Combinatorial Exploration

Jay Pantone Marquette University
with:
Michael Albert
Christian Bean
Anders Claesson
Émile Nadeau Henning Ulfarsson

Applications of Computer Algebra 2021
Session on Algorithmic Combinatorics
July 25, 2021

- Structure in combinatorial objects

Graphs:

R. A. Nonenmacher / CC BY-SA

Questions:

- How many are there of each size?
, explicit formula, generating function, polynomial-time algorithm
- How does the counting sequence grow asymptotically as $n \rightarrow \infty$?

〉 How can I sample an object of size n uniformly at random?
〉 How can I build the objects of size n from the objects of smaller size?

An up-down walk is a walk in the plane that starts at the origin and takes only NE and SE steps.

Before we ask questions, we need to understand the structure.
> The set of up-down walks of size n can be built by appending either a NE step or a SE step to every updown walk of size $n-1$.

- Let's write this structural description in a tree format.

Structural description:

Let \mathscr{W} be the set of up-down walks.

Every walk is either empty, or ends with \nearrow or ends with

Every walk that ends in \nearrow is the concatenation of [any walk] + [\nearrow]

Every walk that ends in \downarrow is the concatenation of [any walk] + [\]

What do we learn from this structural decomposition?

Systems of equations for generating functions!

$$
\begin{aligned}
A(x) & =B(x)+C(x)+D(x) \\
B(x) & =1 \\
C(x) & =A(x) E(x) \\
D(x) & =A(x) F(x) \\
E(x) & =x \\
F(x) & =x \\
\Longrightarrow A(x) & =\frac{1}{1-2 x}=1+2 x+4 x^{2}+8 x^{3}+\cdots
\end{aligned}
$$

These structural description trees are just a pictorial way to represent a combinatorial specification.

$$
\begin{aligned}
& A \rightarrow(B, C, D) \\
& B \rightarrow\{\varepsilon\} \\
& C \rightarrow(A, E) \\
& D \rightarrow(A, F) \\
& E \rightarrow\{\nearrow\} \\
& F \rightarrow\{\searrow\}
\end{aligned}
$$

Slightly more complicated:
$\mathscr{F}=$ the set of walks that don't go up three times in a row

Find a structural description of the set of objects

|
let's automate this part

Apply analytic combinatorics to learn about the sequence

Requirements:

- a domain of all objects (up-down walks)
- a representation for the sets of objects that you'll be working with ("W్ \nearrow " is the set of up-down walks that end with \nearrow)
- decomposition strategies to split the sets into (hopefully) simpler sets

Procedure:
> start with a subset of the domain that you want to understand (up-down walks that don't go up three times in a row)
> try to apply all decomposition strategies to it
> then apply all decomposition strategies to the new (hopefully) simpler sets, and repeat
> stop when you understand all the parts
develop strategies for a whole domain

> apply them to subsets of the domain you want to learn about

this is just a pictorial version of a list of combinatorial rules
when the giant list of rules you're generating contains a subset that is a combinatorial specification, you win!

To run Combinatorial Exploration on a new type of object，you just need to：
－decide on a good way to represent sets of those objects，and write a Python class for it

〉 decide on effective decomposition strategies（this is where domain－specific experience comes in handy）

〉 plug these right into our framework，and hit go

〉～50k lines of Python code https：／／github．com／PermutaTriangle／comb spec searcher

Domains we＇ve coded：
〉 permutation patterns（inspired this work）
－set partitions
＞Motzkin paths

Domains that seem promising on paper：
〉 polyominoes
－inversion sequences
〉 alternating sign matrices

Given a set of permutations B, you can study the set of permutations avoiding the permutations in B as patterns - these sets are called permutation classes.

For the cases where B contains two permutations of length 4, there are essentially 56 different permutation classes.
(https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes)

Their enumerations are all known now, but it took several decades and dozens of papers.

Combinatorial Exploration can enumerate all of them.

Computational Difficulties

Permutations avoiding 132:

$$
\begin{aligned}
& F_{0}(x)=F_{1}(x)+F_{2}(x) \\
& F_{1}(x)=F_{0}(x)^{2} \cdot F_{3}(x) \\
& F_{2}(x)=1 \\
& F_{3}(x)=x
\end{aligned}
$$

Permutations avoiding 1432 and 2143:

$$
\begin{aligned}
F_{0}(x) & =F_{547}(x)+F_{373}(x) \\
F_{1}(x) & =F_{0}(x)-F_{118}(x) \\
\ldots & \\
F_{549}(x) & =0
\end{aligned}
$$

550 equations \longrightarrow guess-and-check

Computational Difficulties - with 1 catalytic variable!
Permutations avoiding 123:

$$
\begin{aligned}
F_{0}(x) & =F_{11}(x)+F_{6}(x) \\
F_{1}(x) & =F_{12}(x) \cdot F_{2}(x) \\
F_{2}(x) & =F_{3}(x, 1) \\
F_{3}(x, y) & =F_{7}(x, y)+F_{8}(x, y) \\
F_{4}(x, y) & =F_{12}(x) \cdot F_{5}(x, y) \cdot F_{8}(x, y) \\
F_{5}(x, y) & =\frac{y F_{3}(x, y)-F_{3}(x, 1)}{y-1} \\
F_{6}(x) & =F_{1}(x) \\
F_{7}(x, y) & =F_{4}(x, y) \\
F_{8}(x, y) & =F_{10}(x, y)+F_{11}(x) \\
F_{9}(x, y) & =F_{13}(x, y) \cdot F_{8}(x, y) \\
F_{10}(x, y) & =F_{9}(x, y) \\
F_{11}(x) & =1 \\
F_{12}(x) & =x \\
F_{13}(x, y) & =x y
\end{aligned}
$$

Computational Difficulties — with 1 catalytic variable!

Much harder with hundreds of equations (intermediate computations become huge before simplifying again).

Is there a guess-and-check approach that could work?

Computational Difficulties - with 2+ catalytic variables!

$$
\begin{aligned}
& F_{0}(x)=F_{1}(x)+F_{15}(x) \\
& F_{1}(x)=F_{16}(x) \cdot F_{2}(x) \\
& F_{2}(x)=F_{3}(x, 1) \\
& F_{3}(x, y)=F_{12}(x, y)+F_{15}(x)+F_{4}(x, y) \\
& F_{4}(x, y)=F_{17}(x, y) \cdot F_{5}(x, y) \\
& F_{5}(x, y)=F_{14}(x, 1, y) \\
& F_{6}(x, y, z)=F_{11}(x, y, z)+F_{15}(x)+F_{7}(x, y, z)+F_{9}(x, y, z) \\
& F_{7}(x, y, z)=F_{17}(x, z) \cdot F_{8}(x, y, z) \\
& \begin{array}{l}
F_{8}(x, y, z)=\frac{y F_{14}\left(x, \frac{y}{z}, z\right)-z \cdot F_{14}(x, 1, z)}{y-z} \\
F_{9}(x, y, z)=F_{10}(x, y, z) \cdot F_{16}(x)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
F_{10}(x, y, z) & =\frac{z F_{6}(x, y, z)-F_{6}(x, y, 1)}{z-1} \\
F_{11}(x, y, z) & =F_{17}(x, y) \cdot F_{6}(x, y, z) \\
F_{12}(x, y) & =F_{13}(x, y) \cdot F_{16}(x) \\
F_{13}(x, y) & =\frac{y F_{3}(x, y)-F_{3}(x, 1)}{y-1} \\
F_{14}(x, y, z) & =F_{6}(x, y z, z) \\
F_{15}(x) & =1 \\
F_{16}(x) & =x \\
F_{17}(x, y) & =x y
\end{aligned}
$$

Motzkins paths avoiding: UDHH, UDUD, UHDH, UHHD
Proof tree for Motzkin paths avoiding: UDHH, UDUD, UHDH, UHHD

$$
\begin{aligned}
F & =1+x+x \cdot G \\
G & =x+x l \\
\Rightarrow G & =\frac{x}{1-x} \\
\Rightarrow F & =1+x+\frac{x^{2}}{1-x} \\
& =\frac{1}{1-x}
\end{aligned}
$$

Thank you!

