Enumerative Properties of Cogrowth Series on Free Products of Finite Groups
 ACA 2021 Session on Algorithmic Combinatorics

Haggai Liu
Joint work with Marni Mishna and Jason Bell

Simon Fraser University
Department of Mathematics

July 24, 2021

Introduction

Word Problem
Given a group G with a finite generating set, S, determine if a given product of elements in S is the group identity.

Introduction

Word Problem
Given a group G with a finite generating set, S, determine if a given product of elements in S is the group identity.

Language of the Word Problem
$L(G, S):=\{\underbrace{s_{1} s_{2} \ldots s_{n}}_{\begin{array}{c}\text { symbol } \\ \text { concatenation }\end{array}}: n \geq 0, s_{i} \in S, \underbrace{s_{1} \cdot s_{2} \cdot \ldots \cdot s_{n}}_{\begin{array}{c}\text { group } \\ \text { product }\end{array}}=1 \in G\}$

Cogrowth Sequence and Series

Language of the Word Problem
$L(G, S):=\left\{s_{1} s_{2} \ldots s_{n}: n \geq 0, s_{i} \in S, s_{1} \cdot s_{2} \cdot \ldots \cdot s_{n}=1 \in G\right\}$

Cogrowth Sequence and Series

Language of the Word Problem
$L(G, S):=\left\{s_{1} s_{2} \ldots s_{n}: n \geq 0, s_{i} \in S, s_{1} \cdot s_{2} \cdot \ldots \cdot s_{n}=1 \in G\right\}$

- G: group generated by a finite set $S \subseteq G \backslash\{1\}$
- cogrowth sequence of G with respect to S :

$$
\left\{\left|L(G, S) \cap S^{n}\right|\right\}_{n \geq 0}
$$

- cogrowth series (GFs):

$$
F(t) \equiv F_{G ; S}(t):=\sum_{n \geq 0}\left|L(G, S) \cap S^{n}\right| t^{n} \in \mathbb{Z}_{\geq 0}[[t]]
$$

Setup and Motivation

$$
\begin{aligned}
& L(G, S):=\left\{s_{1} s_{2} \ldots s_{n}: n \geq 0, s_{i} \in S, s_{1} \cdot \ldots \cdot s_{n}=1 \in G\right\} \\
& F(t) \equiv F_{G ; S}(t):=\sum_{n \geq 0}\left|L(G, S) \cap S^{n}\right| t^{n} \in \mathbb{Z}_{\geq 0}[[t]]
\end{aligned}
$$

Setup and Motivation

$$
\begin{aligned}
& L(G, S):=\left\{s_{1} s_{2} \ldots s_{n}: n \geq 0, s_{i} \in S, s_{1} \cdot \ldots \cdot s_{n}=1 \in G\right\} \\
& F(t) \equiv F_{G ; S}(t):=\sum_{n \geq 0}\left|L(G, S) \cap S^{n}\right| t^{n} \in \mathbb{Z}_{\geq 0}[[t]]
\end{aligned}
$$

- Continue the study of Bell and Mishna (2018), on free products of (finitely many) finite groups
- $G=G_{1} * G_{2} * \ldots * G_{d} ; G_{i}$ cyclic or dihedral

Result of Muller and Schupp
Free products of finite groups have algebraic GFs

- ie. $Q(t, F(t))=0$ for some $Q(t, z) \in \mathbb{Z}[t, z] \backslash\{0\}$
- Call Q a satisfying polynomial of $F(t)$
- $\operatorname{deg}_{z} Q$ is minimum $\Longrightarrow Q$ is a minimal polynomial of $F(t)$

Setup and Motivation

$L(G, S):=\left\{s_{1} s_{2} \ldots s_{n}: n \geq 0, s_{i} \in S, s_{1} \cdot \ldots \cdot s_{n}=1 \in G\right\}$
$F(t) \equiv F_{G ; S}(t):=\sum_{n \geq 0}\left|L(G, S) \cap S^{n}\right| t^{n} \in \mathbb{Z}_{\geq 0}[[t]]$

Result of Muller and Schupp
Free products of finite groups have algebraic GFs

- ie. $Q(t, F(t))=0$ for some $Q(t, z) \in \mathbb{Z}[t, z] \backslash\{0\}$
- Call Q a satisfying polynomial of $F(t)$
- $\operatorname{deg}_{z} Q$ is minimum $\Longrightarrow Q$ is a minimal polynomial of $F(t)$

Main Objective
Obtain degree bounds on minimal polynomials.

Excursions on Cayley Graphs

We can visualize the problem using Cayley graphs.

- Cayley Graph of G with respect to $S: \chi(G, S)=(V, E)$
- $V=G, E=\{(g, g s): g \in G, s \in S\}$ (ie. directed)
- Arcs show multiplication by elements of S
- Walks show products on elements of S
- Excursions of $\chi(G, S)$:
- Excursions are walks that start and end at $1 \in G$
- $L(G, S) \leftrightarrow$ excursions on $\chi(G, S)$

The cogrowth sequence counts excursions on $\chi(G, S)$

Examples: Finite Cyclic and Dihedral Groups

$G:=\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}=\left\langle x \mid x^{n}=1\right\rangle ; S:=\{x\}$

- $L(G, S)=\left\{\epsilon, x^{n}, x^{2 n}, x^{3 n}, \ldots\right\}$
- Cogrowth GF: $F_{G ; S}(t)=\frac{1}{1-t^{n}}$
- $\chi(G, S)$ is the directed cycle on n vertices
$G:=D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, r f=f r^{-1}\right\rangle ; S:=\{r, f\}$
- $L\left(D_{3}, S\right)=\{f f, \text { rrr, rfrf, frfr, } r \text { ffrrf, } r \text { frrfr, frrfrr }\}^{*}$
- $\chi\left(D_{3}, S\right)$: See below

Examples: Finite Cyclic and Dihedral Groups

$G:=\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}=\left\langle x \mid x^{n}=1\right\rangle ; S:=\{x\}$

- $L(G, S)=\left\{\epsilon, x^{n}, x^{2 n}, x^{3 n}, \ldots\right\}$
- Cogrowth GF: $F_{G ; S}(t)=\frac{1}{1-t^{n}}$
- $\chi(G, S)$ is the directed cycle on n vertices
$G:=D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, r f=f r^{-1}\right\rangle ; S:=\{r, f\}$
- $L\left(D_{3}, S\right)=\{f f$, rrr, rfrf, frfr, rffrrf, rfrffr, frrfrr\}*
- Cogrowth GF: $F_{n}(t):=F_{D_{n} ; S}(t)=$?
- $\chi\left(D_{3}, S\right)$: See below

Cogrowth GF for D_{n}

Proposition 1
For each $n \geq 3$,

$$
\begin{equation*}
F_{n}(t)=\frac{1}{2}+\frac{1}{2 n} \sum_{j=0}^{n-1} \frac{1}{1-2 \cos \left(\frac{2 \pi j}{n}\right) t} \tag{1}
\end{equation*}
$$

Corollary 2
$F_{n}(t)=\frac{p(t)}{q(t)}$, with $p, q \in \mathbb{Z}[t], p(0)=q(0)=1$, and
$\operatorname{deg} p=\operatorname{deg} q \leq d_{n}$, where

$$
d_{n}:=\left\{\begin{array}{ll}
\frac{n+1}{2}, & n \text { is odd } \tag{2}\\
2\left\lceil\frac{n}{4}\right\rceil, & n \text { is even }
\end{array} .\right.
$$

Initial Bound on Finite Groups using Representation Theory

Lemma 3 (Bell, L., Mishna 2021+)
Let H be a finite group with degrees of irreducible representations given by n_{1}, \ldots, n_{d}, with T as a generating set. Let
$\alpha:=\sum_{s \in T} s \in \mathbb{C}[H]$, and $A(t):=\sum_{n \geq 0} \phi\left(\alpha^{n}\right) t^{n}$. Then $A(t)$ is the power series expansion of a rational function $p(t) / q(t)$ where $p, q \in \mathbb{Z}[t]$ are polynomials with $q(0)=1$ and

$$
(\operatorname{deg} p)+1, \operatorname{deg} q \leq n_{1}+\cdots+n_{d} \leq|H| .
$$

In particular, if $\operatorname{deg} q=|H|$ or $\operatorname{deg} p=|H|-1$, then H is abelian.

Initial Bound on Finite Groups using Representation Theory

Proof.

- Consider an isomorphism $\Psi: \overline{\mathbb{Q}}[H] \rightarrow M_{n_{1}}(\overline{\mathbb{Q}}) \times \cdots \times M_{n_{d}}(\overline{\mathbb{Q}})$.
- Ψ induces a $\overline{\mathbb{Q}}$-algebra isomorphism between the power series rings $\overline{\mathbb{Q}}[H][[t]]$ and $\left(M_{n_{1}}(\overline{\mathbb{Q}}) \times \cdots \times M_{n_{d}}(\overline{\mathbb{Q}})\right)[[t]]$ sending $\sum_{n \geq 0} \alpha^{n} t^{n} \mapsto \sum_{n \geq 0}\left(Y_{1}^{n}, \ldots, Y_{d}^{n}\right) t^{n}$ where $\Psi(\alpha)=\left(Y_{1}, \ldots, Y_{d}\right)$.
- By Cayley Hamilton, this image satisfy a linear recurrence of order at most $n_{1}+\cdots+n_{d}$.
- Thus, $A(t):=\sum \alpha^{n} t^{n}=p(t) / q(t)$ with $p, q \in \overline{\mathbb{Q}}[t]$ coprime, and $q(0)=1$.
- Since $A(t) \in \mathbb{Z}[[t]], p / q$ must be invariant under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
- The roots of $q\left(t^{-1}\right)$ are algebraic integers, so $p, q \in \mathbb{Z}[t]$.

Initial Bound on Finite Groups using Representation Theory

Example ($G=\mathbb{Z}_{n}=\left\langle x \mid x^{n}=1\right\rangle ; S=\{x\}$)
Lemma 3 implies that $F_{G ; S}(t) \equiv \frac{1}{1-t^{n}}=\frac{p(t)}{q(t)}$, where $p, q \in \mathbb{Z}[t]$, with $\operatorname{deg} p \leq n-1$ and $\operatorname{deg} q \leq n$.
Here, $\operatorname{deg} p=0$ and $\operatorname{deg} q=n$.
Example ($G=D_{n} \equiv\left\langle r, f \mid r^{n}=1, f^{2}=1, r f=f r^{-1}\right\rangle ; S:=\{r, f\}$)

- Sum, $N:=n_{1}+n_{2}+\ldots+n_{d}$ is $n+2$ if n is even; $n+1$ if n is odd
- Lemma $3 \Longrightarrow F_{G ; S}(t)=p(t) / q(t), \operatorname{deg} p \leq N-1$, $\operatorname{deg} q \leq N$.
- Corollary $2 \Longrightarrow \operatorname{deg} p=\operatorname{deg} q \leq \frac{N}{2}$.

Free Products of Finite Groups

Definition

Let $G_{1}, G_{2}, \ldots, G_{m}$ be groups. The free product of $G_{1}, G_{2}, \ldots, G_{m}$, denoted as $G:=G_{1} * G_{2} * \ldots * G_{m}=\coprod_{i=1}^{m} G_{i}$, is the group generated by $\cup_{i=1}^{m} G_{i}$, subject to the relations in each G_{i}, and the identity element in each G_{i} is identified with $1 \in G$. If K is any group and $m \geq 0$, we define $K^{* m}:=\underbrace{K * K * \ldots * K}_{m \text { factors }}$.
Example

$$
\mathbb{Z}_{2}^{* 3} \equiv \mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2} \equiv\left\langle x, y, z \mid x^{2}=1, y^{2}=1, z^{2}=1\right\rangle(x y \neq y x)
$$

Important
The cogrowth GF of G depends on the cogrowth GF of each G_{i} in a nontrivial way

Free Products of Finite Groups

Definition

Let $G_{1}, G_{2}, \ldots, G_{m}$ be groups. The free product of $G_{1}, G_{2}, \ldots, G_{m}$, denoted as $G:=G_{1} * G_{2} * \ldots * G_{m}=\coprod_{i=1}^{m} G_{i}$, is the group generated by $\cup_{i=1}^{m} G_{i}$, subject to the relations in each G_{i}, and the identity element in each G_{i} is identified with $1 \in G$.
If K is any group and $m \geq 0$, we define $K^{* m}:=\underbrace{K * K * \ldots * K}_{m \text { factors }}$.
Example
$\mathbb{Z}_{2}^{* 3} \equiv \mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2} \equiv\left\langle x, y, z \mid x^{2}=1, y^{2}=1, z^{2}=1\right\rangle(x y \neq y x)$
Important
The cogrowth GF of G depends on the cogrowth GF of each G_{i} in a nontrivial way

- We focus on the case where each G_{i} is finite
- Generating set: $S=\cup_{i=1}^{m} S_{i} ; S_{i}$ a generating set for G_{i}

Visualization of Cayley Graphs

$$
\mathbb{Z}_{2} * \mathbb{Z}_{3} \equiv\left\langle x \mid x^{2}=1\right\rangle *\left\langle y \mid y^{3}=1\right\rangle
$$

Visualization of Cayley Graphs

$$
\mathbb{Z}_{3} * \mathbb{Z}_{3} \equiv\left\langle x \mid x^{3}=1\right\rangle *\left\langle y \mid y^{3}=1\right\rangle
$$

Visualization of Cayley Graphs

$$
\mathbb{Z}_{3} * \mathbb{Z}_{4} \equiv\left\langle x \mid x^{3}=1\right\rangle *\left\langle y \mid y^{4}=1\right\rangle
$$

Visualization of Cayley Graphs

Visualization of Cayley Graphs

$$
\mathbb{Z}_{4} * \mathbb{Z}_{5} \equiv\left\langle x \mid x^{4}=1\right\rangle *\left\langle y \mid y^{5}=1\right\rangle
$$

Visualization of Cayley Graphs

$$
\mathbb{Z}_{2} * D_{3}(S=\{x, r, f\})
$$

System using Combinatorial Grammar

- $g \in G, X \subseteq G, \tau$: an atom, ι : characteristic function.
- $Z_{g, X}$: (combinatorial class of) words in S^{*} evaluating to g, with proper nonempty prefixes avoiding X

System using Combinatorial Grammar

- $g \in G, X \subseteq G, \tau$: an atom, ι : characteristic function.
- $Z_{g, X}$: (combinatorial class of) words in S^{*} evaluating to g, with proper nonempty prefixes avoiding X

Lemma 4 (Bell and Mishna)

Let $G=G_{1} * G_{2} * \ldots * G_{m}$ be a (possibly trivial) free product of m finitely generated groups. Let S_{i} be a finite generating set for G_{i} so that $S=\cup_{i=1}^{m} S_{i}$ is a generating set for G. For each $1 \leq i \leq m$ and $\{g\} \cup X \subseteq G_{i}$, using disjoint unions of combinatorial classes,

1. $Z_{g, X}=\left(\iota\left(g \in S_{i} \cap X\right) \tau\right) \cup\left(\bigcup_{s \in S_{i} \backslash X}\left(\tau \times Z_{s^{-1} g, s^{-1} X}\right)\right)$, if $1 \in X, g \neq 1$.
2. $Z_{g, X}=Z_{1, X} \times Z_{g, X \cup\{1\}}$, if $1 \notin X, g \neq 1$.
3. $Z_{1, X}=\epsilon \cup\left(Z_{1, X} \times\left(Z_{1, X \cup\{1\}} \backslash \epsilon\right)\right)$, if $1 \notin X$.
4. $Z_{1, X}=\epsilon \cup\left(\bigcup_{s \in S \backslash S_{i}}\left(\tau \times Z_{s^{-1},\left\{s^{-1}\right\}}\right)\right) \cup\left(\bigcup_{s \in S_{i} \backslash X}\left(\tau \times Z_{s^{-1}, s^{-1} X}\right)\right)$, if $1 \in X$.

System using Combinatorial Grammar

$$
\begin{aligned}
& \text { 1. } Z_{g, X}=\left(\iota\left(g \in S_{i} \cap X\right) \tau\right) \cup\left(\bigcup_{s \in S_{i} \backslash X}\left(\tau \times Z_{s^{-1} g, s^{-1} X}\right)\right) \text {, if } \\
& 1 \in X, g \neq 1 .
\end{aligned}
$$

System using Combinatorial Grammar

$$
\text { 2. } Z_{g, X}=Z_{1, X} \times Z_{g, X \cup\{1\}} \text {, if } 1 \notin X, g \neq 1 \text {. }
$$

System using Combinatorial Grammar

$$
\text { 3. } Z_{1, X}=\epsilon \cup\left(Z_{1, X} \times\left(Z_{1, X \cup\{1\}} \backslash \epsilon\right)\right) \text {, if } 1 \notin X \text {. }
$$

System using Combinatorial Grammar

4. $Z_{1, X}=\epsilon \cup\left(U_{s \in S \backslash S_{i}}\left(\tau \times Z_{s^{-1},\left\{s^{-1}\right\}}\right)\right) \cup\left(U_{s \in S_{i} \backslash X}\left(\tau \times Z_{s^{-1}, s^{-1}}\right)\right)$, if $1 \in X$.

Combinatorial Grammar to GF

- $F_{g, X}: G F$ for $Z_{g, X}$

Corollary 5 (Bell and Mishna)
Adopting the same notation used in Lemma 4, we have the analogous equalities for the set of generating functions $\left\{F_{g, X}\right\}$.

1. $F_{g, X}(t)=\iota\left(g \in S_{i} \cap X\right) t+\sum_{s \in S_{i} \backslash X} t F_{s^{-1} g, s^{-1} X}(t)$ if $1 \in X, g \neq 1$.
2. $F_{1, X}(t)=1+F_{1, X}(t)\left(F_{1, X \cup\{1\}}(t)-1\right)$ if $1 \notin X$.
3. $F_{g, X}(t)=F_{1, X}(t) F_{g, X \cup\{1\}}(t)$ if $1 \notin X, g \neq 1$.
4. $F_{1, X}(t)=1+\sum_{s \in S \backslash S_{i}} t F_{s^{-1},\left\{s^{-1}\right\}}(t)+\sum_{s \in S_{i} \backslash X} t F_{s^{-1}, s^{-1} X}(t)$ if $1 \in X$.

Consequences and Obstructions

- Each G_{i} is finite \Longrightarrow the combinatorial grammar contains only finitely many equations.
- We can eliminate variables on the grammar to obtain a satisfying polynomial.
- Obstructions:
- The size of the initial system can be large (exponential in $\left|G_{i}\right|$)
- Elimination process is time consuming, even for a computer

Consequences and Obstructions

- Each G_{i} is finite \Longrightarrow the combinatorial grammar contains only finitely many equations.
- We can eliminate variables on the grammar to obtain a satisfying polynomial.
- Obstructions:
- The size of the initial system can be large (exponential in $\left|G_{i}\right|$)
- Elimination process is time consuming, even for a computer
- Solution: Use free probability theory and obtain a system of size linear in $\left|G_{i}\right|$

Free Probability: A Brief Introduction

- $G=G_{1} * \ldots * G_{m} ; S=\cup_{i=1}^{m} S_{i}$ as before
- Group algebra $\mathbb{C}[G]$: non-commutative random variables
- linear expectation operator $\phi: \mathbb{C}[G] \rightarrow \mathbb{C}$,

$$
\phi\left(\left(\sum_{g \in G} \alpha_{g} g\right)\right)=\alpha_{1}
$$

- $\left\{\phi\left(\left(\sum_{s \in S} s\right)^{n}\right)\right\}_{n \geq 0}$: cogrowth sequence
- Cauchy transform of $\alpha \in \mathbb{C}[G]: G_{\alpha}(t):=\sum_{n \geq 0} \phi\left(\alpha^{i}\right) t^{-n-1}$
- Inverse Cauchy transform of $\alpha: K_{\alpha}=G_{\alpha}^{\langle-1\rangle}$.
- Important Fact: For $\alpha=\sum \alpha_{g} g, \beta=\sum \beta_{g} g$, if $\alpha_{g} \beta_{g}=0$ for each $g \in G$, then $K_{\alpha+\beta}(t)=K_{\alpha}(t)+K_{\beta}(t)-t^{-1}$.

Resultants of Polynomials

Strategy: Use resultants to eliminate variables

Resultants of Polynomials

Strategy: Use resultants to eliminate variables
Upper Bound on Resultants

$$
\operatorname{deg}_{t} \operatorname{Res}(f, g, z) \leq\left(\operatorname{deg}_{t} f\right)\left(\operatorname{deg}_{z} g\right)+\left(\operatorname{deg}_{t} g\right)\left(\operatorname{deg}_{z} f\right)
$$

Resultants of Polynomials

Strategy: Use resultants to eliminate variables
Upper Bound on Resultants $\operatorname{deg}_{t} \operatorname{Res}(f, g, z) \leq\left(\operatorname{deg}_{t} f\right)\left(\operatorname{deg}_{z} g\right)+\left(\operatorname{deg}_{t} g\right)\left(\operatorname{deg}_{z} f\right)$

Reduced Resultant

$$
\overline{\operatorname{Res}}(f, g, z):= \begin{cases}\operatorname{trim} \operatorname{Res}(f, g, z), & \left(\operatorname{deg}_{z} f\right)\left(\operatorname{deg}_{z} g\right)>0 \\ \operatorname{trim} f, & \operatorname{deg}_{z} f=0, \operatorname{deg}_{z} g>0 \\ \operatorname{trim} g, & \operatorname{deg}_{z} f>0, \operatorname{deg}_{z} g=0 \\ 1, & \operatorname{deg}_{z} f=\operatorname{deg}_{z} g=0\end{cases}
$$

where $\operatorname{trim} f=f \cdot \prod_{v} v^{- \text {val }_{v} f}$.

Resultants of Polynomials

Strategy: Use resultants to eliminate variables
Upper Bound on Resultants $\operatorname{deg}_{t} \operatorname{Res}(f, g, z) \leq\left(\operatorname{deg}_{t} f\right)\left(\operatorname{deg}_{z} g\right)+\left(\operatorname{deg}_{t} g\right)\left(\operatorname{deg}_{z} f\right)$

Reduced Resultant

$$
\overline{\operatorname{Res}}(f, g, z):= \begin{cases}\operatorname{trim} \operatorname{Res}(f, g, z), & \left(\operatorname{deg}_{z} f\right)\left(\operatorname{deg}_{z} g\right)>0 \\ \operatorname{trim} f, & \operatorname{deg}_{z} f=0, \operatorname{deg}_{z} g>0 \\ \operatorname{trim} g, & \operatorname{deg}_{z} f>0, \operatorname{deg}_{z} g=0 \\ 1, & \operatorname{deg}_{z} f=\operatorname{deg}_{z} g=0\end{cases}
$$

where $\operatorname{trim} f=f \cdot \prod_{v} v^{- \text {val }_{v} f}$.

Purpose of $\overline{R e s}$

To remove monomial factors and redundant exponents in order to decrease the degrees of the polynomials.

Algorithm for Algebraic Elimination

Algorithm 1 polynomial elimination over an integral domain B
Input: $n \in \mathbb{Z}_{>0} ; t, z_{1}, \ldots, z_{n}$ indeterminate; $\vec{P} \in B\left[t, z_{1}, \ldots, z_{n}\right]^{n}$.
Assumption: There are algebraic functions $F_{1}(t), \ldots, F_{n}(t)$, all nonzero, such that $\vec{P}\left(t, F_{1}(t), \ldots, F_{n}(t)\right)=0$.
Purpose: Find $P_{f}(t, z) \in B[t, z], P_{f} \not \equiv 0$ so that for any sequence of nonzero algebraic functions, $F_{1}(t), \ldots, F_{n}(t)$, it holds that $\vec{P}\left(t, F_{1}(t), \ldots, F_{n}(t)\right)=0 \Longrightarrow P_{f}\left(t, F_{1}(t)\right)=0$.
1: $\vec{P}^{(0)}:=\vec{P}$
2: for $k=1,2, \ldots, n-1$ do
3: \quad for $i=1,2, \ldots, n-k$ do
4: $\quad P_{i}^{(k)}:=\overline{\operatorname{Res}}_{B}\left(P_{i}^{(k-1)}, P_{n-k+1}^{(k-1)}, z_{n-k+1}\right)$
5: end for
6: $\quad \vec{P}(k):=\left(P_{i}^{(k)}\right)_{i=1}^{n-k}$
7: end for
8: return $P_{f}(t, z):=P_{1}^{(n-1)}(t, z) \in B[t, z]$

A First Bound on Free Products of Finite Groups

Theorem 6 (Bell, L., Mishna 2021+)
Let G_{1}, \ldots, G_{r} be finite groups with generating sets $S_{1}, S_{2}, \ldots, S_{r}$ respectively. Let Δ_{i} denote the sum of the degrees of the irreducible representations of G_{i} for $i=1, \ldots, r$. Then the cogrowth series $F(t)$ of $\coprod_{i=1}^{r} G_{i}^{* m_{i}}$ with respect to the generating set $S:=\cup_{i=1}^{r} S_{i}$, is algebraic and satisfies $Q(t, F(t))=0$, where $Q(t, z) \in \mathbb{Z}[t, z]$ with $\operatorname{deg}_{t}(Q)$ and $\operatorname{deg}_{z}(Q)$ both at most

$$
\left(\prod_{i=1}^{r} \Delta_{i}\right)\left(1+\sum_{i=1}^{r} \frac{1}{\Delta_{i}}\right) .
$$

- Theorem $6 \Longrightarrow$ second inequality of Eqn (4) in Theorem 9
- Theorem 6 is applicable to any finite groups with any generating sets

Free Products of Cyclic Groups

$\triangleright G:=\coprod_{i=1}^{r} \coprod_{j=1}^{m_{i}}\left\langle x_{i j} \mid x_{i j}^{n_{i}}=1\right\rangle=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}} * \ldots * \mathbb{Z}_{n_{r}}^{* m_{r}}$

- $S=\left\{x_{i j}: 1 \leq i \leq r, 1 \leq j \leq m_{i}\right\}$
- r : number of distinct cyclic factors

Free Products of Cyclic Groups

- $G:=\coprod_{i=1}^{r} \coprod_{j=1}^{m_{i}}\left\langle x_{i j} \mid x_{i j}^{n_{j}}=1\right\rangle=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}} * \ldots * \mathbb{Z}_{n_{r}}^{* m_{r}}$
- $S=\left\{x_{i j}: 1 \leq i \leq r, 1 \leq j \leq m_{i}\right\}$
- r : number of distinct cyclic factors
- Using free probability, we obtain a system of equations for $z=F_{G ; S}(t)$.

Free Products of Cyclic Groups

Theorem 7 (Liu)
For $n_{i} \geq 2$ and $m_{i} \geq 1$, let

$$
G:=\coprod_{i=1}^{r} \coprod_{j=1}^{m_{i}}\left\langle x_{i j} \mid x_{i j}^{n_{i}}=1\right\rangle=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}} * \ldots * \mathbb{Z}_{n_{r}}^{* m_{r}}
$$

and $S:=\left\{x_{i j} \mid i=1, \ldots, r ; j=1, \ldots, m_{i}\right\}$. Let $F(t):=F_{G ; S}(t)$ be the cogrowth GF. Then the system,

$$
\begin{align*}
P_{i}\left(t, z, z_{1}, \ldots, z_{r}\right) & :=t z z_{i}^{n_{i}}-z_{i}^{n_{i}-1}-t z=0, i=1, \ldots, r \\
P_{r+1}\left(t, z, z_{1}, \ldots, z_{r}\right) & :=z-\left(\sum_{j=1}^{r} m_{j} t z z_{j}\right)+\left(\sum_{j=1}^{r} m_{j}\right)-1=0 \tag{3}
\end{align*}
$$

solves $F(t)$: There are algebraic functions $F_{j}(t) \not \equiv 0$, such that $P_{i}\left(t, F(t), F_{1}(t), \ldots, F_{r}(t)\right)=0$ for $1 \leq i \leq r+1$.

Case of Identical Cyclic Factors $(r=1): G=\mathbb{Z}_{n}^{* m}$

Solved by Bell and Mishna using combinatorial grammar.
$Q(t, z)=(z-1)(z+m-1)^{n-1}-m^{n} t^{n} z^{n}$

From Free Probability,

- $P_{1}^{(0)}=P_{1}\left(t, z, z_{1}\right)=t z z_{1}^{n_{1}}-z_{1}^{n_{1}-1}-t z ;$
- $P_{2}^{(0)}\left(t, z, z_{1}\right)=P_{2}\left(t, z, z_{1}\right)=z-m t z z_{1}+m-1$;
- $P_{1}^{(1)}(t, z)=(z-1)(z+m-1)^{n-1}-m^{n} t^{n} z^{n}=\boldsymbol{Q}(t, z)$.

Case of Identical Cyclic Factors $(r=1): G=\mathbb{Z}_{n}^{* m}$

Solved by Bell and Mishna using combinatorial grammar.
$Q(t, z)=(z-1)(z+m-1)^{n-1}-m^{n} t^{n} z^{n}$

From Free Probability,

- $P_{1}^{(0)}=P_{1}\left(t, z, z_{1}\right)=t z z_{1}^{n_{1}}-z_{1}^{n_{1}-1}-t z ;$
- $P_{2}^{(0)}\left(t, z, z_{1}\right)=P_{2}\left(t, z, z_{1}\right)=z-m t z z_{1}+m-1$;
- $P_{1}^{(1)}(t, z)=(z-1)(z+m-1)^{n-1}-m^{n} t^{n} z^{n}=\boldsymbol{Q}(\boldsymbol{t}, z)$.

Key Observation
The degree of satisfying polynomial is independent of m.
We can generalize this result to an arbitrary number of distinct free factors.

Case of Two Distinct Factors $(r=2)$

- $G:=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}}$
- System of polynomials:

$$
\begin{aligned}
& P_{1}=t z z_{1}^{n_{1}}-z_{1}^{n_{1}-1}-t z \\
& P_{2}=t z z_{2}^{n_{2}}-z_{2}^{n_{2}-1}-t z \\
& P_{3}=z-m_{1} t z z_{1}-m_{2} t z z_{2}+m_{1}+m_{2}-1 .
\end{aligned}
$$

- After one iteration of Algorithm 1: $P_{1}^{(1)}=P_{1}$;

$$
P_{2}^{(1)}= \begin{cases}\left(z-m_{1} t z z_{1}+m_{1}-1\right)\left(z-m_{1} t z z_{1}+m-1\right)^{n_{2}-1}-\left(m_{2} t z\right)^{n_{2}}, & m_{1}>1 \\ \left(1-t z_{1}\right)\left(z-t z z_{1}+m_{2}\right)^{n_{2}-1}-m_{2}^{n_{2}} t^{n_{2}} z^{n_{2}-1}, & m_{1}=1\end{cases}
$$

Case of Two Distinct Factors $(r=2)$

- $G:=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}}$
- System of polynomials:

$$
\begin{aligned}
& P_{1}=t z z_{1}^{n_{1}}-z_{1}^{n_{1}-1}-t z \\
& P_{2}=t z z_{2}^{n_{2}}-z_{2}^{n_{2}-1}-t z \\
& P_{3}=z-m_{1} t z z_{1}-m_{2} t z z_{2}+m_{1}+m_{2}-1 .
\end{aligned}
$$

- After one iteration of Algorithm 1: $P_{1}^{(1)}=P_{1}$;

$$
P_{2}^{(1)}= \begin{cases}\left(z-m_{1} t z z_{1}+m_{1}-1\right)\left(z-m_{1} t z z_{1}+m-1\right)^{n_{2}-1}-\left(m_{2} t z\right)^{n_{2}}, & m_{1}>1 \\ \left(1-t z_{1}\right)\left(z-t z z_{1}+m_{2}\right)^{n_{2}-1}-m_{2}^{n_{2}} t^{n_{2}} z^{n_{2}-1}, & m_{1}=1\end{cases}
$$

- Upper bound on resultants: $\operatorname{deg}_{z} \operatorname{Res}\left(P_{1}^{(1)}, P_{2}^{(1)}, z_{1}\right) \leq n_{2}+n_{1}\left(n_{2}-1\right)$

Degree Bound Theorem for $r=2$

Theorem 8 (Liu)
Let

$$
G=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}}=\coprod_{i=1}^{2} \coprod_{j=1}^{m_{i}}\left\langle x_{i j} \mid x_{i j}^{n_{i}}=1\right\rangle
$$

be generated by $S=\left\{x_{i j}: i=1,2 ; 1 \leq j \leq m_{i}\right\}$. Then there is a satisfying polynomial $Q \in \mathbb{Z}[t, z] \backslash\{0\}$ for the cogrowth series $F_{G ; S}(t)$ such that $\operatorname{deg}_{z} Q$ satisfy the upper bounds given in the table below.

	$m_{2}=1$	$m_{2}>1$
$m_{1}=1$	$1+n_{1} n_{2}-\max \left\{n_{1}, n_{2}\right\}$	$1+n_{1}\left(n_{2}-1\right)$
$m_{1}>1$	$1+n_{2}\left(n_{1}-1\right)$	$1+n_{1} n_{2}$

Upper Bounds for $\operatorname{deg}_{z} Q$ for $r=2$ based on the values of m_{1}, m_{2}.

Plots for $r=2$: Computed Degrees vs. Upper Bounds

Plot of Degree vs.
n_{2} for Fixed $n_{1}=2$ with $m_{1}=m_{2}=1$
(a) $n_{1}=2$

(d) $n_{1}=5$

(b) $n_{1}=3$

(e) $n_{1}=7$

(c) $n_{1}=4$

$$
\text { (f) } n_{1}=10
$$

Plots of actual degrees and upper bounds vs. $n_{2}=n_{1}, \ldots, 20$ for various fixed $n_{1} ; m_{1}=m_{2}=1$.

Conjectures for $r=2$

	$m_{2}=1$	$m_{2}>1$
$m_{1}=1$	$1+n_{1} n_{2}-\max \left\{n_{1}, n_{2}\right\}$	$1+n_{1}\left(n_{2}-1\right)$
$m_{1}>1$	$1+n_{2}\left(n_{1}-1\right)$	$1+n_{1} n_{2}$

Upper Bounds for $\operatorname{deg}_{z} Q$ for $r=2$ based on the values of m_{1}, m_{2}.

- Entries in our table of upper bounds can be decreased precisely by one.
- If $m_{1}=m_{2}=1$, then $\operatorname{deg}_{z} Q \leq 1+n_{1} n_{2}-\max \left\{n_{1}, n_{2}\right\}-\min \left\{n_{1}, n_{2}\right\}+1=2+n_{1} n_{2}-n_{1}-n_{2}$

Arbitrary Number of Distinct Cyclic Factors

Theorem 9 (Liu)

Fix $r \geq 3$. As before, consider the group,

$$
G:=\coprod_{i=1}^{r} \coprod_{j=1}^{m_{i}}\left\langle x_{i j} \mid x_{i j}^{n_{i}}=1\right\rangle=\mathbb{Z}_{n_{1}}^{* m_{1}} * \mathbb{Z}_{n_{2}}^{* m_{2}} * \ldots * \mathbb{Z}_{n_{r}}^{* m_{r}}
$$

generated by $S:=\left\{x_{i j}\right\}, n_{i} \geq 2 ; m_{i} \geq 1$. Running Algorithm 1 with input as the system (3), given in Theorem 7, we deduce

$$
\begin{align*}
\operatorname{deg}_{z} P_{1}^{(r)} & \leq\left(n_{1} n_{2} \ldots n_{r}\right)\left(1+\frac{1}{n_{r-1} n_{r}}+\sum_{k=1}^{r-2} \frac{1}{n_{k}}\right) \tag{4}\\
& <\left(n_{1} n_{2} \ldots n_{r}\right)\left(1+\sum_{k=1}^{r} \frac{1}{n_{k}}\right)
\end{align*}
$$

and for $0 \leq k<r, 1 \leq j \leq r-k$,

$$
\operatorname{deg}_{z_{j}} P_{r-k+1}^{(k)} \leq n_{r-k+1} \ldots n_{r-1} n_{r} .
$$

Identical Dihedral Factors

- $G=D_{n}^{* m} \equiv \coprod_{i=1}^{m}\left\langle r_{i}, f_{i} \mid r_{i}^{n}=1, f_{i}^{2}=1, r_{i} f_{i}=f_{i} r_{i}^{-1}\right\rangle$
- $S=\left\{r_{1}, f_{1}, r_{2}, f_{2}, \ldots, r_{m}, f_{m}\right\}$
- Obtaining $Q(t, z)$ explicitly in this case is difficult, since GFs for dihedral groups are not geometric series

Identical Dihedral Factors

Recall! (from Prop. 1)

$$
d_{m}:=\left\{\begin{array}{ll}
\frac{m+1}{2}, & m \text { is odd } \\
2\left\lceil\frac{m}{4}\right\rceil, & m \text { is even }
\end{array} .\right.
$$

Proposition 10

Let $G=D_{n}^{* m}=\coprod_{i=1}^{m}\left\langle r_{i}, f_{i} \mid r_{i}^{n}=1, f_{i}^{2}=1, r_{i} f_{i}=f_{i} r_{i}^{-1}\right\rangle$ with the generating set, $S=\left\{r_{1}, f_{1}, r_{2}, f_{2}, \ldots, r_{m}, f_{m}\right\}$. Then the cogrowth series, $F(t):=F_{G ; S}(t)$, has a satisfying polynomial $P(t, z) \in \mathbb{Z}[t, z]$ with $\operatorname{deg}_{t} P \leq d_{n}$ and $\operatorname{deg}_{z} P \leq d_{n}+1$.

Table of Degrees and Leading Coefficients: $D_{n}^{* m}$

n	d_{n}	$\operatorname{deg}_{z} P$	$\operatorname{deg}_{t} P$	Leading coefficient in z	$P(t, 0)$
3	2	3	2	$(m t+1)(2 m t-1)$	$(m-1)^{2}$
4	2	3	2	$\left(4 m^{2} t^{2}-1\right)$	$(m-1)^{2}$
5	3	4	3	$-(2 m t-1)\left(m^{2} t^{2}-m t-1\right)$	$(m-1)^{3}$
6	4	5	4	$-\left(4 m^{2} t^{2}-1\right)\left(m^{2} t^{2}-1\right)$	$(m-1)^{4}$
7	4	5	4	$-(2 m t-1)\left(m^{3} t^{3}+2 m^{2} t^{2}-m t-1\right)$	$(m-1)^{4}$
8	4	5	4	$-\left(4 m^{2} t^{2}-1\right)\left(2 m^{2} t^{2}-1\right)$	$(m-1)^{4}$
9	5	6	5	$(2 m t-1)(m t+1)\left(m^{3} t^{3}-3 m^{2} t^{2}+1\right)$	$(m-1)^{5}$
10	6	7	6	$(2 m t-1)(2 m t+1) O\left((m t)^{4}\right)$	$(m-1)^{6}$
11	6	7	6	$(2 m t-1) O\left((m t)^{5}\right)$	$(m-1)^{6}$
12	6	7	6	$\left(3 m^{2} t^{2}-1\right)\left(4 m^{2} t^{2}-1\right)\left(m^{2} t^{2}-1\right)$	$(m-1)^{6}$

Properties of satisfying polynomials $P(t, z)$ over \mathbb{Z} for the cogrowth GF of $G=D_{n}^{* m} ; S=\left\{r_{1}, f_{1}, r_{2}, f_{2}, \ldots, r_{m}, f_{m}\right\}$.

Properties of the Satisfying Polynomial: $D_{n}^{* m}$

Theorem 11 (Liu)

Let $G=D_{n}^{* m}=\coprod_{i=1}^{m}\left\langle r_{i}, f_{i} \mid r_{i}^{n}=1, f_{i}^{2}=1, r_{i} f_{i}=f_{i} r_{i}^{-1}\right\rangle$ with the generating set, $S=\left\{r_{1}, f_{1}, r_{2}, f_{2}, \ldots, r_{m}, f_{m}\right\}$. Then the cogrowth $G F, F(t):=F_{G ; S}(t)$, has a satisfying polynomial $P(t, z) \in \mathbb{Z}[t, z]$, with leading coefficient $L(t):=\left[z^{\operatorname{deg}_{z} P}\right] P(t, z)$ and $P(t, 0) \in \mathbb{Z}[m] \backslash\{0\}$, such that the following properties hold:

1. The polynomial, $L(t) \in \mathbb{Z}[t]$, belongs to $\mathbb{Z}[m t]$;
2. $\operatorname{deg} L=\operatorname{deg}_{t} P$;
3. $2 m t-1 \mid L(t)$;
4. if n is even, then $P(t, z)=P(-t, z)$; and
5. 3|n if and only if $m t+1 \mid L(t)$.

Proof of Theorem 11

- We can deduce

$$
P(t, z)=\frac{1}{t z} \sum_{k=0}^{(\operatorname{deg} q)+1}(z+m-1)^{k}(m t z)^{(\operatorname{deg} q)+1-k}\left(\left(\left[t^{k}\right] \bar{p}\right)-t z\left(\left[t^{k}\right] \bar{q}\right)\right) \in \mathbb{Z}[t, z]
$$

where $\bar{p}(t):=t^{\operatorname{deg} q} p\left(t^{-1}\right)$ and $\bar{q}(t):=t^{(\operatorname{deg} q)+1} q\left(t^{-1}\right)$.

- $P(t, 0)=(m-1)^{\operatorname{deg} q}$.
- Property 1: $L(t)=q(m t)$.
- Property 2: $\operatorname{deg} L=\operatorname{deg} q=d_{n} \geq \operatorname{deg}_{t} P$ since $\bar{q}(0)=0$.
- Property 3: $2 t-1 \mid q(t)$ by Proposition 1.
- Property 4: $\operatorname{deg} q=d_{n}$ is even
- $\left[t^{k}\right] \bar{q}=0$ if k is even; $\left[t^{k}\right] \bar{p}=0$ if k is odd;
- decompose the summation expression for P into odd and even indices.
- Property 5: For $A \subseteq[0,1]$ finite, $f(t)=\prod_{c \in A}(1-2 \cos (c \pi) t)$, it holds that

$$
1+t \left\lvert\, f(t) \Longleftrightarrow f(-1)=0 \Longleftrightarrow \frac{2}{3} \in A .\right.
$$

Summary: Free Product of Cyclic and Dihedral Groups

$$
G=\mathbb{Z}_{n_{1}}^{* r_{1}} * \mathbb{Z}_{n_{2}}^{* r_{2}} * \ldots * \mathbb{Z}_{n_{k}}^{* r_{k}} * D_{m_{1}}^{* s_{1}} * D_{m_{2}}^{* s_{2}} * \ldots * D_{m_{l}}^{* s_{l}}
$$

The dihedral factors are each generated by a rotation and a flip.

$\begin{gathered} I=0 \\ \text { (all cyclic) } \end{gathered}$	$k=1$	Bell-Mishna
	$k=2$	Theorem 8
	$k \geq 3$	Theorem 9
$\begin{gathered} k=0 \\ \text { (all dihedral) } \end{gathered}$	$l=1, s_{1}=1$	Proposition 1
	$l=1, s_{1}>1$	Proposition 10; Theorem 11
	$1 \geq 2$	Difficult: Not yet known
$l>0, k>0$?

Identical Finite Factors

Proposition 10 generalizes to any finite group

Identical Finite Factors

Proposition 10 generalizes to any finite group

Theorem 12 (Liu)

Suppose H is finite with generating set $T \subseteq H$. Let
$G:=H^{* m} \simeq H_{1} * H_{2} * \ldots * H_{m}$ with each $H_{i} \simeq H$ via an isomorphism $\phi_{i}: H \rightarrow H_{i}$. Consider $S:=\cup_{i=1}^{m} \phi_{i}(T)$ which generates G. Write the cogrowth $G F F_{H ; T}(t)=\frac{p(t)}{q(t)}$ with $p(0) q(0) \neq 0$. Let $M:=\max \left\{\operatorname{deg} p+\delta_{p}, \operatorname{deg} q+\delta_{q}\right\}$, $\delta_{p}:=\max \{0, \operatorname{deg} q-1-\operatorname{deg} p\}, \delta_{q}:=\max \{0, \operatorname{deg} p+1-\operatorname{deg} q\}$. Then $F(t):=F_{G ; S}(t)$ satisfies $P(t, z) \in \mathbb{Z}[t, z] \backslash\{0\}$ such that

1. $\operatorname{deg}_{t} P \leq M+1$ and $\operatorname{deg}_{z} P \leq M+1$;
2. if $\delta_{q}>0$, then $\operatorname{deg}_{t} P \leq M$;
3. if $\operatorname{deg} p+\delta_{p}<\operatorname{deg} q+\delta_{q}$, then $\operatorname{deg}_{t} P \leq M$ and $\operatorname{deg}_{z} P \leq M$;
4. if $\delta_{q}>0$ and $\operatorname{deg} p+\delta_{p}<\operatorname{deg} q+\delta_{q}$, then $\operatorname{deg}_{t} P \leq M-1$.

General Approach to Finding Satisfying Polynomials

Given a group G and a generating set S, to construct $P(t, z)$,

- Find bounds on $\operatorname{deg}_{t} P \leq d_{t}$ and $\operatorname{deg}_{z} P \leq d_{z}$.
- Generate sufficiently many first few terms of the cogrowth GF $F_{G ; S}(t)$.
- Solve a linear system for the $\left(d_{t}+1\right)\left(d_{z}+1\right)$ undetermined coefficients that defines $P(t, z)$.

Conclusion

- Free products of finitely many finite groups have algebraic cogrowth GFs.
- Free probability provides a useful tool for bounding degrees of satisfying polynomials.
- Degrees of minimal polynomials do not (in general) depend on the number of identical free factors.

Conclusion

- Free products of finitely many finite groups have algebraic cogrowth GFs.
- Free probability provides a useful tool for bounding degrees of satisfying polynomials.
- Degrees of minimal polynomials do not (in general) depend on the number of identical free factors.

Possible Next Steps

- Involve other classes of finite groups.
- Experiment with other generating sets.
- Bound degrees using ideal elimination and Gröbner bases.
- Obtain results on radii of convergence of the cogrowth GFs.

Thank you for listening! Questions?

References

[1] Jason Bell and Marni Mishna. On the complexity of the cogrowth sequence. arXiv, 1805.08118v1, 2018.
[2] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
[3] Alexandru Nica and Roland Speicher. Lectures on the Combinatorics of Free Probability. Cambridge University Press, 2006.
[4] Haggai Liu. On the cogrowth series of free products of finite groups. Master's thesis, Simon Fraser University, 2021.
[5] David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages. Journal of Computer and System Sciences, 26, 1982.
[6] A. V. Anisimov. Group languages. Kibernetika, 4:18-24, 1971.

