
Combinatorial
Exploration

Jay Pantone
Marquette University

Applications of Computer Algebra 2021

Session on Algorithmic Combinatorics

July 25, 2021

with:
Michael Albert
Christian Bean

Anders Claesson
Émile Nadeau

Henning Ulfarsson
a new approach to enumeration

ENUMERATIVE COMBINATORICS

‣ Structure in combinatorial objects

2

Graphs:

Integer
Partitions:

Plane
Partitions:

R. A. Nonenmacher / CC BY-SA

Kilom691 / CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/3.0

ENUMERATIVE COMBINATORICS

‣ Questions:

3

‣ How many are there of each size?
‣ explicit formula, generating function, polynomial-time algorithm

‣ How does the counting sequence grow asymptotically as
?

‣ How can I sample an object of size uniformly at random?

‣ How can I build the objects of size from the objects of
smaller size?

n → ∞

n

n

THE WORKFLOW OF ENUMERATIVE COMBINATORICS 4

Find a structural
description of the

combinatorial family

Convert to a
generating function

symbolic combinatorics

Apply analytic
combinatorics to learn

about the sequence

analytic combinatorics
the hard part!

EXAMPLE: WALKS

An up-down walk is a walk in the plane that starts at
the origin and takes only NE and SE steps.

5

size = # of steps = 20

EXAMPLE: WALKS 6

Before we ask questions, we need to understand the
structure.
‣ The set of up-down walks of size can be built by

appending either a NE step or a SE step to every up-
down walk of size .

‣ Let’s write this structural description in a tree format.

n

n − 1

EXAMPLE: WALKS 7

Structural description:
 Let be the set of up-down walks.𝒲

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

Every walk is either empty, or
ends with or ends with .↗ ↘

Every walk that ends in is the
concatenation of [any walk] + []

↗
↗

Every walk that ends in is the
concatenation of [any walk] + []

↘
↘

EXAMPLE: WALKS 8

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

What do we learn from this structural decomposition?

A

B C D

A E A F

Systems of equations for generating functions!

A(x) = B(x) + C(x) + D(x)
B(x) = 1
C(x) = A(x)E(x)
D(x) = A(x)F(x)
E(x) = x
F(x) = x

⟹ A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + ⋯

EXAMPLE: WALKS 9

𝒲

ε 𝒲↗

𝒲 ↗ 𝒲 ↘

These structural description trees are just a pictorial
way to represent a combinatorial specification.

A

B C D

A E A F

A → (B, C, D)
B → {ε}
C → (A, E)
D → (A, F)
E → { ↗ }
F → { ↘ }

every symbol on the right-hand side
appears on exactly one left-hand side

𝒲↘

EXAMPLE: WALKS 10

Slightly more complicated:
 = the set of walks that don’t go up three times in a rowℱ

ℱ

ε ℱ↗ ℱ↘

ℱ ↗ ℱ ↘

How do you find the right
structure? Experience,
trial-and-error, intuition, …

THE HARD PART… 11

Find a structural
description of the

set of objects

Convert to a
generating function

symbolic combinatorics

Apply analytic
combinatorics to learn

about the sequence

analytic combinatorics
let’s automate

this part

COMBINATORIAL EXPLORATION 12

Requirements:
‣ a domain of all objects (up-down walks)
‣ a representation for the sets of objects that you’ll be working with

(“ ” is the set of up-down walks that end with)
‣ decomposition strategies to split the sets into (hopefully) simpler sets

𝒲↗ ↗

Procedure:
‣ start with a subset of the domain that you want to understand

(up-down walks that don’t go up three times in a row)
‣ try to apply all decomposition strategies to it
‣ then apply all decomposition strategies to the new (hopefully)

simpler sets, and repeat
‣ stop when you understand all the parts

develop strategies for
a whole domain

apply them to subsets
of the domain you want

to learn about

COMBINATORIAL EXPLORATION 13

B C D E F G

H I J K L M N O P Q R S

this is just a pictorial version of a list
of combinatorial rules

A → (B, C)

A → (D, E)

A → (F, G)

B → (H, I)

B → (J, K)

D → (L, M)

E → (N, O)

E → (P, Q) G → (R, S)

when the giant list of rules you’re generating contains
a subset that is a combinatorial specification, you win!

A

SUCCESSES IN VARIOUS DOMAINS 14

To run Combinatorial Exploration on a new type of
object, you just need to:

‣ decide on a good way to represent sets of those
objects, and write a Python class for it

‣ decide on effective decomposition strategies (this is
where domain-specific experience comes in handy)

‣ plug these right into our framework, and hit go

‣ ~ 50k lines of Python code

https://github.com/PermutaTriangle/comb_spec_searcher

https://github.com/PermutaTriangle/comb_spec_searcher

SUCCESSES IN VARIOUS DOMAINS 15

Domains we’ve coded:

‣ permutation patterns (inspired this work)

‣ set partitions

‣ Motzkin paths

Domains that seem promising on paper:

‣ polyominoes

‣ inversion sequences

‣ alternating sign matrices

Given a set of permutations , you can study the set of
permutations avoiding the permutations in as
patterns — these sets are called permutation classes.

For the cases where contains two permutations of
length 4, there are essentially 56 different permutation
classes.
 (https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes)

Their enumerations are all known now, but it took
several decades and dozens of papers.

Combinatorial Exploration can enumerate all of them.

B
B

B

PERMUTATION PATTERNS 16

https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes

Computational Difficulties

Permutations avoiding 132:

Permutations avoiding 1432 and 2143:

550 equations guess-and-check

F0(x) = F1(x) + F2(x)
F1(x) = F0(x)2 ⋅ F3(x)
F2(x) = 1
F3(x) = x

F0(x) = F547(x) + F373(x)
F1(x) = F0(x) − F118(x)

⋯
F549(x) = 0

⟶

PERMUTATION PATTERNS 17

PERMUTATION PATTERNS 18

PERMUTATION PATTERNS 19

Computational Difficulties — with 1 catalytic variable!

Permutations avoiding 123:

F0(x) = F11(x) + F6(x)
F1(x) = F12(x) ⋅ F2(x)
F2(x) = F3(x,1)

F3(x, y) = F7(x, y) + F8(x, y)
F4(x, y) = F12(x) ⋅ F5(x, y) ⋅ F8(x, y)

F5(x, y) =
yF3(x, y) − F3(x,1)

y − 1
F6(x) = F1(x)

F7(x, y) = F4(x, y)
F8(x, y) = F10(x, y) + F11(x)
F9(x, y) = F13(x, y) ⋅ F8(x, y)

F10(x, y) = F9(x, y)
F11(x) = 1
F12(x) = x

F13(x, y) = xy

PERMUTATION PATTERNS 20

Computational Difficulties — with 1 catalytic variable!

Much harder with hundreds of equations
(intermediate computations become huge before
simplifying again).

Is there a guess-and-check approach that could
work?

PERMUTATION PATTERNS 21

Computational Difficulties — with 2+ catalytic
variables!

PERMUTATION PATTERNS 22

F0(x) = F1(x) + F15(x)
F1(x) = F16(x) ⋅ F2(x)
F2(x) = F3(x,1)

F3(x, y) = F12(x, y) + F15(x) + F4(x, y)
F4(x, y) = F17(x, y) ⋅ F5(x, y)
F5(x, y) = F14(x,1,y)

F6(x, y, z) = F11(x, y, z) + F15(x) + F7(x, y, z) + F9(x, y, z)
F7(x, y, z) = F17(x, z) ⋅ F8(x, y, z)

F8(x, y, z) =
yF14 (x,

y
z

, z) − z ⋅ F14(x,1,z)

y − z
F9(x, y, z) = F10(x, y, z) ⋅ F16(x)

F10(x, y, z) =
zF6(x, y, z) − F6(x, y,1)

z − 1
F11(x, y, z) = F17(x, y) ⋅ F6(x, y, z)

F12(x, y) = F13(x, y) ⋅ F16(x)

F13(x, y) =
yF3(x, y) − F3(x,1)

y − 1
F14(x, y, z) = F6(x, yz, z)

F15(x) = 1
F16(x) = x

F17(x, y) = xy

SET PARTITIONS 23

MOTZKIN PATHS 24

ALTERNATING SIGN MATRICES 25

POLYOMINOES 26

INVERSION SEQUENCES 27

Auton

qq.gg
fg fCxiy1

hltHI osrows
heal dog

Ets

f I3

just
I

5
1 Ex

jcx.gs y

Way jCExiy

28

Thank you!

