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ENUMERATIVE COMBINATORICS

‣ Structure in combinatorial objects
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ENUMERATIVE COMBINATORICS

‣ Questions:
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‣ How many are there of each size? 
‣ explicit formula, generating function, polynomial-time algorithm  

‣ How does the counting sequence grow asymptotically as  
? 

‣ How can I sample an object of size  uniformly at random? 

‣ How can I build the objects of size  from the objects of 
smaller size? 

n → ∞

n

n



THE WORKFLOW OF ENUMERATIVE COMBINATORICS 4

Find a structural 
description of the 

combinatorial family

Convert to a 
generating function 

symbolic combinatorics

Apply analytic 
combinatorics to learn 

about the sequence

analytic combinatorics
the hard part!



EXAMPLE: WALKS

An up-down walk is a walk in the plane that starts at 
the origin and takes only NE and SE steps.

5

size = # of steps = 20



EXAMPLE: WALKS 6

Before we ask questions, we need to understand the 
structure.
‣ The set of up-down walks of size  can be built by 

appending either a NE step or a SE step to every up-
down walk of size . 

‣ Let’s write this structural description in a tree format.

n

n − 1



EXAMPLE: WALKS 7

Structural description: 
        Let  be the set of up-down walks.𝒲

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

Every walk is either empty, or 
ends with  or ends with .↗ ↘

Every walk that ends in  is the 
concatenation of [any walk] + [ ]

↗
↗

Every walk that ends in  is the 
concatenation of [any walk] + [ ]

↘
↘



EXAMPLE: WALKS 8

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

What do we learn from this structural decomposition?

A

B C D

A E A F

Systems of equations for generating functions!

A(x) = B(x) + C(x) + D(x)
B(x) = 1
C(x) = A(x)E(x)
D(x) = A(x)F(x)
E(x) = x
F(x) = x

⟹ A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + ⋯



EXAMPLE: WALKS 9

𝒲

ε 𝒲↗

𝒲 ↗ 𝒲 ↘

These structural description trees are just a pictorial 
way to represent a combinatorial specification.

A

B C D

A E A F

A → (B, C, D)
B → {ε}
C → (A, E)
D → (A, F)
E → { ↗ }
F → { ↘ }

every symbol on the right-hand side 
appears on exactly one left-hand side 

𝒲↘



EXAMPLE: WALKS 10

Slightly more complicated: 
    = the set of walks that don’t go up three times in a rowℱ

ℱ

ε ℱ↗ ℱ↘

ℱ ↗ ℱ ↘

How do you find the right 
structure? Experience, 
trial-and-error, intuition, …



THE HARD PART… 11

Find a structural 
description of the 

set of objects

Convert to a 
generating function 

symbolic combinatorics

Apply analytic 
combinatorics to learn 

about the sequence

analytic combinatorics
let’s automate 

this part 
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Requirements: 
‣ a domain of all objects (up-down walks) 
‣ a representation for the sets of objects that you’ll be working with 

(“ ” is the set of up-down walks that end with ) 
‣ decomposition strategies to split the sets into (hopefully) simpler sets 

𝒲↗ ↗

Procedure: 
‣ start with a subset of the domain that you want to understand 

(up-down walks that don’t go up three times in a row) 
‣ try to apply all decomposition strategies to it  
‣ then apply all decomposition strategies to the new (hopefully) 

simpler sets, and repeat 
‣ stop when you understand all the parts

develop strategies for 
a whole domain

apply them to subsets 
of the domain you want 

to learn about
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B C D E F G

H I J K L M N O P Q R S

this is just a pictorial version of a list 
of combinatorial rules 

A → (B, C)

A → (D, E)

A → (F, G)

B → (H, I )

B → (J, K )

D → (L, M)

E → (N, O)

E → (P, Q) G → (R, S)

when the giant list of rules you’re generating contains 
a subset that is a combinatorial specification, you win! 

A



SUCCESSES IN VARIOUS DOMAINS 14

To run Combinatorial Exploration on a new type of 
object, you just need to: 

‣ decide on a good way to represent sets of those 
objects, and write a Python class for it 

‣ decide on effective decomposition strategies (this is 
where domain-specific experience comes in handy)   

‣ plug these right into our framework, and hit go  

‣ ~ 50k lines of Python code

https://github.com/PermutaTriangle/comb_spec_searcher

https://github.com/PermutaTriangle/comb_spec_searcher


SUCCESSES IN VARIOUS DOMAINS 15

Domains we’ve coded: 

‣ permutation patterns (inspired this work) 

‣ set partitions   

‣ Motzkin paths 

Domains that seem promising on paper: 

‣ polyominoes 

‣ inversion sequences 

‣ alternating sign matrices



Given a set of permutations , you can study the set of 
permutations avoiding the permutations in  as  
patterns — these sets are called permutation classes. 

 
For the cases where  contains two permutations of 
length 4, there are essentially 56 different permutation 
classes. 
                    (https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes) 

 

Their enumerations are all known now, but it took 
several decades and dozens of papers. 

Combinatorial Exploration can enumerate all of them.

B
B

B

PERMUTATION PATTERNS 16

https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes


Computational Difficulties 

Permutations avoiding 132: 

 

Permutations avoiding 1432 and 2143: 

 

550 equations  guess-and-check

F0(x) = F1(x) + F2(x)
F1(x) = F0(x)2 ⋅ F3(x)
F2(x) = 1
F3(x) = x

F0(x) = F547(x) + F373(x)
F1(x) = F0(x) − F118(x)

⋯
F549(x) = 0

⟶

PERMUTATION PATTERNS 17
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Computational Difficulties  — with 1 catalytic variable! 

Permutations avoiding 123: 

 

F0(x) = F11(x) + F6(x)
F1(x) = F12(x) ⋅ F2(x)
F2(x) = F3(x,1)

F3(x, y) = F7(x, y) + F8(x, y)
F4(x, y) = F12(x) ⋅ F5(x, y) ⋅ F8(x, y)

F5(x, y) =
yF3(x, y) − F3(x,1)

y − 1
F6(x) = F1(x)

F7(x, y) = F4(x, y)
F8(x, y) = F10(x, y) + F11(x)
F9(x, y) = F13(x, y) ⋅ F8(x, y)

F10(x, y) = F9(x, y)
F11(x) = 1
F12(x) = x

F13(x, y) = xy

PERMUTATION PATTERNS 20



Computational Difficulties  — with 1 catalytic variable! 

Much harder with hundreds of equations 
(intermediate computations become huge before 
simplifying again). 

Is there a guess-and-check approach that could 
work? 

PERMUTATION PATTERNS 21



Computational Difficulties  — with 2+ catalytic 
variables! 

PERMUTATION PATTERNS 22

 

F0(x) = F1(x) + F15(x)
F1(x) = F16(x) ⋅ F2(x)
F2(x) = F3(x,1)

F3(x, y) = F12(x, y) + F15(x) + F4(x, y)
F4(x, y) = F17(x, y) ⋅ F5(x, y)
F5(x, y) = F14(x,1,y)

F6(x, y, z) = F11(x, y, z) + F15(x) + F7(x, y, z) + F9(x, y, z)
F7(x, y, z) = F17(x, z) ⋅ F8(x, y, z)

F8(x, y, z) =
yF14 (x,

y
z

, z) − z ⋅ F14(x,1,z)

y − z
F9(x, y, z) = F10(x, y, z) ⋅ F16(x)

F10(x, y, z) =
zF6(x, y, z) − F6(x, y,1)

z − 1
F11(x, y, z) = F17(x, y) ⋅ F6(x, y, z)

F12(x, y) = F13(x, y) ⋅ F16(x)

F13(x, y) =
yF3(x, y) − F3(x,1)

y − 1
F14(x, y, z) = F6(x, yz, z)

F15(x) = 1
F16(x) = x

F17(x, y) = xy



SET PARTITIONS 23



MOTZKIN PATHS 24



ALTERNATING SIGN MATRICES 25



POLYOMINOES 26



INVERSION SEQUENCES 27
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Thank you!


