Jay Pantone

CO m bi n atO ri a I Marquette University
Exploration

Christian Bean

Anders Claesson

a hew approach to enumeration Emile Nadeau

Henning Ulfarsson

/\ -
Applications of Computer Algebra 2021 CB‘ ’ § \
C
Session on Algorithmic Combinatorics
July 25, 2021 f
(+] - [\ N\ \“ N\ N
\ ¢ NN \ e |c | ¢
N C

ENUMERATIVE COMBINATORICS 2

» Structure in combinatorial objects

N

Graphs: EEE EE EE B
HE SEEEH BN
E E H B
.
Integer e -
Partitions: (seam (an = =
N = =
EEEEE | EEE
m EE B
E B
EEEE .
Plane T =
Partitions:; i

R. A. Nonenmacher / CC BY-SA

Kilomé691 / CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/3.0

ENUMERATIVE COMBINATORICS 3

» Questions;

» How many are there of each size?
» explicit formula, generating function, polynomial-time algorithm

» How does the counting sequence grow asymptotically as
n— 007
» How can | sasmple an object of size n uniformly at random?

» How can | build the objects of size n from the objects of
smaller size?

THE WORKFLOW OF ENUMERATIVE COMBINATORICS

Find a structural
description of the
combinatorial family

symbolic combinatorics

the hard part!

Convert to a

generating function

analytic combinatorics

~~
~
~
N
-
~
-
e

Apply analytic
combinatorics to learn
about the sequence

EXAMPLE: WALKS

An up-down walk is a walk in the plane that starts at
the origin and takes only NE and SE steps.

Size = # of steps = 20

EXAMPLE: WALKS

Before we ask questions, we need to understand the
structure.

> T
3

ne set of up-down walks of size n can be built by

opending either a NE step or a SE step to every up-

down walk of sizen — 1.

> Let's write this structural description In a tree format.

EXAMPLE: WALKS 7

Structural description: Every walk is either empty, or
Let W be the set of up-down walks. ELSIUZEUEITURNG

Every walk that ends in \ is the
concatenation of [any walk] + [\,

Every walk that ends in " is the
concatenation of [any walk] + [']

EXAMPLE: WALKS 8

What do we learn from this structural decomposition?

Systems of equations for generating functions!

A(x) = B(x) + C(x) + D(x)
B(x) =1

C(x) = AX)E(x)

D(x) = A(x)F(x)

E(x)=x
F(x)=x

1 —2x

EXAMPLE: WALKS 9

These structural description trees are just a pictorial
way to represent a combinatorial specification.

A - (B,C,D)
B — {¢]

C - (AE)
D— (A F)
E—-{/}
F—{\}

every symbol on the right-hand side
appears on exactly one left-hand side

EXAMPLE: WALKS 10

Slightly more complicated:
F =the set of walks that don't go up three times in a row

How do you find the right
structure? Experience,
trial-and-error, intuition, ...

THE HARD PART...

11

Find a structural
description of the
set of objects

symbolic combinatorics

let's automate
this part

Convert to a

generating function

analytic combinatorics

Apply analytic
combinatorics to learn
about the sequence

COMBINATORIAL EXPLORATION 12

Requirements:
» a domain of all objects (up-down walks)

> a representation for the sets of objects that you'll be working with
(“W/" is the set of up-down walks that end with /)

» decomposition strategies to split the sets into (hopefully) simpler sets

Procedure:

» start with a subset of the domain that you want to understand
(up-down walks that don't go up three times in a row)

» try to apply all decomposition strategies to it

» then apply all decomposition strategies to the new (hopefully)
simpler sets, and repeat

» stop when you understand all the parts

apply them to subsets

develop strategies for ﬁ of the domain you want
a whole domain
to learn about

COMBINATORIAL EXPLORATION 13

A—(B,C) A A = (F,G)
"
B||C G
D — (L,M) N
B — (H,I) G = &)
B - (J,K)
H|| I J|| K L R||S

this Is just a pictorial version of a list
of combinatorial rules

when the giant list of rules you're generating contains
a subset that is a combinatorial specification, you win!

SUCCESSES IN VARIOUS DOMAINS 14

To run Combinatorial Exploration on a new type of
object, you just need to:

» decide on a good way to represent sets of those
objects, and write a Python class for it

» decide on effective decomposition strategies (this is
where domain-specific experience comes in handy)

» plug these right into our framework, and hit go

» ~ 50k lines of Python code

https://github.com/PermutaTriangle/comb_spec_searcher

https://github.com/PermutaTriangle/comb_spec_searcher

SUCCESSES IN VARIOUS DOMAINS

15

Domains we've coded:
> permutation patterns (inspired this work)
> set partitions

» Motzkin paths

Domains that seem promising on paper:
> polyominoes
> Inversion sequences

> alternating sign matrices

PERMUTATION PATTERNS 16

Given a set of permutations B, you can study the set of

permutations avoiding the permutations in B as
patterns — these sets are called permutation classes.

For the cases where B contains two permutations of

length 4, there are essentially 56 different permutation
classes.

(https://fen.wikipedia.org/wiki/Enumerations of specific permutation classes)

Their enumerations are all known now, but it took
several decades and dozens of papers.

Combinatorial Exploration can enumerate all of them.

https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes

PERMUTATION PATTERNS

17

Computational Difficulties

Permutations avoiding 132:
Fy(x) = Fi(x) + Fy(x)
Fi(x) = Fo(x)2 - F3(x)
F(x) =1
Fi(x) =x
Permutations avoiding 1432 and 2143:
Fo(x) = Fs47(x) + F375(x)
Fi(x) = Fy(x) — F3(x)
Fs49(x) =0

550 equations — guess-and-check

PERMUTATION PATTERNS

20

Computational Difficulties — with 1 catalytic variable!

Permutations avoiding 123:

Fy(x) = Fi{(x) + Fg(x)

Fi(x) = Fiy(x) - F5(x)
Fi(x,y) = F7(x, y) + Fy(x, y)
Fyx,y) = Fr(x) - Fs5(x,y) - Fg(x,y)
F _ YE3(x,y) = F3(x,1)

5(X,) =

— 1
Fg(x) = F(x)
F5(x,y) = Fy(x,y)
Fg(x,y) = Fiplx,y) + Fp1(x)
Fy(x,y) = Fi5(x,y) - Fg(x,y)
Fio(x,y) = Fo(x,y)
Fix)=1
Fi,(x) =x
Fi5(x,y) = xy

PERMUTATION PATTERNS

21

Computational Difficulties — with 1 catalytic variable!

Much harder with hundreds of equations
(Intermediate computations become huge before
simplifying again).

|s there a guess-and-check approach that could
wWork?

PERMUTATION PATTERNS

22

Computational Difficulties — with 2+ catalytic
variables!

Fy(x) = Fi(x) + Fi5(x)

Fl(x) — F16(x) ’ F2(X) Fl()(-xa y, Z) _ ZF6(X9 Y Z) _ F6(x9 yal)
Fy(x) = F3(x,1) z—1
F3(x,y) = Fip(x, y) + Fi5(x) + Fy(x, y) F(x,y,2) = Fip(x,y) - F(x,y,2)

Fio(x,y) = Fi3(x,y) - Fig(x)

Fyx,y) = Fi7(x,y) - F5(x,y)
Fs(x,y) = Fiy(x,1.y) oo, 7) = yF3(x,y) — F3(x,1)
13, Y) =

Fe(x,y,2) = F11(x,y,2) + Fi5(x) + F7(x, ¥, 2) + Fo(x, ¥, 2) y—1
Fo(x,y,2) = Fi7(x, 2) - Fg(x, y,2) Fi4(x,y,2) = Fg(x,y2,2)
F =1
F8(x9 Y Z) — : Fl6(x> -
M Fi7(x,y) = xy

F9(x, Y,2) = Flo(x,y, 2) F16(x)

Motzkins paths avoiding: UDHH, UDUD, UHDH, UHHD

Proof tree for Motzkin paths avoiding: UDHH, UDUD, UHDH, UHHD

Av(UDHH, UDUD, UHDH, UHHD)

i

€ Av{(UDHH, UDUD, UHDH, UHHD)

Av(F)N Co(D)

Av(B)N Co(D) Av(F)N Co(D)

/32 —aﬂén&lﬂg A SMs
r

GrQ.Q_U\ "b o<

OSU\UO%(\S

L(U TS
hece Cér
be -1s
orouad,

50 we boadh on
whether the tow wteins
’(or nok

Thank you!

