A Combinatorial Construction for Two Formulas In Slater's List

Kağan Kurșungöz

Sabancı University, İstanbul
kursungoz@sabanciuniv.edu

ACA 2021
Session on Algorithmic Combinatorics Jul. 25, 2021

Derinitions

Definition

An integer partition is an unordered finite sum of positive integers (parts) $\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}=n\right.$).

For the purposes of this talk, we will write parts in increasing order.
ExAMPLE

$$
4+8+10=22
$$

q-POCHHAMMER SYMBOL

DEFINITION

For $n \in \mathbb{N}$,

$$
(a ; q)_{n}=\prod_{j=1}^{n}\left(1-a q^{j-1}\right)
$$

and for $|q|<1$

$$
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}=\prod_{j=1}^{\infty}\left(1-a q^{j-1}\right)
$$

(sine qua non of q-series)

Euler's Partition Identity

Theorem

(combinatorial version)
For $n \in \mathbb{N}$,
the number of partitions of n into distinct parts equals the number of partitions of n into odd parts.
(q-series version)

$$
\sum_{n \geq 0} \frac{q^{\binom{n+1}{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

Euler's Partition Theorem Example

This example is only for the multiplicity side.
ExAMPLE
Among all partitions of 5 :

$$
\begin{array}{rlr}
1+1+1+1+1, & 1+1+1+2, & 1+2+2, \\
1+1+3, & 2+3, & 1+4,
\end{array}
$$

only three of them are into distinct parts:

$$
2+3, \quad 1+4, \quad 5
$$

Rogers-Ramanujan IDENTITIES (ONE OF)

Theorem
(combinatorial version)
For any $n \in \mathbb{N}$, the number of partitions of n
into distinct and non-consecutive parts
equals the number of partitions into parts $\equiv \pm 1(\bmod 5)$.
(q-series version)

$$
\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

The First Rogers-Ramanujan Identity

 ExAMPLEThis example, too, is only for the multiplicity side.
Example
Among all partitions of 9 into distinct parts:

$$
\begin{array}{rrrr}
2+3+4, & 1+3+5, & 4+5, & 1+2+6, \\
3+6, & 2+7, & 1+8, & 9,
\end{array}
$$

only five of them are free of consecutive parts:

$$
1+3+5, \quad 3+6, \quad 2+7, \quad 1+8, \quad 9
$$

INITIAL IDEA

Can we start with Euler's identity, keep track of the consecutive pairs of parts, then eliminate them using inclusion/exclusion?

Yes (this is the rest of the talk)
Then, We will have an alternative series for the Rogers-Ramanujan identities.

How is The inclusion/EXLusion SUPPOSED TO WORK?

$$
1+3+4+5+7+9+11+12+14+15+16
$$

THE COMBINATORIAL MOVES AND THE MTNIMAL PARTITIONS

As a warmup, let's look at the series from the series side of Euler's Partition Identity:

$$
\sum_{n \geq 0} q^{\binom{n+1}{2}} \frac{1}{(q ; q)_{n}}
$$

THE COMBINATORIAL MOVES AND THE MTNIMAL PARTITIONS

$\begin{array}{lllllllllll}1 & 3 & 4 & 5 & 7 & 9 & 11 & 12 & 14 & 15 & 16\end{array}$

Generating Function for k designated rafts

Theorem

Let λ be a partition into distinct parts having exactly k designated rafts for $k \geq 1$. A generating function for such λ is

$$
\sum_{m \geq 0} q^{\binom{3 k+m}{2}-3\binom{k}{2}}\left[\begin{array}{c}
m+k-1 \\
k-1
\end{array}\right]_{q^{-1}} \frac{1}{\left(q^{2} ; q^{2}\right)_{k}} \quad\left(-q^{3 k+m+1} ; q\right)_{\infty}
$$

Theorem (Slater \#19)

$$
(-q ; q)_{\infty} \sum_{n \geq 0} \frac{(-1)^{j} q^{3 j^{2}}}{\left(q^{2} ; q^{2}\right)_{j}(-q ; q)_{2 j}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}} .
$$

Proof.
For $k=0$ (i.e. no designated rafts), the generating function is $(-q ; q)_{\infty}$. Combine the previous theorem,
inclusion-exclusion,

Theorem (Slater \#19)

$$
(-q ; q)_{\infty} \sum_{n \geq 0} \frac{(-1)^{j} q^{3 j^{2}}}{\left(q^{2} ; q^{2}\right)_{j}(-q ; q)_{2 j}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}} .
$$

Proof.
For $k=0$ (i.e. no designated rafts), the generating function is $(-q ; q)_{\infty}$. Combine the previous theorem, inclusion-exclusion,

Theorem (Slater \#19)

$$
(-q ; q)_{\infty} \sum_{n \geq 0} \frac{(-1)^{j} q^{3 j^{2}}}{\left(q^{2} ; q^{2}\right)_{j}(-q ; q)_{2 j}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}} .
$$

Proof.

For $k=0$ (i.e. no designated rafts), the generating function is $(-q ; q)_{\infty}$. Combine the previous theorem, inclusion-exclusion,

The Main Theorem

PROOF (CONT'D).
use q-Gauss' $\left(\sum_{n \geq 0} \frac{(a ; q)_{n}(b ; q)_{n}(c / a b)^{n}}{(q ; q)_{n}(c ; q)_{n}}=\frac{(c / a ; q)_{\infty}(c / b ; q)_{\infty}}{(c ; q)_{\infty}(c / a b ; q)_{\infty}}\right)$
under an appropriate limit,
and the q-binomial theorem $\left(\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{n \geq 0} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}}\right)$
After inclusion/exclusion,
the surviving partitions are those which can have no rafts,
i.e. partitions into distinct parts with no consecutive parts.

The first Rogers-Ramanujan identity finishes the proof.

The Main Theorem

PROOF (CONT'D).
use q-Gauss' $\left(\sum_{n \geq 0} \frac{(a ; q)_{n}(b ; q)_{n}(c / a b)^{n}}{(q ; q)_{n}(c ; q)_{n}}=\frac{(c / a ; q)_{\infty}(c / b ; q)_{\infty}}{(c ; q)_{\infty}(c / a b ; q)_{\infty}}\right)$
under an appropriate limit,
and the q-binomial theorem $\left(\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{n \geq 0} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}}\right)$.
After inclusion/exclusion,
the surviving partitions are those which can have no rafts,
i.e. partitions into distinct parts with no consecutive parts.

The first Rogers-Ramanujan identity finishes the proof.

PROOF (CONT'D).
use q-Gauss' $\left(\sum_{n \geq 0} \frac{(a ; q)_{n}(b ; q)_{n}(c / a b)^{n}}{(q ; q)_{n}(c ; q)_{n}}=\frac{(c / a ; q)_{\infty}(c / b ; q)_{\infty}}{(c ; q)_{\infty}(c / a b ; q)_{\infty}}\right)$
under an appropriate limit,
and the q-binomial theorem $\left(\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{n \geq 0} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}}\right)$.
After inclusion/exclusion, the surviving partitions are those which can have no rafts, i.e. partitions into distinct parts with no consecutive parts. The first Rogers-Ramanujan identity finishes the proof.

PROOF (CONT'D).
use q-Gauss' $\left(\sum_{n \geq 0} \frac{(a ; q)_{n}(b ; q)_{n}(c / a b)^{n}}{(q ; q)_{n}(c ; q)_{n}}=\frac{(c / a ; q)_{\infty}(c / b ; q)_{\infty}}{(c ; q)_{\infty}(c / a b ; q)_{\infty}}\right)$
under an appropriate limit,
and the q-binomial theorem $\left(\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{n \geq 0} \frac{(a ; q)_{n} z^{n}}{(q ; q)_{n}}\right)$.
After inclusion/exclusion, the surviving partitions are those which can have no rafts, i.e. partitions into distinct parts with no consecutive parts. The first Rogers-Ramanujan identity finishes the proof.

Hirschhorn gave a much shorter combinatorial account, sticking to standard definitions in the theory.

Bringmann, Mahlburg and Nataraj obtained similar formulas by solving q-difference equations.

Hirschhorn gave a much shorter combinatorial account, sticking to standard definitions in the theory.

Bringmann, Mahlburg and Nataraj obtained similar formulas by solving q-difference equations.

Inserting staircases

$$
\sum_{m, n, k \geq 0} \frac{q^{\binom{n+1}{2}+d\binom{n}{2}}}{(q ; q)_{n}} \cdot \frac{(-1)^{k} q^{3 k^{2}+d\binom{2 k}{2}}}{\left(q^{2} ; q^{2}\right)_{k}} \cdot \frac{\left(q^{2 k} ; q\right)_{m} q^{d\binom{m}{2}}(-q)^{m}}{(q ; q)_{m}} q^{2 d n k+d n m+2 d k m}
$$

generates partitions into parts that are $(2+d)$-apart for $d \geq 0$.

Unless $d=0$, we cannot reduce the number of summations.

Inserting staircases

$$
\sum_{m, n, k \geq 0} \frac{q^{\binom{n+1}{2}+d\binom{n}{2}}}{(q ; q)_{n}} \cdot \frac{(-1)^{k} q^{3 k^{2}+d\binom{2 k}{2}}}{\left(q^{2} ; q^{2}\right)_{k}} \cdot \frac{\left(q^{2 k} ; q\right)_{m} q^{d\binom{m}{2}}(-q)^{m}}{(q ; q)_{m}} q^{2 d n k+d n m+2 d k m}
$$

generates partitions into parts that are $(2+d)$-apart for $d \geq 0$.

Unless $d=0$, we cannot reduce the number of summations.

Gratitude

Thank you for your attention.

Any questions?
E. Kringmann, K. Mahlburg, K. Nataraj, Distinct parts partitions without sequences, The Electronic Journal of Combinatorics, 22(3), (2015), \#P3.3.
E. M.D. Hirschhorn, Developments in the Theory of Partitions, Ph.D. thesis, University of New South Wales (1979).
E. K. Kurșungöz, A combinatorial construction for two formulas in Slater's list. International Journal of Number Theory, 17(03), 655-663 (2021).
E. L. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc. Ser. 2 54, 147-167 (1952).

A Combinatorial Construction for Two Formulas In Slater's List

Kağan Kurșungöz

Sabancı University, İstanbul
kursungoz@sabanciuniv.edu

ACA 2021
Session on Algorithmic Combinatorics
Jul. 25, 2021

