)
- L. Kolitsch: Another approach to the truncated pentagonal number theorem (Int. J. Number Theory 11 (2015) 1563–1569)
- He, Ji, Zang: Bilateral truncated Jacobi's identity (European J. Combin., 51 (2016), 255-267)
- Ballantine, Merca, Passary, Y.: Combinatorial proofs of two truncated theta series theorems (JCTA, 160 (2018), 168–185)
- Merca, Wang, Y. : A truncated theta identity of Gauss and overpartitions into odd parts (Ann. Comb. 23 (2019), 907–915)

There exists no unified treatment.

Xia's new truncated series

Recently, Ernest Xia found several new truncated series identities and asked for their combinatorial proofs.

Xia's truncated series:

$$\begin{aligned} (q;q)_{\infty} &\longrightarrow \qquad \sum_{j=0}^{k-1} (-1)^{j} q^{3j(j+1)/2} (1-q^{j+1}) (1-q^{2j+2}), \\ \frac{(q;q)_{\infty}}{(-q;q)_{\infty}} &\longrightarrow \qquad \sum_{j=0}^{k-1} (-1)^{j} q^{j(j+1)} (1-q^{j+1})^{2}, \\ \frac{(q^{2};q^{2})_{\infty}}{(-q;q^{2})_{\infty}} &\longrightarrow \qquad \sum_{j=0}^{k-1} (-1)^{j} q^{2j^{2}+j} (1-q^{2j+2}) (1-q^{4j+4}). \end{aligned}$$

Xia's identities

2

$$\begin{split} &\frac{1}{(q;q)_{\infty}}\sum_{j=0}^{k-1}(-1)^{j}q^{3j(j+1)/2}(1-q^{j+1})(1-q^{2j+2})\\ &=1+(-1)^{k-1}q^{\binom{k}{2}}\sum_{n=k}^{\infty}\frac{q^{n(k+2)}}{(q;q)_{n}}\begin{bmatrix}n-1\\k-1\end{bmatrix}. \end{split}$$

$$\begin{aligned} &\frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{j=0}^{k} (-1)^{j} q^{j(j+1)} (1-q^{j+1})^{2} \\ &= 1 + (-1)^{k} \frac{(-q;q)_{k+1}}{(q;q)_{k}} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)} (-q^{n+3};q)_{\infty}}{(q^{n+3};q)_{\infty}}. \end{aligned}$$

$$\begin{aligned} &\frac{(-q^3;q^2)_{\infty}}{(q^2;q^2)_{\infty}} \sum_{j=0}^k (-1)^j q^{2j^2+j} (1-q^{2j+2})(1-q^{4j+4}) \\ &= 1+(-1)^k \frac{(-q^3;q^2)_{k+1}}{(q^2;q^2)_k} \sum_{n=k}^{\infty} \frac{q^{(2n+3)(k+1)}(-q^{2n+5};q^2)_{\infty}}{(q^{2n+6};q^2)_{\infty}} \end{aligned}$$

A simple version of Chen's combinatorial telescoping method

$$\sum_{j=0}^{k} (-1)^{j} F_{j}(x) = (-1)^{k} G_{k}(x).$$

$$F_k(x) = G_k(x) + G_{k-1}(x).$$

$$G_k(x) \longrightarrow G'_k(x).$$

$$F_k(x) = G_k(x) + G'_{k-1}(x).$$

$M_k(n)$ (Andrews and Merca)

Theorem

$$\frac{(-1)^{k-1}}{(q;q)_{\infty}} \sum_{j=0}^{k-1} (-1)^j q^{j(3j+1)/2} (1-q^{2j+1}) = (-1)^{k-1} + \sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}} + (k+1)n}{(q;q)_n} \begin{bmatrix} n-1\\k-1 \end{bmatrix}.$$

 M_k(n) := # partitions of n where k is the least positive integer that is not a part and there are more parts > k than there are parts < k.

$$\sum_{n=0}^{\infty} M_k(n) q^n = \sum_{n=k}^{\infty} \frac{q^{\binom{k}{2} + (k+1)n}}{(q;q)_n} \begin{bmatrix} n-1\\ k-1 \end{bmatrix}.$$

The theorem above can be rewritten as follows

$$\frac{q^{k(3k+1)/2}(1-q^{2k+1})}{(q;q)_{\infty}} = \sum_{n=0}^{\infty} \left(M_k(n) + M_{k+1}(n) \right) q^n.$$

Idea: Define two partition functions m_k(n) and m'_{k+1}(n), which are equal to M_k(n) and M_{k+1}(n), respectively, and then show

$$\sum_{n=0}^{\infty} \left(m_k(n) + m'_{k+1}(n) \right) q^n = \frac{q^{k(3k+1)/2} (1-q^{2k+1})}{(q;q)_{\infty}}$$

$M_k(n)$ (Andrews and Merca)

Theorem

$$\frac{(-1)^{k-1}}{(q;q)_{\infty}} \sum_{j=0}^{k-1} (-1)^j q^{j(3j+1)/2} (1-q^{2j+1}) = (-1)^{k-1} + \sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}} + (k+1)n}{(q;q)_n} \begin{bmatrix} n-1\\k-1 \end{bmatrix}.$$

 M_k(n) := # partitions of n where k is the least positive integer that is not a part and there are more parts > k than there are parts < k.

$$\sum_{n=0}^{\infty} M_k(n) q^n = \sum_{n=k}^{\infty} \frac{q^{\binom{k}{2} + (k+1)n}}{(q;q)_n} \begin{bmatrix} n-1\\ k-1 \end{bmatrix}.$$

• The theorem above can be rewritten as follows:

$$\frac{q^{k(3k+1)/2}(1-q^{2k+1})}{(q;q)_{\infty}} = \sum_{n=0}^{\infty} \left(M_k(n) + M_{k+1}(n) \right) q^n.$$

• Idea: Define two partition functions $m_k(n)$ and $m'_{k+1}(n)$, which are equal to $M_k(n)$ and $M_{k+1}(n)$, respectively, and then show

$$\sum_{n=0}^{\infty} \left(m_k(n) + m'_{k+1}(n) \right) q^n = \frac{q^{k(3k+1)/2}(1-q^{2k+1})}{(q;q)_{\infty}}$$

Combinatorial proof of the truncated pentagonal number theorem

Notation: f_i counts the number of parts of size *i*.

m_k(n) := # partitions of *n* satisfying the following conditions:
i) *f_i* ≥ 1 for *i* = 1,...,*k* − 1;
ii) *k* + 1 ≤ *f_k* ≤ *x*, where *x* is the smallest part > *k*; if there are no parts > *k*, *x* = ∞.

$$\sum_{n\geq 0} m_k(n)q^n = \frac{q^{\binom{k}{2}+k(k+1)}}{(q;q)_{k-1}} \sum_{n\geq 0} \frac{q^{(k+1)n}}{(q;q)_n(1-q^{n+k})}.$$

Recal

$$\sum_{n \ge 0} M_k(n)q^n = \sum_{n \ge 0} \frac{q^{\binom{k}{2} + (k+1)(n+k)}}{(q;q)_{n+k}} \begin{bmatrix} n+k-1\\k-1 \end{bmatrix}.$$

Combinatorial proof of the truncated pentagonal number theorem

Notation: f_i counts the number of parts of size *i*.

m_k(n) := # partitions of *n* satisfying the following conditions:
i) *f_i* ≥ 1 for *i* = 1,...,*k* − 1;
ii) *k* + 1 ≤ *f_k* ≤ *x*, where *x* is the smallest part > *k*; if there are no parts > *k*, *x* = ∞.

$$\sum_{n\geq 0} m_k(n)q^n = \frac{q^{\binom{k}{2}+k(k+1)}}{(q;q)_{k-1}} \sum_{n\geq 0} \frac{q^{(k+1)n}}{(q;q)_n(1-q^{n+k})}.$$

Recall

$$\sum_{n\geq 0} M_k(n)q^n = \sum_{n\geq 0} \frac{q^{\binom{k}{2}}+(k+1)(n+k)}{(q;q)_{n+k}} \begin{bmatrix} n+k-1\\k-1 \end{bmatrix}.$$

m'_{k+1}(*n*) := # partitions of *n* satisfying the following conditions:
i) *f_i* ≥ 1 for *i* = 1,...,*k* − 1;
ii) *f_k* > *x*, where *x* is the smallest part > *k* + 1 and *x* exists.

Then,

$$\sum_{n\geq 0} m'_{k+1}(n)q^n = \frac{q^{\binom{k}{2}+k(k+3)}}{(q;q)_{k-1}} \sum_{n\geq 1} \frac{q^{(k+2)n}}{(1-q^k)(q;q)_{n-1}(1-q^{n+k})}$$

Recal

$$\sum_{n \ge 0} M_{k+1}(n) q^n = \sum_{n \ge 0} \frac{q^{\binom{k}{2} + k + (k+2)(n+k+1)}}{(q;q)_{n+k+1}} \begin{bmatrix} n+k\\k \end{bmatrix}.$$

m'_{k+1}(*n*) := # partitions of *n* satisfying the following conditions:
i) *f_i* ≥ 1 for *i* = 1,...,*k* − 1;
ii) *f_k* > *x*, where *x* is the smallest part > *k* + 1 and *x* exists.

Then,

$$\sum_{n\geq 0} m'_{k+1}(n)q^n = \frac{q^{\binom{k}{2}+k(k+3)}}{(q;q)_{k-1}} \sum_{n\geq 1} \frac{q^{(k+2)n}}{(1-q^k)(q;q)_{n-1}(1-q^{n+k})}$$

Recall

$$\sum_{n\geq 0} M_{k+1}(n)q^n = \sum_{n\geq 0} \frac{q^{\binom{k}{2}+k+(k+2)(n+k+1)}}{(q;q)_{n+k+1}} \begin{bmatrix} n+k\\k \end{bmatrix}.$$

m_k(n) := # partitions of *n* satisfying the following conditions:
 i) *f_i* ≥ 1 for *i* = 1,..., *k* − 1;

ii) $k + 1 \le f_k \le x$, where x is the smallest part > k; if there are no parts > k, $x = \infty$.

m'_{k+1}(*n*) := # partitions of *n* satisfying the following conditions:
i) *f_i* ≥ 1 for *i* = 1, ..., *k* − 1;
ii) *f_k* > *x_i* where *x* is the smallest part > *k* + 1 and *x* exists.

m_k(n) + m'_{k+1}(n) counts the number of partitions of *n* satisfying the following:
i) *f_i* ≥ 1 for *i* = 1,...,*k* − 1;
ii) *f_k* ≥ *k* + 1;
iii) if *f_{k+1}* > 1, then *f_k* = *k* + 1.

Then

$$\sum_{n\geq 0} (m_k(n) + m'_{k+1}(n))q^n = \frac{q^{\binom{k}{2}+k(k+1)}(1-q^{2k+1})}{(q;q)_{\infty}}.$$

Xia's identity on overpartitions

Recall

$$\frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{j=0}^{k} (-1)^{j} q^{j(j+1)} (1-q^{j+1})^{2} = 1 + (-1)^{k} \frac{(-q;q)_{k+1}}{(q;q)_{k}} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)}(-q^{n+3};q)_{\infty}}{(q^{n+3};q)_{\infty}}$$

Define $C_k(n)$ as follows:

$$\sum_{n\geq 0} C_k(n)q^n = \frac{(-q;q)_{k+1}}{(q;q)_k} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)}(-q^{n+3};q)_{\infty}}{(q^{n+3};q)_{\infty}}.$$

Then the identity above is equivalent to

$$\sum_{n\geq 0} \left(C_k(n) + C_{k-1}(n) \right) q^n = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} (1 - q^{k+1})^2 q^{k(k+1)}$$

We will define ovepartition functions $c_k(n)$ and $c'_{k-1}(n)$ which equal $C_k(n)$ and $C_{k-1}(n)$, respectively, and then we prove combinatorially the following identity

$$\sum_{n\geq 0} \left(c_k(n) + c'_{k-1}(n) \right) q^n = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} (1-q^{k+1})^2 q^{k(k+1)}.$$

Sketch of Proof

Notation: $f_{\overline{i}}$ counts the number of overlined parts of size *i*.

c_k(n) := # overpartitions of n satisfying the following conditions:
i) f_{k+1} = f_{k+1} = 0;
ii) f_{k+2} = 0;
iii) f_k ≥ x, where x is the smallest part ≥ k + 2 and x exists;

Case 1: x is overlined and unique. Then the generating function is

$$\frac{(-q;q)_k}{(q;q)_k} \sum_{n \ge 1} \frac{(-1;q)_{n-1} q^{k(k+2)+(k+2)n+n-1}}{(q;q)_{n-1}(1-q^{n+k})}$$

Case 2: x is non-overlined but unique. Then the generating function is

$$\frac{(-q;q)_k}{(q;q)_k} \sum_{n \ge 1} \frac{(-1;q)_{n-1} q^{(k+3)(k+n)+n-1}}{(q;q)_{n-1}(1-q^{n+k})}.$$

Case 3: x is not unique. Then the generating function is

$$\frac{(-q;q)_k}{(q;q)_k} \sum_{n \ge 1} \frac{(-1;q)_{n-1} q^{(k+3)(k+n)}}{(q;q)_{n-2}(1-q^{n+k})}.$$

Thus

$$\sum_{n\geq 0} c_k(n)q^n = \frac{(-q;q)_{k+1}}{(q;q)_k} \sum_{n\geq 1} \frac{(-1;q)_{n-1} q^{(k+2)(k+n)+n-1}}{(q;q)_{n-1}(1-q^{n+k})} = \sum_{n\geq 0} C_k(n)q^n.$$

Case 1: $x = \infty$. Then the generating function is

$$\frac{(-q;q)_k \, q^{k(k+1)}}{(q;q)_k}.$$

Case 2: $x < \infty$. Then the generating function is

$$\frac{(-q;q)_k}{(q;q)_{k-1}} \sum_{n \ge 1} \frac{(-1;q)_n q^{k(k+1)+(k+2)n}}{(q;q)_n (1-q^{n+k})}.$$

Thus,

$$\sum_{n\geq 0} c'_{k-1}(n)q^n = \frac{(-q;q)_k q^{k(k+1)}}{(q;q)_{k-1}} \sum_{n\geq 0} \frac{(-1;q)_n q^{(k+2)n}}{(q;q)_n (1-q^{n+k})} = \sum_{n\geq 0} C_{k-1}(n)q^n.$$

It follows from the definitions that $c_k(n) + c'_{k-1}(n)$ counts the number of partitions of *n* satisfying the following:

i)
$$f_{k+1} = f_{\overline{k+1}} = 0;$$

ii) $f_k \ge k + 1;$
iii) $f_{k+2} \ge 1$, then $f_k = k + 1$

1.

Thus,

$$\begin{split} \sum_{n\geq 0} \left(c_k(n) + c'_{k-1}(n) \right) q^n &= \frac{q^{k(k+1)}(1-q^{k+1})(-q;q)_\infty}{(1+q^{k+1})(q;q)_\infty} - \frac{q^{k(k+2)+k+2}(1-q^{k+1})(-q;q)_\infty}{(1+q^{k+1})(q;q)_\infty} \\ &= \frac{q^{k(k+1)}(1-q^{k+1})^2(-q;q)_\infty}{(1+q^{k+1})(q;q)_\infty}. \end{split}$$

Remarks

O Can we prove the truncated Jacobi triple product theorem?
 For 1 ≤ S ≤ R/2,

$$\frac{(-1)^k}{(q^R, q^S, q^{R-S}; q^R)_{\infty}} \sum_{n=0}^k (-1)^n q^{\binom{n+1}{2}R - nS} \left(1 - q^{(2n+1)S}\right) + (-1)^{k-1}$$

has nonnegative coefficients.

Obes this method work for other truncated theorems?

Thank you!