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Introduction

Word Problem
Given a group G with a finite generating set, S , determine if a
given product of elements in S is the group identity.

Language of the Word Problem

L(G ,S) := { s1s2 . . . sn︸ ︷︷ ︸
symbol

concatenation

: n ≥ 0, si ∈ S , s1 · s2 · . . . · sn︸ ︷︷ ︸
group
product

= 1 ∈ G}
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Cogrowth Sequence and Series

Language of the Word Problem

L(G ,S) := {s1s2 . . . sn : n ≥ 0, si ∈ S , s1 · s2 · . . . · sn = 1 ∈ G}

I G : group generated by a finite set S ⊆ G \ {1}
I cogrowth sequence of G with respect to S :

{|L(G ,S) ∩ Sn|}n≥0
I cogrowth series (GFs):

F (t) ≡ FG ;S(t) :=
∑

n≥0 |L(G ,S) ∩ Sn| tn ∈ Z≥0[[t]]
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Setup and Motivation

L(G , S) := {s1s2 . . . sn : n ≥ 0, si ∈ S , s1 · . . . · sn = 1 ∈ G}

F (t) ≡ FG ;S(t) :=
∑

n≥0 |L(G , S) ∩ Sn| tn ∈ Z≥0[[t]]

Result of Muller and Schupp

Free products of finite groups have algebraic GFs

I ie. Q(t,F (t)) = 0 for some Q(t, z) ∈ Z[t, z ] \ {0}
I Call Q a satisfying polynomial of F (t)

I degz Q is minimum =⇒ Q is a minimal polynomial of F (t)

Main Objective

Obtain degree bounds on minimal polynomials.
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Excursions on Cayley Graphs

We can visualize the problem using Cayley graphs.

I Cayley Graph of G with respect to S : χ(G ,S) = (V ,E )
I V = G , E = {(g , gs) : g ∈ G , s ∈ S} (ie. directed)
I Arcs show multiplication by elements of S
I Walks show products on elements of S

I Excursions of χ(G , S):
I Excursions are walks that start and end at 1 ∈ G
I L(G ,S)↔ excursions on χ(G ,S)

The cogrowth sequence counts excursions on χ(G , S)



Examples: Finite Cyclic and Dihedral Groups

G := Z/nZ = Zn = 〈x |xn = 1〉; S := {x}
I L(G , S) = {ε, xn, x2n, x3n, . . .}
I Cogrowth GF: FG ;S(t) = 1

1−tn

I χ(G ,S) is the directed cycle on n vertices

G := Dn = 〈r , f |rn = 1, f 2 = 1, rf = fr−1〉; S := {r , f }
I L(D3, S) = {ff , rrr , rfrf , frfr , rrfrrf , rfrrfr , frrfrr}∗

I χ(D3,S): See below
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Cogrowth GF for Dn

Proposition 1

For each n ≥ 3,

Fn(t) =
1

2
+

1

2n

n−1∑
j=0

1

1− 2 cos(2πjn )t
. (1)

Corollary 2

Fn(t) =
p(t)

q(t)
, with p, q ∈ Z[t], p(0) = q(0) = 1, and

deg p = deg q ≤ dn, where

dn :=

{
n+1
2 , n is odd

2dn4e, n is even
. (2)



Initial Bound on Finite Groups using Representation Theory

Lemma 3 (Bell, L., Mishna 2021+)

Let H be a finite group with degrees of irreducible representations
given by n1, . . . , nd , with T as a generating set. Let
α :=

∑
s∈T s ∈ C[H], and A(t) :=

∑
n≥0 φ(αn)tn. Then A(t) is

the power series expansion of a rational function p(t)/q(t) where
p, q ∈ Z[t] are polynomials with q(0) = 1 and

(deg p) + 1, deg q ≤ n1 + · · ·+ nd ≤ |H|.

In particular, if deg q = |H| or deg p = |H| − 1, then H is abelian.



Initial Bound on Finite Groups using Representation Theory

Proof.
I Consider an isomorphism Ψ : Q[H]→ Mn1(Q)×· · ·×Mnd (Q).

I Ψ induces a Q-algebra isomorphism between the power series
rings Q[H][[t]] and

(
Mn1(Q)× · · · ×Mnd (Q)

)
[[t]] sending∑

n≥0 α
ntn 7→

∑
n≥0(Y n

1 , . . . ,Y
n
d )tn where Ψ(α)=(Y1, . . . ,Yd).

I By Cayley Hamilton, this image satisfy a linear recurrence of
order at most n1 + · · ·+ nd .

I Thus, A(t) :=
∑
αntn = p(t)/q(t) with p, q ∈ Q[t] coprime,

and q(0) = 1.

I Since A(t) ∈ Z[[t]], p/q must be invariant under the action of
Gal(Q/Q).

I The roots of q(t−1) are algebraic integers, so p, q ∈ Z[t].



Initial Bound on Finite Groups using Representation Theory

Example (G = Zn = 〈x |xn = 1〉; S = {x})
Lemma 3 implies that FG ;S(t) ≡ 1

1−tn = p(t)
q(t) , where p, q ∈ Z[t],

with deg p ≤ n − 1 and deg q ≤ n.
Here, deg p = 0 and deg q = n.

Example (G = Dn ≡ 〈r , f |rn=1, f 2 =1, rf = fr−1〉; S := {r , f })
I Sum, N := n1 + n2 + . . .+ nd is n + 2 if n is even; n + 1 if n

is odd

I Lemma 3 =⇒ FG ;S(t) = p(t)/q(t), deg p ≤ N − 1,
deg q ≤ N.

I Corollary 2 =⇒ deg p = deg q ≤ N
2 .



Free Products of Finite Groups

Definition
Let G1,G2, . . . ,Gm be groups. The free product of G1,G2, . . . ,Gm,
denoted as G := G1 ∗ G2 ∗ . . . ∗ Gm =

∐m
i=1 Gi , is the group

generated by ∪mi=1Gi , subject to the relations in each Gi , and the
identity element in each Gi is identified with 1 ∈ G .
If K is any group and m ≥ 0, we define K ∗m := K ∗ K ∗ . . . ∗ K︸ ︷︷ ︸

m factors

.

Example

Z∗32 ≡ Z2 ∗ Z2 ∗ Z2 ≡ 〈x , y , z |x2 = 1, y2 = 1, z2 = 1〉 (xy 6= yx)

Important

The cogrowth GF of G depends on the cogrowth GF of each Gi in
a nontrivial way

I We focus on the case where each Gi is finite

I Generating set: S = ∪mi=1Si ; Si a generating set for Gi
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Visualization of Cayley Graphs

Z2 ∗ Z3 ≡ 〈x |x2 = 1〉 ∗ 〈y |y 3 = 1〉



Visualization of Cayley Graphs

Z3 ∗ Z3 ≡ 〈x |x3 = 1〉 ∗ 〈y |y 3 = 1〉



Visualization of Cayley Graphs

Z3 ∗ Z4 ≡ 〈x |x3 = 1〉 ∗ 〈y |y 4 = 1〉



Visualization of Cayley Graphs

Z3 ∗ Z5 ≡ 〈x |x3 = 1〉 ∗ 〈y |y 5 = 1〉



Visualization of Cayley Graphs

Z4 ∗ Z5 ≡ 〈x |x4 = 1〉 ∗ 〈y |y 5 = 1〉



Visualization of Cayley Graphs

Z2 ∗ D3 (S = {x , r , f })



System using Combinatorial Grammar

I g ∈ G , X ⊆ G , τ : an atom, ι: characteristic function.

I Zg ,X : (combinatorial class of) words in S∗ evaluating to g ,
with proper nonempty prefixes avoiding X

Lemma 4 (Bell and Mishna)

Let G = G1 ∗ G2 ∗ . . . ∗ Gm be a (possibly trivial) free product of m
finitely generated groups. Let Si be a finite generating set for Gi so
that S = ∪mi=1Si is a generating set for G . For each 1 ≤ i ≤ m and
{g} ∪ X ⊆ Gi , using disjoint unions of combinatorial classes,

1. Zg ,X = (ι (g ∈ Si ∩ X ) τ) ∪
(⋃

s∈Si\X
(
τ × Zs−1g ,s−1X

))
, if

1 ∈ X , g 6= 1.

2. Zg ,X = Z1,X × Zg ,X∪{1}, if 1 /∈ X , g 6= 1.

3. Z1,X = ε ∪
(
Z1,X ×

(
Z1,X∪{1} \ ε

))
, if 1 /∈ X .

4. Z1,X =ε∪
(⋃

s∈S\Si
(τ × Zs−1,{s−1})

)
∪
(⋃

s∈Si\X(τ × Zs−1,s−1X )
)

, if

1 ∈ X .
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System using Combinatorial Grammar
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System using Combinatorial Grammar
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System using Combinatorial Grammar
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Combinatorial Grammar to GF

I Fg ,X : GF for Zg ,X

Corollary 5 (Bell and Mishna)

Adopting the same notation used in Lemma 4, we have the
analogous equalities for the set of generating functions {Fg ,X}.

1. Fg ,X (t) = ι(g ∈ Si ∩ X )t +
∑

s∈Si\X tFs−1g ,s−1X (t) if
1 ∈ X , g 6= 1.

2. F1,X (t) = 1 + F1,X (t)(F1,X∪{1}(t)− 1) if 1 /∈ X .

3. Fg ,X (t) = F1,X (t)Fg ,X∪{1}(t) if 1 /∈ X , g 6= 1.

4. F1,X (t) = 1 +
∑

s∈S\Si tFs−1,{s−1}(t) +
∑

s∈Si\X tFs−1,s−1X (t)
if 1 ∈ X .



Consequences and Obstructions

I Each Gi is finite =⇒ the combinatorial grammar contains
only finitely many equations.

I We can eliminate variables on the grammar to obtain a
satisfying polynomial.

I Obstructions:
I The size of the initial system can be large (exponential in |Gi |)
I Elimination process is time consuming, even for a computer

I Solution: Use free probability theory and obtain a system of
size linear in |Gi |
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Free Probability: A Brief Introduction

I G = G1 ∗ . . . ∗ Gm; S = ∪mi=1Si as before

I Group algebra C[G ]: non-commutative random variables

I linear expectation operator φ : C[G ]→ C,

φ

∑
g∈G

αgg

 = α1

I
{
φ
((∑

s∈S s
)n)}

n≥0: cogrowth sequence

I Cauchy transform of α ∈ C[G ]: Gα(t) :=
∑

n≥0 φ(αi )t−n−1

I Inverse Cauchy transform of α: Kα = G
〈−1〉
α .

I Important Fact: For α =
∑
αgg , β =

∑
βgg , if αgβg = 0

for each g ∈ G , then Kα+β(t) = Kα(t) + Kβ(t)− t−1.



Resultants of Polynomials

Strategy: Use resultants to eliminate variables

Upper Bound on Resultants

degt Res(f , g , z) ≤ (degt f )(degzg) + (degt g)(degz f )

Reduced Resultant

Res(f , g , z) :=


trim Res(f , g , z), (degz f )(degz g) > 0

trim f , degz f = 0, degz g > 0

trim g , degz f > 0, degz g = 0

1, degz f = degz g = 0

where trim f = f ·
∏

v v− valv f .

Purpose of Res

To remove monomial factors and redundant exponents in order to
decrease the degrees of the polynomials.
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Algorithm for Algebraic Elimination

Algorithm 1 polynomial elimination over an integral domain B

Input: n ∈ Z>0; t, z1, . . . , zn indeterminate; ~P ∈ B[t, z1, . . . , zn]n.
Assumption: There are algebraic functions F1(t), . . . ,Fn(t), all
nonzero, such that ~P(t,F1(t), . . . ,Fn(t)) = 0.
Purpose: Find Pf (t, z) ∈ B[t, z ], Pf 6≡ 0 so that for any se-
quence of nonzero algebraic functions, F1(t), . . . ,Fn(t), it holds that
~P(t,F1(t), . . . ,Fn(t)) = 0 =⇒ Pf (t,F1(t)) = 0.

1: ~P(0) := ~P
2: for k = 1, 2, . . . , n − 1 do
3: for i = 1, 2, . . . , n − k do

4: P
(k)
i := ResB(P

(k−1)
i ,P

(k−1)
n−k+1, zn−k+1)

5: end for
6: ~P(k) := (P

(k)
i )n−ki=1

7: end for
8: return Pf (t, z) := P

(n−1)
1 (t, z) ∈ B[t, z ]



A First Bound on Free Products of Finite Groups

Theorem 6 (Bell, L., Mishna 2021+)

Let G1, . . . ,Gr be finite groups with generating sets S1,S2, . . . ,Sr

respectively. Let ∆i denote the sum of the degrees of the
irreducible representations of Gi for i = 1, . . . , r . Then the
cogrowth series F (t) of

∐r
i=1 G ∗mi

i with respect to the generating
set S := ∪ri=1Si , is algebraic and satisfies Q(t,F (t)) = 0, where
Q(t, z) ∈ Z[t, z ] with degt(Q) and degz(Q) both at most(

r∏
i=1

∆i

)(
1 +

r∑
i=1

1

∆i

)
.

I Theorem 6 =⇒ second inequality of Eqn (4) in Theorem 9

I Theorem 6 is applicable to any finite groups with any
generating sets



Free Products of Cyclic Groups

I G :=
∐r

i=1

∐mi
j=1〈xij |x

ni
ij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr

I S = {xij : 1 ≤ i ≤ r , 1 ≤ j ≤ mi}
I r : number of distinct cyclic factors

I Using free probability, we obtain a system of equations for
z = FG ;S(t).
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Free Products of Cyclic Groups

Theorem 7 (Liu)

For ni ≥ 2 and mi ≥ 1, let

G :=
r∐

i=1

mi∐
j=1

〈xij |xni
ij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr ,

and S := {xij |i = 1, . . . , r ; j = 1, . . . ,mi}. Let F (t) := FG ;S(t) be
the cogrowth GF. Then the system,

Pi (t, z , z1, . . . , zr ) := tzzni
i − zni−1

i − tz = 0, i = 1, . . . , r ;

Pr+1(t, z , z1, . . . , zr ) := z − (
r∑

j=1

mj tzzj) + (
r∑

j=1

mj)− 1 = 0
(3)

solves F (t): There are algebraic functions Fj(t) 6≡ 0, such that
Pi (t,F (t),F1(t), . . . ,Fr (t)) = 0 for 1 ≤ i ≤ r + 1.



Case of Identical Cyclic Factors(r = 1): G = Z∗mn

Solved by Bell and Mishna using combinatorial grammar.

Q(t, z) = (z − 1)(z + m − 1)n−1 − mntnzn

From Free Probability,

I P
(0)
1 = P1(t, z , z1) = tzzn1

1 − zn1−1
1 − tz ;

I P
(0)
2 (t, z , z1) = P2(t, z , z1) = z −mtzz1 + m − 1;

I P
(1)
1 (t, z) = (z − 1)(z + m − 1)n−1 −mntnzn= Q(t, z).

Key Observation

The degree of satisfying polynomial is independent of m.
We can generalize this result to an arbitrary number of distinct free
factors.
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Case of Two Distinct Factors (r = 2)

I G := Z∗m1
n1 ∗ Z

∗m2
n2

I System of polynomials:

P1 = tzzn1
1 − zn1−1

1 − tz

P2 = tzzn2
2 − zn2−1

2 − tz

P3 = z −m1tzz1 −m2tzz2 + m1 + m2 − 1.

I After one iteration of Algorithm 1: P
(1)
1 = P1;

P
(1)
2 =

{
(z−m1tzz1+m1−1)(z−m1tzz1+m−1)n2−1−(m2tz)n2 , m1>1

(1− tz1)(z − tzz1 + m2)n2−1 −mn2
2 tn2zn2−1, m1 =1

I Upper bound on resultants: degzRes(P
(1)
1 ,P

(1)
2 , z1)≤n2+n1(n2−1)



Case of Two Distinct Factors (r = 2)

I G := Z∗m1
n1 ∗ Z

∗m2
n2

I System of polynomials:

P1 = tzzn1
1 − zn1−1

1 − tz

P2 = tzzn2
2 − zn2−1

2 − tz

P3 = z −m1tzz1 −m2tzz2 + m1 + m2 − 1.

I After one iteration of Algorithm 1: P
(1)
1 = P1;

P
(1)
2 =

{
(z−m1tzz1+m1−1)(z−m1tzz1+m−1)n2−1−(m2tz)n2 , m1>1

(1− tz1)(z − tzz1 + m2)n2−1 −mn2
2 tn2zn2−1, m1 =1

I Upper bound on resultants: degzRes(P
(1)
1 ,P

(1)
2 , z1)≤n2+n1(n2−1)



Degree Bound Theorem for r = 2

Theorem 8 (Liu)

Let

G = Z∗m1
n1 ∗ Z

∗m2
n2 =

2∐
i=1

mi∐
j=1

〈xij |xni
ij = 1〉

be generated by S = {xij : i = 1, 2; 1 ≤ j ≤ mi}. Then there is a
satisfying polynomial Q ∈ Z[t, z ] \ {0} for the cogrowth series
FG ;S(t) such that degz Q satisfy the upper bounds given in the
table below.

m2 = 1 m2 > 1

m1 = 1 1 + n1n2 −max{n1, n2} 1 + n1(n2 − 1)

m1 > 1 1 + n2(n1 − 1) 1 + n1n2

Upper Bounds for degz Q for r = 2 based on the values of m1,m2.



Plots for r = 2: Computed Degrees vs. Upper Bounds

(a) n1 = 2 (b) n1 = 3 (c) n1 = 4

(d) n1 = 5 (e) n1 = 7 (f) n1 = 10

Plots of actual degrees and upper bounds vs. n2 = n1, . . . , 20 for various
fixed n1; m1 = m2 = 1.



Conjectures for r = 2

m2 = 1 m2 > 1

m1 = 1 1 + n1n2 −max{n1, n2} 1 + n1(n2 − 1)

m1 > 1 1 + n2(n1 − 1) 1 + n1n2

Upper Bounds for degz Q for r = 2 based on the values of m1,m2.

I Entries in our table of upper bounds can be decreased
precisely by one.

I If m1 = m2 = 1, then

degzQ ≤ 1+n1n2−max{n1,n2}−min{n1,n2}+1 = 2+n1n2−n1−n2



Arbitrary Number of Distinct Cyclic Factors

Theorem 9 (Liu)

Fix r ≥ 3. As before, consider the group,

G :=
r∐

i=1

mi∐
j=1

〈xij |xni
ij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr

generated by S := {xij}, ni ≥ 2; mi ≥ 1. Running Algorithm 1
with input as the system (3), given in Theorem 7, we deduce

degz P
(r)
1 ≤ (n1n2 . . . nr )

(
1 +

1

nr−1nr
+

r−2∑
k=1

1

nk

)

< (n1n2 . . . nr )

(
1 +

r∑
k=1

1

nk

)
,

(4)

and for 0 ≤ k < r , 1 ≤ j ≤ r − k ,

degzj P
(k)
r−k+1 ≤ nr−k+1 . . . nr−1nr .



Identical Dihedral Factors

I G = D∗mn ≡
∐m

i=1〈ri , fi |rni = 1, f 2
i = 1, ri fi = fi r

−1
i 〉

I S = {r1, f1, r2, f2, . . . , rm, fm}
I Obtaining Q(t, z) explicitly in this case is difficult, since GFs

for dihedral groups are not geometric series



Identical Dihedral Factors

Recall! (from Prop. 1)

dm :=

{
m+1
2 , m is odd

2dm4 e, m is even
.

Proposition 10

Let G = D∗mn =
∐m

i=1〈ri , fi |rni = 1, f 2
i = 1, ri fi = fi r

−1
i 〉 with the

generating set, S = {r1, f1, r2, f2, . . . , rm, fm}. Then the cogrowth
series, F (t) := FG ;S(t), has a satisfying polynomial
P(t, z) ∈ Z[t, z ] with degt P ≤ dn and degz P ≤ dn + 1.



Table of Degrees and Leading Coefficients: D∗mn

n dn degzP degt P Leading coefficient in z P(t, 0)
3 2 3 2 (mt + 1)(2mt − 1) (m − 1)2

4 2 3 2 (4m2t2 − 1) (m − 1)2

5 3 4 3 −(2mt − 1)(m2t2 −mt − 1) (m − 1)3

6 4 5 4 −(4m2t2 − 1)(m2t2 − 1) (m − 1)4

7 4 5 4 −(2mt − 1)(m3t3 + 2m2t2 −mt − 1) (m − 1)4

8 4 5 4 −(4m2t2 − 1)(2m2t2 − 1) (m − 1)4

9 5 6 5 (2mt−1)(mt + 1)(m3t3 − 3m2t2 + 1) (m − 1)5

10 6 7 6 (2mt − 1)(2mt + 1)O((mt)4) (m − 1)6

11 6 7 6 (2mt − 1)O((mt)5) (m − 1)6

12 6 7 6 (3m2t2−1)(4m2t2 − 1)(m2t2 − 1) (m − 1)6

Properties of satisfying polynomials P(t, z) over Z for the cogrowth GF
of G = D∗mn ; S = {r1, f1, r2, f2, . . . , rm, fm}.



Properties of the Satisfying Polynomial: D∗mn

Theorem 11 (Liu)

Let G = D∗mn =
∐m

i=1〈ri , fi |rni = 1, f 2
i = 1, ri fi = fi r

−1
i 〉 with the

generating set, S = {r1, f1, r2, f2, . . . , rm, fm}. Then the cogrowth
GF, F (t) := FG ;S(t), has a satisfying polynomial P(t, z) ∈ Z[t, z ],
with leading coefficient L(t) := [zdegz P ]P(t, z) and
P(t, 0) ∈ Z[m] \ {0}, such that the following properties hold:

1. The polynomial, L(t) ∈ Z[t], belongs to Z[mt];

2. deg L = degt P;

3. 2mt − 1|L(t);

4. if n is even, then P(t, z) = P(−t, z); and

5. 3|n if and only if mt + 1|L(t).



Proof of Theorem 11

I We can deduce

P(t, z)=
1

tz

(deg q)+1∑
k=0

(z+m−1)k(mtz)(deg q)+1−k (([tk ]p̄)− tz([tk ]q̄)
)
∈ Z[t, z ]

where p̄(t) := tdeg qp(t−1) and q̄(t) := t(deg q)+1q(t−1).

I P(t, 0) = (m − 1)deg q.

I Property 1: L(t) = q(mt).

I Property 2: deg L = deg q = dn ≥ degt P since q̄(0) = 0.

I Property 3: 2t − 1|q(t) by Proposition 1.
I Property 4: deg q = dn is even

I [tk ]q̄ = 0 if k is even; [tk ]p̄ = 0 if k is odd;
I decompose the summation expression for P into odd and even

indices.

I Property 5: For A ⊆ [0, 1] finite, f (t)=
∏

c∈A(1−2 cos(cπ)t),
it holds that

1 + t|f (t) ⇐⇒ f (−1) = 0 ⇐⇒ 2
3 ∈ A.



Summary: Free Product of Cyclic and Dihedral Groups

G = Z∗r1n1 ∗ Z
∗r2
n2 ∗ . . . ∗ Z

∗rk
nk
∗ D∗s1m1

∗ D∗s2m2
∗ . . . ∗ D∗slml

The dihedral factors are each generated by a rotation and a flip.

l = 0
(all cyclic)

k = 1 Bell-Mishna
k = 2 Theorem 8
k ≥ 3 Theorem 9

k = 0
(all dihedral)

l = 1, s1 = 1 Proposition 1
l = 1, s1 > 1 Proposition 10; Theorem 11

l ≥ 2 Difficult: Not yet known

l > 0, k > 0 ?



Identical Finite Factors

Proposition 10 generalizes to any finite group

Theorem 12 (Liu)

Suppose H is finite with generating set T ⊆ H. Let
G := H∗m ' H1 ∗ H2 ∗ . . . ∗ Hm with each Hi ' H via an
isomorphism φi : H → Hi . Consider S := ∪mi=1φi (T ) which

generates G . Write the cogrowth GF FH;T (t) = p(t)
q(t) with

p(0)q(0) 6= 0. Let M :=max{deg p+δp, deg q+δq},
δp := max{0, deg q − 1− deg p}, δq := max{0, deg p + 1− deg q}.
Then F (t) := FG ;S(t) satisfies P(t, z) ∈ Z[t, z ] \ {0} such that

1. degt P ≤ M + 1 and degz P ≤ M + 1;

2. if δq > 0, then degt P ≤ M;

3. if deg p + δp < deg q + δq, then degt P ≤ M and degz P ≤ M;

4. if δq > 0 and deg p + δp < deg q + δq, then degt P ≤ M − 1.



Identical Finite Factors

Proposition 10 generalizes to any finite group

Theorem 12 (Liu)

Suppose H is finite with generating set T ⊆ H. Let
G := H∗m ' H1 ∗ H2 ∗ . . . ∗ Hm with each Hi ' H via an
isomorphism φi : H → Hi . Consider S := ∪mi=1φi (T ) which

generates G . Write the cogrowth GF FH;T (t) = p(t)
q(t) with

p(0)q(0) 6= 0. Let M :=max{deg p+δp, deg q+δq},
δp := max{0, deg q − 1− deg p}, δq := max{0, deg p + 1− deg q}.
Then F (t) := FG ;S(t) satisfies P(t, z) ∈ Z[t, z ] \ {0} such that

1. degt P ≤ M + 1 and degz P ≤ M + 1;

2. if δq > 0, then degt P ≤ M;

3. if deg p + δp < deg q + δq, then degt P ≤ M and degz P ≤ M;

4. if δq > 0 and deg p + δp < deg q + δq, then degt P ≤ M − 1.



General Approach to Finding Satisfying Polynomials

Given a group G and a generating set S , to construct P(t, z),

I Find bounds on degt P ≤ dt and degz P ≤ dz .

I Generate sufficiently many first few terms of the cogrowth GF
FG ;S(t).

I Solve a linear system for the (dt + 1)(dz + 1) undetermined
coefficients that defines P(t, z).



Conclusion

I Free products of finitely many finite groups have algebraic
cogrowth GFs.

I Free probability provides a useful tool for bounding degrees of
satisfying polynomials.

I Degrees of minimal polynomials do not (in general) depend on
the number of identical free factors.

Possible Next Steps

I Involve other classes of finite groups.

I Experiment with other generating sets.

I Bound degrees using ideal elimination and Gröbner bases.

I Obtain results on radii of convergence of the cogrowth GFs.



Conclusion

I Free products of finitely many finite groups have algebraic
cogrowth GFs.

I Free probability provides a useful tool for bounding degrees of
satisfying polynomials.

I Degrees of minimal polynomials do not (in general) depend on
the number of identical free factors.

Possible Next Steps

I Involve other classes of finite groups.

I Experiment with other generating sets.

I Bound degrees using ideal elimination and Gröbner bases.

I Obtain results on radii of convergence of the cogrowth GFs.



Thank you for listening!
Questions?
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