Combinatorics of truncated partition theorems

Ae Ja Yee

The Pennsylvania State University

26th International Conference on Applications of Computer Algebra
Special Session on Algorithmic Combinatorics
July 23-27, 2021

Integer partitions

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$: partition of n if

$$
n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots \quad \text { and } \quad \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots .
$$

Example. $n=4$: $(4),(3,1),(2,2),(2,1,1),(1,1,1,1)$.

$$
\begin{aligned}
4 & =4 \\
& =3+1 \\
& =2+2 \\
& =2+1+1 \\
& =1+1+1+1
\end{aligned}
$$

- $p(n)$: total number of partitions of n.

$$
p(4)=5 \text {. }
$$

The generating function of $p(n)$

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}
$$

Euler's pentagonal number theorem:

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}
$$

Recurrence of $p(n)$:

$$
p(n)-p(n-1)-p(n-2)+p(n-5)+p(n-7)-p(n-12)-\cdots=0 .
$$

Observation of Andrews-Merca

$$
\begin{aligned}
p(n)-p(n-1) & \geq 0 \\
p(n)-p(n-1)-p(n-2)+p(n-5) & \leq 0 \\
p(n)-p(n-1)-p(n-2)+p(n-5)+p(n-7)-p(n-12) & \geq 0 \\
& \vdots \\
(-1)^{k} \sum_{j=0}^{k}(-1)^{j}\left(p\left(n-\frac{j(3 j+1)}{2}\right)-p\left(n-\frac{j(3 j+1)}{2}-2 j-1\right)\right) & \geq 0
\end{aligned}
$$

(Andrews (1971), Bressoud (1980) - Partition Sieves - Connection to partition rank)

Truncated pentagonal number theorem

Theorem (Andrews-Merca (2012))

$$
\frac{1}{(q ; q)_{\infty}} \sum_{j=0}^{k}(-1)^{j} q^{\frac{j(3 j+1)}{2}}\left(1-q^{2 j+1}\right)=1+(-1)^{k} \sum_{n=k+1}^{\infty} \frac{q^{\binom{k+1}{2}+(k+2) n}}{(q ; q)_{n}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] .
$$

Notation

$$
\begin{aligned}
&(a ; q)_{n}:=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), \\
&(a ; q)_{\infty}:=\lim _{n \rightarrow \infty}(a ; q)_{n}, \\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } n \geq k \geq 0, \\
0, & \text { otherwise. }\end{cases} }
\end{aligned}
$$

Two identities of Gauss

$$
\begin{aligned}
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} & =\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j^{2}} \\
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}} & =\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j(2 j+1)} \\
\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} & =\sum_{n=0}^{\infty} \bar{p}(n) q^{n} \\
\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} & =\sum_{n=0}^{\infty} \operatorname{pod}(n) q^{n}
\end{aligned}
$$

Truncated theorems on Gauss' identities

Theorem (Guo-Zeng (2012))

$$
\begin{aligned}
& \frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{j=-k}^{k}(-1)^{j} q^{j^{2}} \\
& =1+(-1)^{k} \sum_{n=k+1}^{\infty} \frac{(-q ; q)_{k}(-1 ; q)_{n-k} q^{(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right], \\
& \frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{j=0}^{k}(-1)^{j} q^{j(2 j+1)}\left(1-q^{2 j+1}\right) \\
& =1+(-1)^{k} \sum_{n=k+1}^{\infty} \frac{\left(-q ; q^{2}\right)_{k+1}\left(-q ; q^{2}\right)_{n-(k+1)} q^{2(k+2) n-(k+1)}}{\left(q^{2} ; q^{2}\right)_{n}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q^{2}} .
\end{aligned}
$$

Conjecture of Andrews-Merca and Guo-Zeng

For $1 \leq S \leq R / 2$,

$$
\frac{(-1)^{k}}{\left(q^{R}, q^{S}, q^{R-S} ; q^{R}\right)_{\infty}} \sum_{n=0}^{k}(-1)^{n} q^{\binom{n+1}{2}^{R-n S}}\left(1-q^{(2 n+1) S}\right)+(-1)^{k-1}
$$

has nonnegative coefficients.
For convenience, we will say a truncated series satisfies positivity property.

Note.

$$
\frac{(-1)^{k}}{(q ; q)_{\infty}} \sum_{n=0}^{k}(-1)^{n} q^{\binom{n+1}{2} R-n S}\left(1-q^{(2 n+1) S}\right)
$$

satisfies positivity property. (Andrews and Bressoud - Partition Sieves)
Note. This conjecture was proved by R. Mao and Y. independently in 2015, and reproved by C. Wang and Y. in 2019.

Papers on this topic

- Andrews, Merca: The truncated pentagonal number theorem (JCTA, 119 (2012), 1639-1643)
- Guo, Zeng: Two truncated identities of Gauss (JCTA, 120 (2013), 700-707)
- Mao: Proofs of two conjectures on truncated series (JCTA, 130 (2015), 15-25)
- Y. : A truncated Jacobi triple product theorem (JCTA, 130 (2015), 1-14)
- Kolitsch: Another approach to the truncated pentagonal number theorem (Int. J. Number Theory 11 (2015) 1563-1569)
- He, Ji, Zang: Bilateral truncated Jacobi's identity (European J. Combin., 51 (2016), 255-267)
- Chan, Ho, Mao: Truncated series from the quintuple product identity (J. Number Theory, 169 (2016), 420-438)
- Andrews, Merca: Truncated theta series and a problem of Guo and Zeng (JCTA, 154 (2018), 610-619)
- Ballantine, Merca, Passary, Y.: Combinatorial proofs of two truncated theta series theorems (JCTA, 160 (2018), 168-185)
- Merca, Wang, Y. : A truncated theta identity of Gauss and overpartitions into odd parts (Ann. Comb. 23 (2019), 907-915)
- Wang, Y. : Truncated Jacobi triple product series (JCTA, 166 (2019), 382-392)
- Wang, Y. : Truncated Hecke-Rogers type series (Adv. Math, 365 (2020), 107051, 19 pp)

Analytic approach

Transformation formulas are main tools.

- Andrews' formula for the truncated pentagonal number theorem:

$$
\sum_{n=0}^{m}(-1)^{n} q^{n(3 n+1) / 2}\left(1-q^{2 n+1}\right)=(-1)^{m} q^{\binom{m+1}{2}} \sum_{n=0}^{m} \frac{\left(q^{-m} ; q\right)_{n}\left(q^{m+1} ; q\right)_{n+1}}{(q ; q)_{n}}
$$

- Shank's formula for the work of Guo and Zeng:

$$
\sum_{n=0}^{m}(-1)^{n} q^{n(2 n+1)}\left(1-q^{2 n+1}\right)=(-1)^{m} q^{2\binom{m+1}{2}} \sum_{n=0}^{m} \frac{\left(q^{-2 m} ; q^{2}\right)_{n}\left(q^{2 m+2} ; q^{2}\right)_{n+1}}{\left(q^{2} ; q^{2}\right)_{n}\left(-q ; q^{2}\right)_{n+1}}
$$

- Liu's formula: For an arbitrary sequence $\left\{A_{n}\right\}$,

$$
\begin{aligned}
& \sum_{n=0}^{m}(-1)^{n} q^{\binom{n}{2}}\left(1-q^{2 n+1}\right) \sum_{j=0}^{n}\left(q^{-n}, q^{n+1} ; q\right)_{j} q^{j} A_{j} \\
& \quad=(-1)^{m} q^{\binom{m+1}{2}} \sum_{n=0}^{m}\left(q^{-m} ; q\right)_{n}\left(q^{m+1} ; q\right)_{n+1} A_{n}
\end{aligned}
$$

Sketch of the proof of Andrews-Merca

$$
\begin{aligned}
& \frac{1}{(q ; q)_{\infty}} \sum_{j=0}^{k-1}(-1)^{j} q^{\frac{j(3 j+1)}{2}}\left(1-q^{2 j+1}\right) \\
& =\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{\infty}} \sum_{n=0}^{k-1} \frac{\left(q^{-k+1} ; q\right)_{n}\left(q^{k} ; q\right)_{n+1}}{(q ; q)_{n}} \\
& =\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k-1}} \sum_{n=0}^{k-1} \frac{\left(q^{-k+1} ; q\right)_{n}}{(q ; q)_{n}\left(q^{k+n+1} ; q\right)_{\infty}} \\
& =\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k-1}} \sum_{n=0}^{k-1} \frac{\left(q^{-k+1} ; q\right)_{n}}{(q ; q)_{n}} \sum_{j=0}^{\infty} \frac{q^{(k+n+1) j}}{(q ; q)_{j}} \\
& =\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k-1}} \sum_{j=0}^{\infty} \frac{q^{(k+1) j}}{(q ; q)_{j}} \sum_{n=0}^{k-1} \frac{\left(q^{-k+1} ; q\right)_{n} q^{j n}}{(q ; q)_{n}} \\
& =\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k-1}} \sum_{j=0}^{\infty} \frac{q^{(k+1) j}}{(q ; q)_{j}}\left(q^{-k+1+j} ; q\right)_{k-1} \\
& =1+\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k-1}} \sum_{j=k}^{\infty} \frac{q^{(k+1) j}}{(q ; q)_{j}}\left(q^{j-k+1} ; q\right)_{k-1} \\
& =1+(-1)^{k-1} q^{\binom{k}{2}} \sum_{j=k}^{\infty} \frac{q^{(k+1) j}}{(q ; q)_{j}} \frac{(q ; q)_{j-1}}{(q ; q)_{k-1}(q ; q)_{j-k}} . \\
& \text { (by the } q \text {-binomial theorem) } \\
& \text { (by the } q \text {-Chu Vandermonde) }
\end{aligned}
$$

Combinatorial approach

Papers with more combinatorial flavors:

- Y. : A truncated Jacobi triple product theorem (JCTA, 130 (2015), 1-14)
- L. Kolitsch: Another approach to the truncated pentagonal number theorem (Int. J. Number Theory 11 (2015) 1563-1569)
- He, Ji, Zang: Bilateral truncated Jacobi's identity (European J. Combin., 51 (2016), 255-267)
- Ballantine, Merca, Passary, Y.: Combinatorial proofs of two truncated theta series theorems (JCTA, 160 (2018), 168-185)
- Merca, Wang, Y. : A truncated theta identity of Gauss and overpartitions into odd parts (Ann. Comb. 23 (2019), 907-915)

There exists no unified treatment.

Xia's new truncated series

Recently, Ernest Xia found several new truncated series identities and asked for their combinatorial proofs.

- Xia's truncated series:

$$
\begin{aligned}
&(q ; q)_{\infty} \longrightarrow \\
& \sum_{j=0}^{k-1}(-1)^{j} q^{3 j(j+1) / 2}\left(1-q^{j+1}\right)\left(1-q^{2 j+2}\right), \\
& \frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \longrightarrow \sum_{j=0}^{k-1}(-1)^{j} q^{j(j+1)}\left(1-q^{j+1}\right)^{2}, \\
& \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}} \longrightarrow \sum_{j=0}^{k-1}(-1)^{j} q^{2 j^{2}+j}\left(1-q^{2 j+2}\right)\left(1-q^{4 j+4}\right) .
\end{aligned}
$$

Xia's identities

$$
\begin{aligned}
& \frac{1}{(q ; q)_{\infty}} \sum_{j=0}^{k-1}(-1)^{j} q^{3 j(j+1) / 2}\left(1-q^{j+1}\right)\left(1-q^{2 j+2}\right) \\
& \quad=1+(-1)^{k-1} q^{\binom{k}{2}} \sum_{n=k}^{\infty} \frac{q^{n(k+2)}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{j=0}^{k}(-1)^{j} q^{j(j+1)}\left(1-q^{j+1}\right)^{2} \\
& \quad=1+(-1)^{k} \frac{(-q ; q)_{k+1}}{(q ; q)_{k}} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)}\left(-q^{n+3} ; q\right)_{\infty}}{\left(q^{n+3} ; q\right)_{\infty}} .
\end{aligned}
$$

©

$$
\begin{aligned}
& \frac{\left(-q^{3} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{j=0}^{k}(-1)^{j} q^{2 j^{2}+j}\left(1-q^{2 j+2}\right)\left(1-q^{4 j+4}\right) \\
& \quad=1+(-1)^{k} \frac{\left(-q^{3} ; q^{2}\right)_{k+1}}{\left(q^{2} ; q^{2}\right)_{k}} \sum_{n=k}^{\infty} \frac{q^{(2 n+3)(k+1)}\left(-q^{2 n+5} ; q^{2}\right)_{\infty}}{\left(q^{2 n+6} ; q^{2}\right)_{\infty}} .
\end{aligned}
$$

A simple version of Chen's combinatorial telescoping method

$$
\begin{gathered}
\sum_{j=0}^{k}(-1)^{j} F_{j}(x)=(-1)^{k} G_{k}(x) . \\
F_{k}(x)=G_{k}(x)+G_{k-1}(x) . \\
G_{k}(x) \longrightarrow G_{k}^{\prime}(x) . \\
F_{k}(x)=G_{k}(x)+G_{k-1}^{\prime}(x) .
\end{gathered}
$$

$M_{k}(n)$ (Andrews and Merca)

Theorem

$$
\frac{(-1)^{k-1}}{(q ; q)_{\infty}} \sum_{j=0}^{k-1}(-1)^{j} q^{j(3 j+1) / 2}\left(1-q^{2 j+1}\right)=(-1)^{k-1}+\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

- $M_{k}(n):=$ \# partitions of n where k is the least positive integer that is not a part and there are more parts $>k$ than there are parts $<k$.

$$
\sum_{n=0}^{\infty} M_{k}(n) q^{n}=\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

$M_{k}(n)$ (Andrews and Merca)

Theorem

$$
\frac{(-1)^{k-1}}{(q ; q)_{\infty}} \sum_{j=0}^{k-1}(-1)^{j} q^{j(3 j+1) / 2}\left(1-q^{2 j+1}\right)=(-1)^{k-1}+\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

- $M_{k}(n):=$ \# partitions of n where k is the least positive integer that is not a part and there are more parts $>k$ than there are parts $<k$.

$$
\sum_{n=0}^{\infty} M_{k}(n) q^{n}=\sum_{n=k}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

- The theorem above can be rewritten as follows:

$$
\frac{q^{k(3 k+1) / 2}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}}=\sum_{n=0}^{\infty}\left(M_{k}(n)+M_{k+1}(n)\right) q^{n}
$$

- Idea: Define two partition functions $m_{k}(n)$ and $m_{k+1}^{\prime}(n)$, which are equal to $M_{k}(n)$ and $M_{k+1}(n)$, respectively, and then show

$$
\sum_{n=0}^{\infty}\left(m_{k}(n)+m_{k+1}^{\prime}(n)\right) q^{n}=\frac{q^{k(3 k+1) / 2}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}}
$$

Combinatorial proof of the truncated pentagonal number theorem

Notation: f_{i} counts the number of parts of size i.

- $m_{k}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $k+1 \leq f_{k} \leq x$, where x is the smallest part $>k$; if there are no parts $>k, x=\infty$.

Then,

$$
\sum_{n \geq 0} m_{k}(n) q^{n}=\frac{q^{\binom{k}{2}+k(k+1)}}{(q ; q)_{k-1}} \sum_{n \geq 0} \frac{q^{(k+1) n}}{(q ; q)_{n}\left(1-q^{n+k}\right)}
$$

Combinatorial proof of the truncated pentagonal number theorem

Notation: f_{i} counts the number of parts of size i.

- $m_{k}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $k+1 \leq f_{k} \leq x$, where x is the smallest part $>k$; if there are no parts $>k, x=\infty$.

Then,

$$
\sum_{n \geq 0} m_{k}(n) q^{n}=\frac{q^{\binom{k}{2}+k(k+1)}}{(q ; q)_{k-1}} \sum_{n \geq 0} \frac{q^{(k+1) n}}{(q ; q)_{n}\left(1-q^{n+k}\right)}
$$

Recall

$$
\sum_{n \geq 0} M_{k}(n) q^{n}=\sum_{n \geq 0} \frac{q^{\binom{k}{2}+(k+1)(n+k)}}{(q ; q)_{n+k}}\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right]
$$

- $m_{k+1}^{\prime}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $f_{k}>x$, where x is the smallest part $>k+1$ and x exists.

Then,

$$
\sum_{n \geq 0} m_{k+1}^{\prime}(n) q^{n}=\frac{q^{\binom{k}{2}+k(k+3)}}{(q ; q)_{k-1}} \sum_{n \geq 1} \frac{q^{(k+2) n}}{\left(1-q^{k}\right)(q ; q)_{n-1}\left(1-q^{n+k}\right)}
$$

- $m_{k+1}^{\prime}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $f_{k}>x$, where x is the smallest part $>k+1$ and x exists.

Then,

$$
\sum_{n \geq 0} m_{k+1}^{\prime}(n) q^{n}=\frac{q^{\binom{k}{2}+k(k+3)}}{(q ; q)_{k-1}} \sum_{n \geq 1} \frac{q^{(k+2) n}}{\left(1-q^{k}\right)(q ; q)_{n-1}\left(1-q^{n+k}\right)}
$$

Recall

$$
\sum_{n \geq 0} M_{k+1}(n) q^{n}=\sum_{n \geq 0} \frac{q^{\binom{k}{2}+k+(k+2)(n+k+1)}}{(q ; q)_{n+k+1}}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] .
$$

- $m_{k}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $k+1 \leq f_{k} \leq x$, where x is the smallest part $>k$; if there are no parts $>k, x=\infty$.
- $m_{k+1}^{\prime}(n):=$ \# partitions of n satisfying the following conditions:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $f_{k}>x$, where x is the smallest part $>k+1$ and x exists.
- $m_{k}(n)+m_{k+1}^{\prime}(n)$ counts the number of partitions of n satisfying the following:
i) $f_{i} \geq 1$ for $i=1, \ldots, k-1$;
ii) $f_{k} \geq k+1$;
iii) if $f_{k+1} \geq 1$, then $f_{k}=k+1$.

Then

$$
\sum_{n \geq 0}\left(m_{k}(n)+m_{k+1}^{\prime}(n)\right) q^{n}=\frac{q^{\binom{k}{2}+k(k+1)}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}}
$$

Xia's identity on overpartitions

Recall

$$
\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{j=0}^{k}(-1)^{j} q^{j(j+1)}\left(1-q^{j+1}\right)^{2}=1+(-1)^{k} \frac{(-q ; q)_{k+1}}{(q ; q)_{k}} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)}\left(-q^{n+3} ; q\right)_{\infty}}{\left(q^{n+3} ; q\right)_{\infty}} .
$$

Define $C_{k}(n)$ as follows:

$$
\sum_{n \geq 0} C_{k}(n) q^{n}=\frac{(-q ; q)_{k+1}}{(q ; q)_{k}} \sum_{n=k}^{\infty} \frac{q^{(n+2)(k+1)}\left(-q^{n+3} ; q\right)_{\infty}}{\left(q^{n+3} ; q\right)_{\infty}}
$$

Then the identity above is equivalent to

$$
\sum_{n \geq 0}\left(C_{k}(n)+C_{k-1}(n)\right) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left(1-q^{k+1}\right)^{2} q^{k(k+1)}
$$

We will define ovepartition functions $c_{k}(n)$ and $c_{k-1}^{\prime}(n)$ which equal $C_{k}(n)$ and $C_{k-1}(n)$, respectively, and then we prove combinatorially the following identity

$$
\sum_{n \geq 0}\left(c_{k}(n)+c_{k-1}^{\prime}(n)\right) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}\left(1-q^{k+1}\right)^{2} q^{k(k+1)}
$$

Sketch of Proof

Notation: $f_{\bar{i}}$ counts the number of overlined parts of size i.

- $c_{k}(n):=\#$ overpartitions of n satisfying the following conditions:
i) $f_{k+1}=f_{\overline{k+1}}=0$;
ii) $f_{k+2}=0$;
iii) $f_{k} \geq x$, where x is the smallest part $\geq k+2$ and x exists;

Case 1: x is overlined and unique. Then the generating function is

$$
\frac{(-q ; q)_{k}}{(q ; q)_{k}} \sum_{n \geq 1} \frac{(-1 ; q)_{n-1} q^{k(k+2)+(k+2) n+n-1}}{(q ; q)_{n-1}\left(1-q^{n+k}\right)}
$$

Case 2: x is non-overlined but unique. Then the generating function is

$$
\frac{(-q ; q)_{k}}{(q ; q)_{k}} \sum_{n \geq 1} \frac{(-1 ; q)_{n-1} q^{(k+3)(k+n)+n-1}}{(q ; q)_{n-1}\left(1-q^{n+k}\right)}
$$

Case 3: x is not unique. Then the generating function is

$$
\frac{(-q ; q)_{k}}{(q ; q)_{k}} \sum_{n \geq 1} \frac{(-1 ; q)_{n-1} q^{(k+3)(k+n)}}{(q ; q)_{n-2}\left(1-q^{n+k}\right)}
$$

- $c_{k}(n):=\#$ overpartitions of n satisfying the following conditions:
i) $f_{k+1}=f_{\overline{k+1}}=0$;
ii) $f_{k+2}=0$;
iii) $f_{k} \geq x$, where x is the smallest part $\geq k+2$ and x exists;

Thus

$$
\sum_{n \geq 0} c_{k}(n) q^{n}=\frac{(-q ; q)_{k+1}}{(q ; q)_{k}} \sum_{n \geq 1} \frac{(-1 ; q)_{n-1} q^{(k+2)(k+n)+n-1}}{(q ; q)_{n-1}\left(1-q^{n+k}\right)}=\sum_{n \geq 0} C_{k}(n) q^{n}
$$

- $c_{k-1}^{\prime}(n):=$ \# overpartitions of n satisfying the following conditions:
i) $f_{k+1}=f_{\overline{k+1}}=0$;
ii) $f_{k} \geq k+1$;
iii) $f_{k}<x$, where x is the smallest part $\geq k+2$; if there are no parts $\geq k+2$, then $x=\infty$.

Case 1: $x=\infty$. Then the generating function is

$$
\frac{(-q ; q)_{k} q^{k(k+1)}}{(q ; q)_{k}} .
$$

Case 2: $x<\infty$. Then the generating function is

$$
\frac{(-q ; q)_{k}}{(q ; q)_{k-1}} \sum_{n \geq 1} \frac{(-1 ; q)_{n} q^{k(k+1)+(k+2)_{n}}}{(q ; q)_{n}\left(1-q^{n+k}\right)} .
$$

Thus,

$$
\sum_{n \geq 0} c_{k-1}^{\prime}(n) q^{n}=\frac{(-q ; q)_{k} q^{k(k+1)}}{(q ; q)_{k-1}} \sum_{n \geq 0} \frac{(-1 ; q)_{n} q^{(k+2) n}}{(q ; q)_{n}\left(1-q^{n+k}\right)}=\sum_{n \geq 0} C_{k-1}(n) q^{n}
$$

It follows from the definitions that $c_{k}(n)+c_{k-1}^{\prime}(n)$ counts the number of partitions of n satisfying the following:
i) $f_{k+1}=f_{\overline{k+1}}=0$;
ii) $f_{k} \geq k+1$;
iii) $f_{k+2} \geq 1$, then $f_{k}=k+1$.

Thus,

$$
\begin{aligned}
\sum_{n \geq 0}\left(c_{k}(n)+c_{k-1}^{\prime}(n)\right) q^{n} & =\frac{q^{k(k+1)}\left(1-q^{k+1}\right)(-q ; q)_{\infty}}{\left(1+q^{k+1}\right)(q ; q)_{\infty}}-\frac{q^{k(k+2)+k+2}\left(1-q^{k+1}\right)(-q ; q)_{\infty}}{\left(1+q^{k+1}\right)(q ; q)_{\infty}} \\
& =\frac{q^{k(k+1)}\left(1-q^{k+1}\right)^{2}(-q ; q)_{\infty}}{\left(1+q^{k+1}\right)(q ; q)_{\infty}}
\end{aligned}
$$

Remarks

(1) Can we prove the truncated Jacobi triple product theorem?

For $1 \leq S \leq R / 2$,

$$
\frac{(-1)^{k}}{\left(q^{R}, q^{S}, q^{R-S} ; q^{R}\right)_{\infty}} \sum_{n=0}^{k}(-1)^{n} q^{\binom{n+1}{2}^{R-n S}}\left(1-q^{(2 n+1) S}\right)+(-1)^{k-1}
$$

has nonnegative coefficients.
(2) Does this method work for other truncated theorems?

Thank you!

