Enumerative Properties of Cogrowth Series on Free Products of Finite Groups ACA 2021 Session on Algorithmic Combinatorics

> Haggai Liu Joint work with Marni Mishna and Jason Bell

> > Simon Fraser University Department of Mathematics

> > > July 24, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Introduction

#### Word Problem

Given a group G with a finite generating set, S, determine if a given product of elements in S is the group identity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Introduction

#### Word Problem

Given a group G with a finite generating set, S, determine if a given product of elements in S is the group identity.

# Language of the Word Problem $L(G,S) := \{\underbrace{s_1 s_2 \dots s_n}_{\text{symbol}} : n \ge 0, \ s_i \in S, \ \underbrace{s_1 \cdot s_2 \cdot \dots \cdot s_n}_{\text{group}} = 1 \in G\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Cogrowth Sequence and Series

# Language of the Word Problem $L(G, S) := \{s_1 s_2 \dots s_n : n \ge 0, s_i \in S, s_1 \cdot s_2 \cdot \dots \cdot s_n = 1 \in G\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Cogrowth Sequence and Series

#### Language of the Word Problem

 $L(G,S) := \{s_1s_2\ldots s_n : n \ge 0, s_i \in S, s_1 \cdot s_2 \cdot \ldots \cdot s_n = 1 \in G\}$ 

• G: group generated by a finite set  $S \subseteq G \setminus \{1\}$ 

► cogrowth sequence of G with respect to S:  $\{|L(G,S) \cap S^n|\}_{n \ge 0}$ 

• cogrowth series (GFs):  $F(t) \equiv F_{G;S}(t) := \sum_{n \ge 0} |L(G,S) \cap S^n| t^n \in \mathbb{Z}_{\ge 0}[[t]]$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Setup and Motivation

$$\begin{split} L(G,S) &:= \{ s_1 s_2 \dots s_n : n \ge 0, \ s_i \in S, \ s_1 \dots s_n = 1 \in G \} \\ F(t) &\equiv F_{G;S}(t) := \sum_{n \ge 0} |L(G,S) \cap S^n| \ t^n \in \mathbb{Z}_{\ge 0}[[t]] \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(()

### Setup and Motivation

 $L(G,S) := \{s_1s_2...s_n : n \ge 0, s_i \in S, s_1....s_n = 1 \in G\}$ 

 $F(t) \equiv F_{G;S}(t) := \sum_{n \ge 0} |L(G,S) \cap S^n| t^n \in \mathbb{Z}_{\ge 0}[[t]]$ 

 Continue the study of Bell and Mishna (2018), on free products of (finitely many) finite groups

• 
$$G = G_1 * G_2 * \ldots * G_d$$
;  $G_i$  cyclic or dihedral

#### Result of Muller and Schupp

Free products of finite groups have algebraic GFs

- ▶ ie. Q(t, F(t)) = 0 for some  $Q(t, z) \in \mathbb{Z}[t, z] \setminus \{0\}$
- Call Q a satisfying polynomial of F(t)
- deg<sub>z</sub> Q is minimum  $\implies$  Q is a **minimal polynomial** of F(t)

## Setup and Motivation

$$\begin{split} L(G,S) &:= \{ s_1 s_2 \dots s_n : n \ge 0, \ s_i \in S, \ s_1 \dots s_n = 1 \in G \} \\ F(t) &\equiv F_{G;S}(t) := \sum_{n \ge 0} |L(G,S) \cap S^n| \ t^n \in \mathbb{Z}_{\ge 0}[[t]] \end{split}$$

#### Result of Muller and Schupp

Free products of finite groups have algebraic GFs

- ▶ ie. Q(t, F(t)) = 0 for some  $Q(t, z) \in \mathbb{Z}[t, z] \setminus \{0\}$
- Call Q a satisfying polynomial of F(t)
- deg<sub>z</sub> Q is minimum  $\implies$  Q is a **minimal polynomial** of F(t)

#### Main Objective

Obtain degree bounds on minimal polynomials.

# Excursions on Cayley Graphs

We can visualize the problem using Cayley graphs.

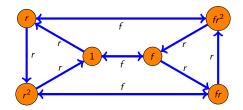
Cayley Graph of G with respect to S: χ(G, S) = (V, E)
V = G, E = {(g, gs) : g ∈ G, s ∈ S} (ie. directed)
Arcs show multiplication by elements of S
Walks show products on elements of S
Excursions of χ(G, S):
Excursions are walks that start and end at 1 ∈ G
L(G, S) ↔ excursions on χ(G, S)

The cogrowth sequence counts excursions on  $\chi(G, S)$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples: Finite Cyclic and Dihedral Groups

- $G := \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \langle x | x^n = 1 \rangle; \ S := \{x\}$ 
  - $L(G, S) = \{\epsilon, x^n, x^{2n}, x^{3n}, \ldots\}$
  - Cogrowth GF:  $F_{G;S}(t) = \frac{1}{1-t^n}$
  - $\chi(G,S)$  is the directed cycle on *n* vertices
- $G := D_n = \langle r, f | r^n = 1, f^2 = 1, rf = fr^{-1} \rangle; \ S := \{r, f\}$ 
  - $L(D_3, S) = \{ ff, rrr, rfrf, frfr, rrfrrf, rfrrfr, frrfrr\}^*$
  - $\chi(D_3, S)$ : See below



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

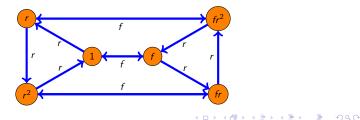
Examples: Finite Cyclic and Dihedral Groups

- $G := \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \langle x | x^n = 1 \rangle; \ S := \{x\}$ 
  - $L(G,S) = \{\epsilon, x^n, x^{2n}, x^{3n}, ...\}$
  - Cogrowth GF:  $F_{G;S}(t) = \frac{1}{1-t^n}$
  - $\chi(G, S)$  is the directed cycle on *n* vertices

 $G := D_n = \langle r, f | r^n = 1, f^2 = 1, rf = fr^{-1} \rangle; \ S := \{r, f\}$ 

- $L(D_3, S) = \{ ff, rrr, rfrf, frfr, rrfrrf, rfrrfr, frrfrr\}^*$
- Cogrowth GF:  $F_n(t) := F_{D_n;S}(t) = ?$

•  $\chi(D_3, S)$ : See below



Cogrowth GF for  $D_n$ 

### Proposition 1 For each $n \ge 3$ ,

$$F_n(t) = \frac{1}{2} + \frac{1}{2n} \sum_{j=0}^{n-1} \frac{1}{1 - 2\cos(\frac{2\pi j}{n})t}.$$
 (1)

Corollary 2  

$$F_n(t) = \frac{p(t)}{q(t)}$$
, with  $p, q \in \mathbb{Z}[t]$ ,  $p(0) = q(0) = 1$ , and  
 $\deg p = \deg q \leq d_n$ , where

$$d_n := \begin{cases} \frac{n+1}{2}, & n \text{ is odd} \\ 2\lceil \frac{n}{4} \rceil, & n \text{ is even} \end{cases}.$$

$$(2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Lemma 3 (Bell, L., Mishna 2021+)

Let *H* be a finite group with degrees of irreducible representations given by  $n_1, \ldots, n_d$ , with *T* as a generating set. Let  $\alpha := \sum_{s \in T} s \in \mathbb{C}[H]$ , and  $A(t) := \sum_{n \ge 0} \phi(\alpha^n)t^n$ . Then A(t) is the power series expansion of a rational function p(t)/q(t) where  $p, q \in \mathbb{Z}[t]$  are polynomials with q(0) = 1 and

$$(\deg p) + 1, \deg q \leq n_1 + \cdots + n_d \leq |H|.$$

In particular, if deg q = |H| or deg p = |H| - 1, then H is abelian.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Initial Bound on Finite Groups using Representation Theory

#### Proof.

- Consider an isomorphism  $\Psi : \overline{\mathbb{Q}}[H] \to M_{n_1}(\overline{\mathbb{Q}}) \times \cdots \times M_{n_d}(\overline{\mathbb{Q}}).$
- $\Psi$  induces a  $\overline{\mathbb{Q}}$ -algebra isomorphism between the power series rings  $\overline{\mathbb{Q}}[H][[t]]$  and  $(M_{n_1}(\overline{\mathbb{Q}}) \times \cdots \times M_{n_d}(\overline{\mathbb{Q}}))[[t]]$  sending  $\sum_{n\geq 0} \alpha^n t^n \mapsto \sum_{n\geq 0} (Y_1^n, \dots, Y_d^n) t^n$  where  $\Psi(\alpha) = (Y_1, \dots, Y_d)$ .
- ► By Cayley Hamilton, this image satisfy a linear recurrence of order at most n<sub>1</sub> + · · · + n<sub>d</sub>.
- ▶ Thus,  $A(t) := \sum \alpha^n t^n = p(t)/q(t)$  with  $p, q \in \overline{\mathbb{Q}}[t]$  coprime, and q(0) = 1.
- Since A(t) ∈ Z[[t]], p/q must be invariant under the action of Gal(Q/Q).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ The roots of  $q(t^{-1})$  are algebraic integers, so  $p, q \in \mathbb{Z}[t]$ .

### Initial Bound on Finite Groups using Representation Theory

Example  $(G = \mathbb{Z}_n = \langle x | x^n = 1 \rangle; S = \{x\})$ Lemma 3 implies that  $F_{G;S}(t) \equiv \frac{1}{1-t^n} = \frac{p(t)}{q(t)}$ , where  $p, q \in \mathbb{Z}[t]$ , with deg  $p \leq n-1$  and deg  $q \leq n$ . Here, deg p = 0 and deg q = n.

Example  $(G = D_n \equiv \langle r, f | r^n = 1, f^2 = 1, rf = fr^{-1} \rangle; S := \{r, f\})$ 

• Sum,  $N := n_1 + n_2 + ... + n_d$  is n + 2 if *n* is even; n + 1 if *n* is odd

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Lemma 3  $\implies$   $F_{G;S}(t) = p(t)/q(t)$ , deg  $p \le N 1$ , deg  $q \le N$ .
- Corollary 2  $\implies$  deg  $p = \deg q \le \frac{N}{2}$ .

# Free Products of Finite Groups

#### Definition

Let  $G_1, G_2, \ldots, G_m$  be groups. The free product of  $G_1, G_2, \ldots, G_m$ , denoted as  $G := G_1 * G_2 * \ldots * G_m = \prod_{i=1}^m G_i$ , is the group generated by  $\cup_{i=1}^m G_i$ , subject to the relations in each  $G_i$ , and the identity element in each  $G_i$  is identified with  $1 \in G$ . If K is any group and  $m \ge 0$ , we define  $K^{*m} := \underbrace{K * K * \ldots * K}_{m \text{ factors}}$ .

#### Example

$$\mathbb{Z}_2^{*3} \equiv \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 \equiv \langle x, y, z | x^2 = 1, y^2 = 1, z^2 = 1 \rangle \ (xy \neq yx)$$

#### Important

The cogrowth GF of G depends on the cogrowth GF of each  $G_i$  in a nontrivial way

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Free Products of Finite Groups

#### Definition

Let  $G_1, G_2, \ldots, G_m$  be groups. The free product of  $G_1, G_2, \ldots, G_m$ , denoted as  $G := G_1 * G_2 * \ldots * G_m = \prod_{i=1}^m G_i$ , is the group generated by  $\cup_{i=1}^m G_i$ , subject to the relations in each  $G_i$ , and the identity element in each  $G_i$  is identified with  $1 \in G$ . If K is any group and  $m \ge 0$ , we define  $K^{*m} := \underbrace{K * K * \ldots * K}_{m \text{ factors}}$ .

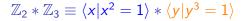
#### Example

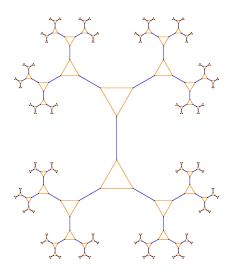
$$\mathbb{Z}_2^{*3} \equiv \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 \equiv \langle x, y, z | x^2 = 1, y^2 = 1, z^2 = 1 \rangle \ (xy \neq yx)$$

#### Important

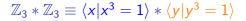
The cogrowth GF of G depends on the cogrowth GF of each  $G_i$  in a nontrivial way

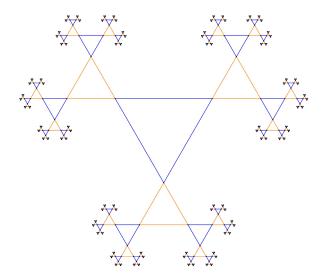
- ▶ We focus on the case where each *G<sub>i</sub>* is finite
- Generating set:  $S = \bigcup_{i=1}^{m} S_i$ ;  $S_i$  a generating set for  $G_i$

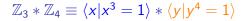


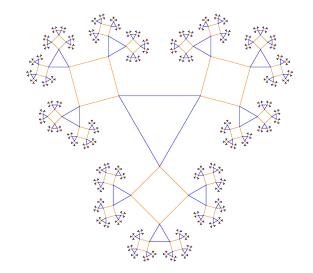


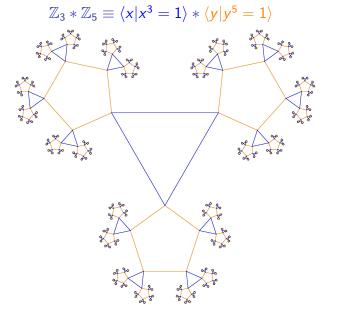
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

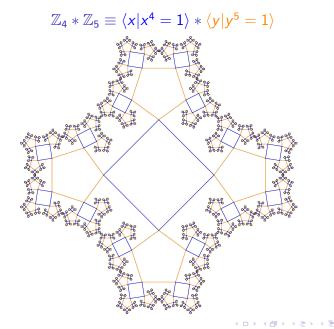






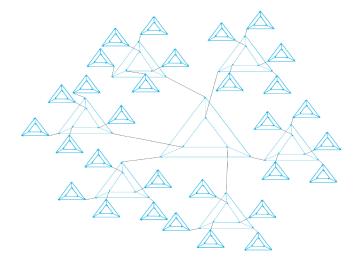






996

 $\mathbb{Z}_2 * D_3 (S = \{x, r, f\})$ 



- ▶  $g \in G$ ,  $X \subseteq G$ ,  $\tau$ : an atom,  $\iota$ : characteristic function.
- Z<sub>g,X</sub>: (combinatorial class of) words in S\* evaluating to g, with proper nonempty prefixes avoiding X

- ▶  $g \in G$ ,  $X \subseteq G$ ,  $\tau$ : an atom,  $\iota$ : characteristic function.
- Z<sub>g,X</sub>: (combinatorial class of) words in S\* evaluating to g, with proper nonempty prefixes avoiding X

#### Lemma 4 (Bell and Mishna)

Let  $G = G_1 * G_2 * \ldots * G_m$  be a (possibly trivial) free product of m finitely generated groups. Let  $S_i$  be a finite generating set for  $G_i$  so that  $S = \bigcup_{i=1}^m S_i$  is a generating set for G. For each  $1 \le i \le m$  and  $\{g\} \cup X \subseteq G_i$ , using disjoint unions of combinatorial classes,

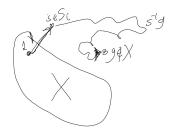
1. 
$$Z_{g,X} = (\iota (g \in S_i \cap X) \tau) \cup (\bigcup_{s \in S_i \setminus X} (\tau \times Z_{s^{-1}g,s^{-1}X})), \text{ if } 1 \in X, g \neq 1.$$

2. 
$$Z_{g,X} = Z_{1,X} \times Z_{g,X \cup \{1\}}$$
, if  $1 \notin X, g \neq 1$ .

3. 
$$Z_{1,X} = \epsilon \cup (Z_{1,X} \times (Z_{1,X \cup \{1\}} \setminus \epsilon))$$
, if  $1 \notin X$ .

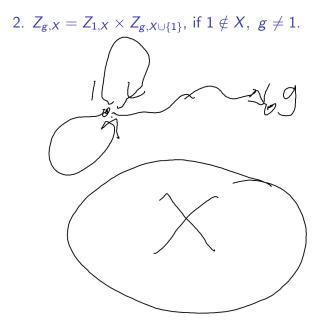
4.  $Z_{1,X} = \epsilon \cup \left( \bigcup_{s \in S \setminus S_i} (\tau \times Z_{s^{-1}, \{s^{-1}\}}) \right) \cup \left( \bigcup_{s \in S_i \setminus X} (\tau \times Z_{s^{-1}, s^{-1}X}) \right), \text{ if }$  $1 \in X.$ 

1.  $Z_{g,X} = (\iota(g \in S_i \cap X)\tau) \cup (\bigcup_{s \in S_i \setminus X} (\tau \times Z_{s^{-1}g,s^{-1}X}))$ , if  $1 \in X, g \neq 1$ .

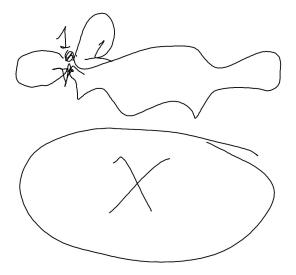




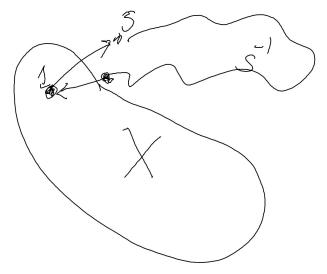
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



3.  $Z_{1,X} = \epsilon \cup (Z_{1,X} \times (Z_{1,X \cup \{1\}} \setminus \epsilon))$ , if  $1 \notin X$ .



4.  $Z_{1,X} = \epsilon \cup \left( \bigcup_{s \in S \setminus S_i} (\tau \times Z_{s^{-1}, \{s^{-1}\}}) \right) \cup \left( \bigcup_{s \in S_i \setminus X} (\tau \times Z_{s^{-1}, s^{-1}X}) \right)$ , if  $1 \in X$ .



- ▲ 臣 ▶ 三 - • ○ • ●

### Combinatorial Grammar to GF

► 
$$F_{g,X}$$
: GF for  $Z_{g,X}$ 

#### Corollary 5 (Bell and Mishna)

Adopting the same notation used in Lemma 4, we have the analogous equalities for the set of generating functions  $\{F_{g,X}\}$ .

1. 
$$F_{g,X}(t) = \iota(g \in S_i \cap X)t + \sum_{s \in S_i \setminus X} tF_{s^{-1}g,s^{-1}X}(t)$$
 if  $1 \in X, g \neq 1$ .

- 2.  $F_{1,X}(t) = 1 + F_{1,X}(t)(F_{1,X\cup\{1\}}(t) 1)$  if  $1 \notin X$ .
- 3.  $F_{g,X}(t) = F_{1,X}(t)F_{g,X\cup\{1\}}(t)$  if  $1 \notin X, g \neq 1$ .
- 4.  $F_{1,X}(t) = 1 + \sum_{s \in S \setminus S_i} tF_{s^{-1}, \{s^{-1}\}}(t) + \sum_{s \in S_i \setminus X} tF_{s^{-1}, s^{-1}X}(t)$ if  $1 \in X$ .

# Consequences and Obstructions

- Each G<sub>i</sub> is finite ⇒ the combinatorial grammar contains only finitely many equations.
- We can eliminate variables on the grammar to obtain a satisfying polynomial.
- Obstructions:
  - The size of the initial system can be large (exponential in  $|G_i|$ )

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Elimination process is time consuming, even for a computer

### Consequences and Obstructions

- Each G<sub>i</sub> is finite the combinatorial grammar contains only finitely many equations.
- We can eliminate variables on the grammar to obtain a satisfying polynomial.
- Obstructions:
  - The size of the initial system can be large (exponential in  $|G_i|$ )

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Elimination process is time consuming, even for a computer
- Solution: Use free probability theory and obtain a system of size linear in |G<sub>i</sub>|

## Free Probability: A Brief Introduction

• 
$$G = G_1 * \ldots * G_m$$
;  $S = \cup_{i=1}^m S_i$  as before

- Group algebra C[G]: non-commutative random variables
- linear **expectation** operator  $\phi : \mathbb{C}[G] \to \mathbb{C}$ ,

$$\phi\left(\left(\sum_{g\in\mathcal{G}}\alpha_g g\right)\right) = \alpha_1$$

- $\{\phi((\sum_{s\in S} s)^n)\}_{n\geq 0}$ : cogrowth sequence
- Cauchy transform of  $\alpha \in \mathbb{C}[G]$ :  $G_{\alpha}(t) := \sum_{n \geq 0} \phi(\alpha^{i})t^{-n-1}$
- Inverse Cauchy transform of  $\alpha$ :  $K_{\alpha} = G_{\alpha}^{\langle -1 \rangle}$ .
- ▶ Important Fact: For  $\alpha = \sum \alpha_g g$ ,  $\beta = \sum \beta_g g$ , if  $\alpha_g \beta_g = 0$  for each  $g \in G$ , then  $K_{\alpha+\beta}(t) = K_{\alpha}(t) + K_{\beta}(t) t^{-1}$ .

# Resultants of Polynomials

Strategy: Use resultants to eliminate variables

### Resultants of Polynomials

**Strategy**: Use resultants to eliminate variables

Upper Bound on Resultants

 $\deg_t \operatorname{Res}(f,g,z) \leq (\deg_t f)(\deg_z g) + (\deg_t g)(\deg_z f)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Resultants of Polynomials

Strategy: Use resultants to eliminate variables

Upper Bound on Resultants  $\deg_t \operatorname{Res}(f, g, z) \leq (\deg_t f)(\deg_z g) + (\deg_t g)(\deg_z f)$ 

Reduced Resultant

$$\overline{\operatorname{Res}}(f,g,z) := \begin{cases} \operatorname{trim} \operatorname{Res}(f,g,z), & (\deg_z f)(\deg_z g) > 0\\ \operatorname{trim} f, & \deg_z f = 0, \ \deg_z g > 0\\ \operatorname{trim} g, & \deg_z f > 0, \ \deg_z g = 0\\ 1, & \deg_z f = \deg_z g = 0 \end{cases}$$
  
where trim  $f = f \cdot \prod_v v^{-\operatorname{val}_v f}$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Resultants of Polynomials

Strategy: Use resultants to eliminate variables

Upper Bound on Resultants  $\deg_t \operatorname{Res}(f, g, z) \leq (\deg_t f)(\deg_z g) + (\deg_t g)(\deg_z f)$ 

Reduced Resultant

$$\overline{\operatorname{Res}}(f,g,z) := \begin{cases} \operatorname{trim} \operatorname{Res}(f,g,z), & (\deg_z f)(\deg_z g) > 0\\ \operatorname{trim} f, & \deg_z f = 0, \ \deg_z g > 0\\ \operatorname{trim} g, & \deg_z f > 0, \ \deg_z g = 0\\ 1, & \deg_z f = \deg_z g = 0 \end{cases}$$
  
where trim  $f = f \cdot \prod_v v^{-\operatorname{val}_v f}$ .

#### Purpose of Res

To remove monomial factors and redundant exponents in order to decrease the degrees of the polynomials.

# Algorithm for Algebraic Elimination

Algorithm 1 polynomial elimination over an integral domain B

**Input:**  $n \in \mathbb{Z}_{>0}$ ;  $t, z_1, \ldots, z_n$  indeterminate;  $\vec{P} \in B[t, z_1, \ldots, z_n]^n$ . **Assumption:** There are algebraic functions  $F_1(t), \ldots, F_n(t)$ , all nonzero, such that  $\vec{P}(t, F_1(t), \ldots, F_n(t)) = 0$ . **Purpose:** Find  $P_f(t,z) \in B[t,z], P_f \neq 0$  so that for any sequence of nonzero algebraic functions,  $F_1(t), \ldots, F_n(t)$ , it holds that  $\vec{P}(t,F_1(t),\ldots,F_n(t))=0 \implies P_f(t,F_1(t))=0.$ 1.  $\vec{P}^{(0)} = \vec{P}$ 2: for k = 1, 2, ..., n-1 do for i = 1, 2, ..., n - k do 3:  $P_{i}^{(k)} := \overline{\text{Res}}_{B}(P_{i}^{(k-1)}, P_{n-k+1}^{(k-1)}, z_{n-k+1})$ 4: end for 5:  $\vec{P}^{(k)} := (P_i^{(k)})_{i=1}^{n-k}$ 6: 7: end for 8: return  $P_f(t,z) := P_1^{(n-1)}(t,z) \in B[t,z]$ 

## A First Bound on Free Products of Finite Groups

Theorem 6 (Bell, L., Mishna 2021+)

Let  $G_1, \ldots, G_r$  be finite groups with generating sets  $S_1, S_2, \ldots, S_r$ respectively. Let  $\Delta_i$  denote the sum of the degrees of the irreducible representations of  $G_i$  for  $i = 1, \ldots, r$ . Then the cogrowth series F(t) of  $\coprod_{i=1}^r G_i^{*m_i}$  with respect to the generating set  $S := \bigcup_{i=1}^r S_i$ , is algebraic and satisfies Q(t, F(t)) = 0, where  $Q(t, z) \in \mathbb{Z}[t, z]$  with  $\deg_t(Q)$  and  $\deg_z(Q)$  both at most

$$\left(\prod_{i=1}^r \Delta_i\right) \left(1 + \sum_{i=1}^r \frac{1}{\Delta_i}\right)$$

- Theorem 6  $\implies$  second inequality of Eqn (4) in Theorem 9
- Theorem 6 is applicable to any finite groups with any generating sets

### Free Products of Cyclic Groups

•  $G := \coprod_{i=1}^{r} \coprod_{j=1}^{m_i} \langle x_{ij} | x_{ij}^{n_i} = 1 \rangle = \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2} * \ldots * \mathbb{Z}_{n_r}^{*m_r}$ •  $S = \{x_{ij} : 1 \le i \le r, 1 \le j \le m_i\}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

r: number of <u>distinct</u> cyclic factors

## Free Products of Cyclic Groups

- $\blacktriangleright \quad G := \coprod_{i=1}^r \coprod_{j=1}^{m_i} \langle x_{ij} | x_{ij}^{n_i} = 1 \rangle = \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2} * \ldots * \mathbb{Z}_{n_r}^{*m_r}$
- $\blacktriangleright \ S = \{x_{ij} : 1 \le i \le r, 1 \le j \le m_i\}$
- r: number of <u>distinct</u> cyclic factors
- Using free probability, we obtain a system of equations for z = F<sub>G;S</sub>(t).

#### Free Products of Cyclic Groups

Theorem 7 (Liu) For  $n_i \ge 2$  and  $m_i \ge 1$ , let

$$G := \prod_{i=1}^{r} \prod_{j=1}^{m_i} \langle x_{ij} | x_{ij}^{n_i} = 1 \rangle = \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2} * \ldots * \mathbb{Z}_{n_r}^{*m_r},$$

and  $S := \{x_{ij} | i = 1, ..., r; j = 1, ..., m_i\}$ . Let  $F(t) := F_{G;S}(t)$  be the cogrowth GF. Then the system,

$$P_{i}(t, z, z_{1}, ..., z_{r}) := tzz_{i}^{n_{i}} - z_{i}^{n_{i}-1} - tz = 0, \ i = 1, ..., r;$$
  
$$P_{r+1}(t, z, z_{1}, ..., z_{r}) := z - (\sum_{j=1}^{r} m_{j}tzz_{j}) + (\sum_{j=1}^{r} m_{j}) - 1 = 0$$
(3)

solves F(t): There are algebraic functions  $F_j(t) \neq 0$ , such that  $P_i(t, F(t), F_1(t), \dots, F_r(t)) = 0$  for  $1 \leq i \leq r + 1$ .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Case of Identical Cyclic Factors(r = 1):  $G = \mathbb{Z}_n^{*m}$ 

Solved by Bell and Mishna using combinatorial grammar.  $Q(t, z) = (z - 1)(z + m - 1)^{n-1} - m^n t^n z^n$ 

From Free Probability,

$$P_1^{(0)} = P_1(t, z, z_1) = tzz_1^{n_1} - z_1^{n_1 - 1} - tz;$$
 $P_2^{(0)}(t, z, z_1) = P_2(t, z, z_1) = z - mtzz_1 + m - 1;$ 
 $P_1^{(1)}(t, z) = (z - 1)(z + m - 1)^{n-1} - m^n t^n z^n = Q(t, z).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Case of Identical Cyclic Factors(r = 1):  $G = \mathbb{Z}_n^{*m}$ 

Solved by Bell and Mishna using combinatorial grammar.  $Q(t, z) = (z - 1)(z + m - 1)^{n-1} - m^n t^n z^n$ 

From Free Probability,

$$P_1^{(0)} = P_1(t, z, z_1) = tzz_1^{n_1} - z_1^{n_1 - 1} - tz;$$
 $P_2^{(0)}(t, z, z_1) = P_2(t, z, z_1) = z - mtzz_1 + m - 1;$ 
 $P_1^{(1)}(t, z) = (z - 1)(z + m - 1)^{n-1} - m^n t^n z^n = Q(t, z).$ 

#### Key Observation

The degree of satisfying polynomial is independent of m. We can generalize this result to an arbitrary number of distinct free factors.

Case of Two Distinct Factors (r = 2)

$$\blacktriangleright G := \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2}$$

System of polynomials:

$$P_{1} = tzz_{1}^{n_{1}} - z_{1}^{n_{1}-1} - tz$$

$$P_{2} = tzz_{2}^{n_{2}} - z_{2}^{n_{2}-1} - tz$$

$$P_{3} = z - m_{1}tzz_{1} - m_{2}tzz_{2} + m_{1} + m_{2} - 1.$$

• After one iteration of Algorithm 1:  $P_1^{(1)} = P_1$ ;  $P_2^{(1)} = \begin{cases} (z - m_1 tzz_1 + m_1 - 1)(z - m_1 tzz_1 + m - 1)^{n_2 - 1} - (m_2 tz)^{n_2}, m_1 > 1\\ (1 - tz_1)(z - tzz_1 + m_2)^{n_2 - 1} - m_2^{n_2} t^{n_2} z^{n_2 - 1}, m_1 = 1 \end{cases}$ 

Case of Two Distinct Factors (r = 2)

$$\blacktriangleright G := \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2}$$

System of polynomials:

$$P_{1} = tzz_{1}^{n_{1}} - z_{1}^{n_{1}-1} - tz$$

$$P_{2} = tzz_{2}^{n_{2}} - z_{2}^{n_{2}-1} - tz$$

$$P_{3} = z - m_{1}tzz_{1} - m_{2}tzz_{2} + m_{1} + m_{2} - 1.$$

After one iteration of Algorithm 1:  $P_1^{(1)} = P_1$ ;  $P_2^{(1)} = \begin{cases} (z - m_1 tzz_1 + m_1 - 1)(z - m_1 tzz_1 + m - 1)^{n_2 - 1} - (m_2 tz)^{n_2}, m_1 > 1\\ (1 - tz_1)(z - tzz_1 + m_2)^{n_2 - 1} - m_2^{n_2} t^{n_2} z^{n_2 - 1}, m_1 = 1 \end{cases}$ 

▶ Upper bound on resultants:  $\deg_{z} \operatorname{Res}(P_{1}^{(1)}, P_{2}^{(1)}, z_{1}) \le n_{2} + n_{1}(n_{2} - 1)$ 

### Degree Bound Theorem for r = 2

Theorem 8 (Liu) Let

$$G = \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2} = \prod_{i=1}^2 \prod_{j=1}^{m_i} \langle x_{ij} | x_{ij}^{n_i} = 1 \rangle$$

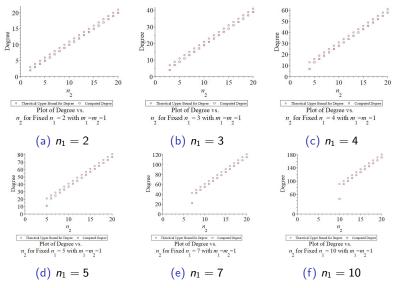
be generated by  $S = \{x_{ij} : i = 1, 2; 1 \le j \le m_i\}$ . Then there is a satisfying polynomial  $Q \in \mathbb{Z}[t, z] \setminus \{0\}$  for the cogrowth series  $F_{G;S}(t)$  such that  $\deg_z Q$  satisfy the upper bounds given in the table below.

|           | $m_2 = 1$                        | $m_2 > 1$          |
|-----------|----------------------------------|--------------------|
| $m_1 = 1$ | $1 + n_1 n_2 - \max\{n_1, n_2\}$ | $1 + n_1(n_2 - 1)$ |
| $m_1 > 1$ | $1 + n_2(n_1 - 1)$               | $1 + n_1 n_2$      |

Upper Bounds for deg<sub>z</sub> Q for r = 2 based on the values of  $m_1, m_2$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

### Plots for r = 2: Computed Degrees vs. Upper Bounds



Plots of actual degrees and upper bounds vs.  $n_2 = n_1, \ldots, 20$  for various fixed  $n_1$ ;  $m_1 = m_2 = 1$ .

E 990

#### Conjectures for r = 2

|           | $m_2 = 1$                        | $m_2 > 1$          |
|-----------|----------------------------------|--------------------|
| $m_1 = 1$ | $1 + n_1 n_2 - \max\{n_1, n_2\}$ | $1 + n_1(n_2 - 1)$ |
| $m_1 > 1$ | $1 + n_2(n_1 - 1)$               | $1 + n_1 n_2$      |

Upper Bounds for deg<sub>z</sub> Q for r = 2 based on the values of  $m_1, m_2$ .

Entries in our table of upper bounds can be decreased precisely by one.

• If 
$$m_1 = m_2 = 1$$
, then

 $deg_z Q \le 1 + n_1 n_2 - \max\{n_1, n_2\} - \min\{n_1, n_2\} + 1 = 2 + n_1 n_2 - n_1 - n_2$ 

### Arbitrary Number of Distinct Cyclic Factors

#### Theorem 9 (Liu)

Fix 
$$r \geq 3$$
. As before, consider the group,  

$$G := \prod_{i=1}^{r} \prod_{j=1}^{m_i} \langle x_{ij} | x_{ij}^{n_i} = 1 \rangle = \mathbb{Z}_{n_1}^{*m_1} * \mathbb{Z}_{n_2}^{*m_2} * \ldots * \mathbb{Z}_{n_r}^{*m_r}$$

generated by  $S := \{x_{ij}\}, n_i \ge 2; m_i \ge 1$ . Running Algorithm 1 with input as the system (3), given in Theorem 7, we deduce

$$\deg_{z} P_{1}^{(r)} \leq (n_{1}n_{2}\dots n_{r}) \left(1 + \frac{1}{n_{r-1}n_{r}} + \sum_{k=1}^{r-2} \frac{1}{n_{k}}\right)$$

$$< (n_{1}n_{2}\dots n_{r}) \left(1 + \sum_{k=1}^{r} \frac{1}{n_{k}}\right),$$
(4)

and for  $0 \le k < r, \ 1 \le j \le r - k$ ,

$$\deg_{Z_j} P_{r-k+1}^{(k)} \leq n_{r-k+1} \dots n_{r-1} n_r.$$

### Identical Dihedral Factors

- $G = D_n^{*m} \equiv \prod_{i=1}^m \langle r_i, f_i | r_i^n = 1, f_i^2 = 1, r_i f_i = f_i r_i^{-1} \rangle$
- $S = \{r_1, f_1, r_2, f_2, \dots, r_m, f_m\}$
- Obtaining Q(t, z) explicitly in this case is difficult, since GFs for dihedral groups are not geometric series

### Identical Dihedral Factors

Recall! (from Prop. 1)

$$d_m := egin{cases} rac{m+1}{2}, & m ext{ is odd} \ 2\lceilrac{m}{4}
ceil, & m ext{ is even} \end{cases}$$

#### Proposition 10

Let  $G = D_n^{*m} = \prod_{i=1}^m \langle r_i, f_i | r_i^n = 1, f_i^2 = 1, r_i f_i = f_i r_i^{-1} \rangle$  with the generating set,  $S = \{r_1, f_1, r_2, f_2, \dots, r_m, f_m\}$ . Then the cogrowth series,  $F(t) := F_{G;S}(t)$ , has a satisfying polynomial  $P(t, z) \in \mathbb{Z}[t, z]$  with  $\deg_t P \leq d_n$  and  $\deg_z P \leq d_n + 1$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

# Table of Degrees and Leading Coefficients: $D_n^{*m}$

| n  | $d_n$ | deg <sub>z</sub> P | $\deg_t P$ | Leading coefficient in z           | P(t,0)      |
|----|-------|--------------------|------------|------------------------------------|-------------|
| 3  | 2     | 3                  | 2          | (mt+1)(2mt-1)                      | $(m-1)^2$   |
| 4  | 2     | 3                  | 2          | $(4m^2t^2-1)$                      | $(m-1)^2$   |
| 5  | 3     | 4                  | 3          | $-(2mt-1)(m^2t^2-mt-1)$            | $(m-1)^{3}$ |
| 6  | 4     | 5                  | 4          | $-(4m^2t^2-1)(m^2t^2-1)$           | $(m-1)^4$   |
| 7  | 4     | 5                  | 4          | $-(2mt-1)(m^3t^3+2m^2t^2-mt-1)$    | $(m-1)^4$   |
| 8  | 4     | 5                  | 4          | $-(4m^2t^2-1)(2m^2t^2-1)$          | $(m-1)^4$   |
| 9  | 5     | 6                  | 5          | $(2mt-1)(mt+1)(m^3t^3-3m^2t^2+1)$  | $(m-1)^{5}$ |
| 10 | 6     | 7                  | 6          | $(2mt-1)(2mt+1)O((mt)^4)$          | $(m-1)^{6}$ |
| 11 | 6     | 7                  | 6          | $(2mt-1)O((mt)^5)$                 | $(m-1)^{6}$ |
| 12 | 6     | 7                  | 6          | $(3m^2t^2-1)(4m^2t^2-1)(m^2t^2-1)$ | $(m-1)^{6}$ |

Properties of satisfying polynomials P(t, z) over  $\mathbb{Z}$  for the cogrowth GF of  $G = D_n^{*m}$ ;  $S = \{r_1, f_1, r_2, f_2, ..., r_m, f_m\}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Properties of the Satisfying Polynomial:  $D_n^{*m}$ 

Theorem 11 (Liu)

Let  $G = D_n^{*m} = \prod_{i=1}^m \langle r_i, f_i | r_i^n = 1, f_i^2 = 1, r_i f_i = f_i r_i^{-1} \rangle$  with the generating set,  $S = \{r_1, f_1, r_2, f_2, \ldots, r_m, f_m\}$ . Then the cogrowth *GF*,  $F(t) := F_{G;S}(t)$ , has a satisfying polynomial  $P(t, z) \in \mathbb{Z}[t, z]$ , with leading coefficient  $L(t) := [z^{\deg_z P}]P(t, z)$  and  $P(t, 0) \in \mathbb{Z}[m] \setminus \{0\}$ , such that the following properties hold:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. The polynomial,  $L(t) \in \mathbb{Z}[t]$ , belongs to  $\mathbb{Z}[mt]$ ;

2. deg 
$$L = \deg_t P$$
;

- 3. 2mt 1|L(t);
- 4. if n is even, then P(t,z) = P(-t,z); and

5. 3|n if and only if mt + 1|L(t).

# Proof of Theorem 11

We can deduce  $P(t,z) = \frac{1}{tz} \sum_{k=1}^{(\deg q)+1} (z+m-1)^k (mtz)^{(\deg q)+1-k} \left( ([t^k]\bar{p}) - tz([t^k]\bar{q}) \right) \in \mathbb{Z}[t,z]$ where  $\bar{p}(t) := t^{\deg q} p(t^{-1})$  and  $\bar{q}(t) := t^{(\deg q)+1} q(t^{-1})$ . ▶  $P(t,0) = (m-1)^{\deg q}$ . Property 1: L(t) = q(mt). Property 2: deg  $L = \deg q = d_n \ge \deg_t P$  since  $\bar{q}(0) = 0$ . Property 3: 2t - 1|q(t) by Proposition 1. Property 4: deg  $q = d_n$  is even •  $[t^k]\bar{q} = 0$  if k is even;  $[t^k]\bar{p} = 0$  if k is odd; decompose the summation expression for P into odd and even indices. Property 5: For  $A \subseteq [0,1]$  finite,  $f(t) = \prod_{c \in A} (1-2\cos(c\pi)t)$ ,

it holds that

$$1+t|f(t)\iff f(-1)=0\iff rac{2}{3}\in A.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Summary: Free Product of Cyclic and Dihedral Groups

$$G = \mathbb{Z}_{n_1}^{*r_1} * \mathbb{Z}_{n_2}^{*r_2} * \ldots * \mathbb{Z}_{n_k}^{*r_k} * D_{m_1}^{*s_1} * D_{m_2}^{*s_2} * \ldots * D_{m_l}^{*s_l}$$

The dihedral factors are each generated by a rotation and a flip.

| / = 0          | k = 1        | Bell-Mishna                |  |
|----------------|--------------|----------------------------|--|
| (all cyclic)   | <i>k</i> = 2 | Theorem 8                  |  |
|                | $k \ge 3$    | Theorem 9                  |  |
| <i>k</i> = 0   | $l=1, s_1=1$ | Proposition 1              |  |
| (all dihedral) | $l=1, s_1>1$ | Proposition 10; Theorem 11 |  |
| (un unicului)  | $l \ge 2$    | Difficult: Not yet known   |  |
| l > 0, k > 0   | ?            |                            |  |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## **Identical Finite Factors**

Proposition 10 generalizes to any finite group

#### **Identical Finite Factors**

Proposition 10 generalizes to any finite group

Theorem 12 (Liu)

Suppose *H* is finite with generating set  $T \subseteq H$ . Let  $G := H^{*m} \simeq H_1 * H_2 * \ldots * H_m$  with each  $H_i \simeq H$  via an isomorphism  $\phi_i : H \to H_i$ . Consider  $S := \bigcup_{i=1}^m \phi_i(T)$  which generates *G*. Write the cogrowth GF  $F_{H;T}(t) = \frac{p(t)}{q(t)}$  with  $p(0)q(0) \neq 0$ . Let  $M := \max\{\deg p + \delta_p, \deg q + \delta_q\},$   $\delta_p := \max\{0, \deg q - 1 - \deg p\}, \delta_q := \max\{0, \deg p + 1 - \deg q\}.$ Then  $F(t) := F_{G;S}(t)$  satisfies  $P(t, z) \in \mathbb{Z}[t, z] \setminus \{0\}$  such that 1. deg.  $P \leq M + 1$  and deg.  $P \leq M + 1$ :

- 1.  $\deg_t P \leq M + 1$  and  $\deg_z P \leq M + 1$ ;
- 2. if  $\delta_q > 0$ , then deg<sub>t</sub>  $P \leq M$ ;
- 3. if deg  $p + \delta_p < \deg q + \delta_q$ , then deg  $P \leq M$  and deg  $P \leq M$ ;
- 4. if  $\delta_q > 0$  and deg  $p + \delta_p < \deg q + \delta_q$ , then deg<sub>t</sub>  $P \le M 1$ .

# General Approach to Finding Satisfying Polynomials

Given a group G and a generating set S, to construct P(t,z),

- Find bounds on deg<sub>t</sub>  $P \le d_t$  and deg<sub>z</sub>  $P \le d_z$ .
- Generate sufficiently many first few terms of the cogrowth GF F<sub>G;S</sub>(t).
- Solve a linear system for the (d<sub>t</sub> + 1)(d<sub>z</sub> + 1) undetermined coefficients that defines P(t, z).

# Conclusion

- Free products of finitely many finite groups have algebraic cogrowth GFs.
- Free probability provides a useful tool for bounding degrees of satisfying polynomials.
- Degrees of minimal polynomials do not (in general) depend on the number of identical free factors.

## Conclusion

- Free products of finitely many finite groups have algebraic cogrowth GFs.
- Free probability provides a useful tool for bounding degrees of satisfying polynomials.
- Degrees of minimal polynomials do not (in general) depend on the number of identical free factors.

#### Possible Next Steps

- Involve other classes of finite groups.
- Experiment with other generating sets.
- Bound degrees using ideal elimination and Gröbner bases.
- Obtain results on radii of convergence of the cogrowth GFs.

Thank you for listening! Questions?

(ロ)、(型)、(E)、(E)、(E)、(O)()

#### References

- Jason Bell and Marni Mishna. On the complexity of the cogrowth sequence. arXiv, 1805.08118v1, 2018.
- [2] Philippe Flajolet and Robert Sedgewick. *Analytic Combinatorics*. Cambridge University Press, 2009.
- [3] Alexandru Nica and Roland Speicher. Lectures on the Combinatorics of Free Probability. Cambridge University Press, 2006.
- [4] Haggai Liu. On the cogrowth series of free products of finite groups. Master's thesis, Simon Fraser University, 2021.
- [5] David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages. *Journal of Computer and System Sciences*, 26, 1982.
- [6] A. V. Anisimov. Group languages. *Kibernetika*, 4:18–24, 1971.