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Algebraic sequences

Fq denotes the finite field with q elements.

Let s(n)n≥0 be a sequence of elements in Fq.

s(n)n≥0 is algebraic if there exists a nonzero polynomial
P(x , y) ∈ Fq[x , y ] such that P(x ,

∑
n≥0 s(n)xn) = 0.

Combinatorial motivation: Integer sequences modulo p.

Example
Catalan numbers C(n)n≥0 = 1,1,2,5,14,42,132,429, . . .

F (x) =
∑

n≥0 C(n)xn satisfies xy2 − y + 1 = 0 over Q.

F (x) =
∑

n≥0(C(n) mod 3)xn satisfies xy2 + 2y + 1 = 0 over F3.
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Automatic sequences

A sequence s(n)n≥0 is q-automatic there is an automaton that outputs
s(n) when fed the base-q digits of n.
Convention in this talk: start with the least significant digit.

This automaton computes C(n) mod 3:
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C(9) = 4862 ≡ ? mod 3. Since 9 = 1003, C(9) ≡ 2 mod 3.

(C(n) mod 3)n≥0 = 1,1,2,2,2,0,0,0,2,2, . . . is 3-automatic.
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Theorem (Christol 1979/1980)
A sequence s(n)n≥0 of elements in Fq is algebraic if and only if it is
q-automatic.

Two ways to represent such sequences: polynomials and automata.

How does the size of the automaton (number of states) depend on the
x-degree (height) and y -degree (degree) of the polynomial?
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Theorem (Bridy 2017)
Let s(n)n≥0 be an algebraic sequence of elements in Fq.
If its minimal polynomial has height h, degree d, and genus g, then the
number of states in its minimal automaton is at most

(1 + o(1))qh+d+g−1,

where o(1) tends to 0 as any of q,h,d ,g gets large.

The genus satisfies g ≤ (h− 1)(d − 1); generically g = (h− 1)(d − 1).

Corollary

The number of states is at most (1 + o(1))qhd .

Can we get this bound without algebraic geometry? Yes.

Is the bound sharp? We suspect yes, but this is an open question.
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How to construct an automaton?

Let r ∈ {0,1, . . . ,q − 1}.
The Cartier operator Λr picks out every qth term, starting with s(r):

Λr (s(n)n≥0) := s(qn + r)n≥0

Iteratively apply Λ0,Λ1, . . . ,Λq−1 to s(n)n≥0.
Create one state in the automaton for each distinct sequence.

Let s(n) = (C(n) mod 3). s(n)n≥0 = 1,1,2,2,2,0,0,0,2, . . . .

Λ0(s(n)n≥0) = s(3n + 0)n≥0 = 1,2,0,2,1,0,0,0,0, . . . new!
Λ1(s(n)n≥0) = s(3n + 1)n≥0 = 1,2,0,2,1,0,0,0,0, . . . = Λ0(s(n)n≥0)
Λ2(s(n)n≥0) = s(3n + 2)n≥0 = 2,0,2,1,0,0,0,0,2, . . . new!
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Label each state with the initial term of the corresponding sequence.
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Λ0(Λ0(s(n)n≥0)) = 1,2,0,2,1,0,0,0,0,2, . . . = Λ0(s(n)n≥0)
Λ1(Λ0(s(n)n≥0)) = 2,1,0,1,2,0,0,0,0,1, . . . new!
Λ2(Λ0(s(n)n≥0)) = 0,0,0,0,0,0,0,0,0,0, . . . new!

Λr (Λ2(s(n)n≥0)) . . .
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A sequence is q-automatic if and only if this process terminates.

But we can’t tell if sequences are equal from finitely many terms.

Use a different representation: diagonals of rational functions.
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Theorem (Furstenberg 1967)

Let K be a field, and let P(x , y) ∈ K [x , y ] such that ∂P
∂y (0,0) 6= 0.

If F (x) ∈ K JxK satisfies F (0) = 0 and P(x ,F (x)) = 0, then

F (x) = D

(
y ∂P
∂y (xy , y)

P(xy , y)/y

)
.

The arguments xy arise from shearing the array of coefficients.

It will be more convenient to not shear. Then

F (x) = C

(
y ∂P
∂y (x , y)

P(x , y)/y

)

where C projects a Laurent series to the column
〈
x iy0 : i ≥ 0

〉
.
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Example

∑
n≥0

(C(n) mod 3)xn satisfies xy2 + 2y + 1 = 0 over F3.

∑
n≥1

(C(n) mod 3)xn is the y0 column of

y ∂P
∂y (x, y)

P(x, y)/y
=

y(2xy + (2x + 2))

(xy2 + (2x + 2)y + x)/y
= 0x0y0 + 1x0y1 + 0x0y2 + 0x0y3 + 0x0y4 + 0x0y5 + · · ·

+ 0x1y−1 + 1x1y0 + 0x1y1 + 2x1y2 + 0x1y3 + 0x1y4 + · · ·

+ 0x2y−2 + 1x2y−1 + 2x2y0 + 0x2y1 + 1x2y2 + 2x2y3 + · · ·

+ 0x3y−3 + 1x3y−2 + 1x3y−1 + 2x3y0 + 0x3y1 + 1x3y2 + · · ·

+ 0x4y−4 + 1x4y−3 + 0x4y−2 + 2x4y−1 + 2x4y0 + 0x4y1 + · · ·

+ 0x5y−5 + 1x5y−4 + 2x5y−3 + 0x5y−2 + 0x5y−1 + 0x5y0 + · · ·
+ · · · .
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We have embedded s(n)n≥0 into a bivariate series S0
Q where Q = P/y .

Can we compute Λr (s(n)n≥0)?

Define

Λr (xn) =

{
x

n−r
q if n ≡ r mod q

0 otherwise

and extend linearly to power series. Define Λr ,s analogously.

The map
λr ,0(S) := Λr ,0

(
SQq−1

)
on Fq[x , y ] contains all information about s 7→ Λr (s) (and some extra):

ΛrC
(

S
Q

)
= C

(
Λr ,0

(
SQq−1)
Q

)

We construct an automaton by iterating λ0,0, . . . , λq−1,0.
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(C(n) mod 3)n≥1 is a column of S0
Q := y(2xy+2x+2)

(xy2+(2x+2)y+x)/y .

λ0,0(S0) = xy + x new!
λ1,0(S0) = 2 new!
λ2,0(S0) = y + 1 new!

λ0,0(xy + x) = xy + x = λ0,0(S0) . . .

If two polynomials are equal, the corresponding sequences are equal.
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The automaton may not be minimal.
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Let V :=
〈
x iy j : 0 ≤ i ≤ h and 0 ≤ j ≤ d − 1

〉
. dim V = (h + 1)d

Proposition
For each r ∈ {0,1, . . . ,q − 1}, we have λr ,0(S0) ∈ V.
For each r ∈ {1, . . . ,q − 1},

λr ,0(V ) ⊆
〈

x iy j : 0 ≤ i ≤ h − 1 and 0 ≤ j ≤ d − 1
〉

which has dimension hd.

Corollary:
The constructed automaton has at most qhd + |orbλ0,0(S0)| states.

It remains to bound |orbλ0,0(S0)|.
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Certain orders of the basis for V show that λ0,0 is highly structured.

Example
Let q = 3, h = 2, d = 4, and

P = (x2 + x + 2)y4 + xy3 + (2x + 1)y2 + (x2 + 1)y + 2x2 + x .

Basis: (
x1y0

, x1y1
, x1y2

, x0y1
, x0y2

, x0y0
, x1y3

, x0y3
, x2y0

, x2y1
, x2y2

, x2y3
)
.

Matrix for λ0,0: 

1 1 1 2 1 2 0 0 2 2 0 0
1 2 1 2 2 2 1 2 1 1 1 2
2 2 1 2 1 2 1 2 1 1 1 1

1 2 1 1
0 1 1 1

1
2 2 1

1
1 1 1 0
2 1 0 1
1 0 0 2

1
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Basis of V :

x0y0 x1y0 . . . xh−1y0 xhy0

x0y1 x1y1 . . . xh−1y1 xhy1

...
... . .

. ...
...

x0yd−2x1yd−2 . . . xh−1yd−2xhyd−2

x0yd−1x1yd−1 . . . xh−1yd−1xhyd−1

Theorem
Under applications of λ0,0 on V, information flows as follows.

The left, right, and top subspaces are affected only by themselves.
Since |V ◦| = q(h−1)(d−1), we show the borders contribute ≤ qh+d−1.
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The left, right, and top subspaces are essentially univariate.

Fix R ∈ Fq[z]. How big are orbits under λ0(S) := Λ0
(
SRq−1)?

This is “just” a linear transformation.

Example

Let q = 3 and R = (z2 + 1)(z3 + z2 + 2) ∈ F3[z].
Compute orbλ0(S) from each S ∈ F3[z] with deg S ≤ deg R.
Period lengths that occur: {1,2,3,6}

Example

Let q = 3 and R = (z2 + 1)(z4 + z + 2) ∈ F3[z].
Period lengths: {1,2,4}

Consider all polynomials R with fixed degree.
Surprising fact: The maximal period length doesn’t depend on q.
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Theorem
Let R ∈ Fq[z] such that R 6= 0, z - R, and R is square-free.
Let cR1 · · ·Rm be its factorization into irreducibles, and let

` = lcm(deg R1, . . . ,deg Rm).

Then λ`0(S) = S for all S ∈ Fq[z] with deg S ≤ deg R.

The upper bound is achieved when ` is maximized, subject to
deg R1 + · · ·+ deg Rm = deg R.

The Landau function L(n) is the maximum value of lcm(n1, . . . ,nm)
over all integer partitions (n1, . . . ,nm) of n. Also arises in Bridy’s proof.

Corollary
The number of states is at most

qhd + q(h−1)(d−1)L(h)L(d)2 +
⌈
logq max(h,d ,q)

⌉
.
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Asymptotically. . .

Landau (1903): log L(n) ∼
√

n log n

Massias–Nicolas–Robin (1988): L(n) ≤ e(1+o(1))
√

n log n

Corollary

The number of states is at most (1 + o(1))qhd .

Example
The factor 1 + o(1) cannot be removed. Let q = 2 and

P = (x3 + x2 + 1)y3 + (x3 + 1)y2 + (x3 + x2 + x + 1)y + x3 + x2

with h = 3 and d = 3. The number of states is 532 > 512 = qhd .
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