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A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions
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Analyzing such lattice walk models has been a hot topic in
combinatorics for the past 10 years.

The principal object of interest is the generating function:

F(x, y, t) =

∞∑
n=0

∑
i,j∈N

ai,j,n↑
# walks of length n

ending at (i, j)

xiyjtn

Is it algebraic? If not, is it D-finite? If not, is it D-algebraic?
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Consider the generating function

F(x, y, t) = 1
xy

+
(
1
x +

1
xy2 + 1

y + 1
x2y

)
t

+
(
2+ 2 1

x2
+ 1

xy3 + 2 1
y2 + 2 1

x2y2 + 1
x3y

+ 2 1
xy + x

y + y
x

)
t2

+ · · · ∈ Q[x, x−1, y, y−1][[t]].

Let Fx(y, t) = [x0]F(x, y, t) and Fy(x, t) = [y0]F(x, y, t).
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We have the functional equation(
1− (x+ y+ 1

x +
1
y)t

)
F(x, y, t) = 1

xy − t
xFx(y, t) −

t
yFy(x, t)

(
1− (x+ y+ 1

x +
1
y)t

)
1
xyF(

1
x , y, t) = 1− tyFx(y, t) − t 1xFy(

1
x , t)(

1− (x+ y+ 1
x +

1
y)t

)
x 1
yF(x,

1
y , t) = 1− t 1yFx(

1
y , t) − txFy(x, t)(

1− (x+ y+ 1
x +

1
y)t

)
1
xyF(

1
x ,

1
y , t) = 1− t 1yFx(

1
y , t) − t 1xFy(

1
x , t)

(
1− (x+ y+ 1

x +
1
y)t

)(
xyF(x, y, t) − 1

xyF(
1
x , y, t)

+ x 1
yF(x,

1
y , t) −

1
xyF(

1
x ,

1
y , t)

)
= 0.

“Orbit sum”
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Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.

The theorem requires F(x, y, t) to be analytic at x = y = 0.

In fact, our F(x, y, t) is not algebraic.
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Let

F1 = [x<y<]F

F2 = [x≥y<]F

F3 = [x<y≥]F

F4 = [x≥y≥]F

so that F = F1 + F2 + F3 + F4.

Then:
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F1(x, y, t) = [x<y<]

=:T︷ ︸︸ ︷
xy− x

y − y
x + 1

xy

1− (x+ y+ x−1 + y−1)︸ ︷︷ ︸
=:S

t

F2(x, y, t) = t 1y [x
<]
((

[y>]
y− y−1

1− St

)(
[y−1]

T

1− St

))
F3(x, y, t) = F2(y, x, t)

F4(x, y, t) =
1
xy [y

>]
((

[x−1]
(y− y−1)[y−1] T

1−St

1− St

)(
[x>]

x− x−1

1− St

))
+ 1

xy [x
>]
((

[y−1]
(x− x−1)[x−1] T

1−St

1− St

)(
[y>]

y− y−1

1− St

))
.

So F is D-finite.
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Using computer algebra, we can derive from these expressions that
the sequence an defined by

F(1, 1, t) =

∞∑
n=0

ant
n

provably satisfies the recurrence

(2+ n)(4+ n)(6+ n)(−1+ 2n+ n2)an+2

− 4(3+ n)(−18+ 4n+ 9n2 + 2n3)an+1

− 16(1+ n)(2+ n)(3+ n)(2+ 4n+ n2)an = 0.

Its only asymptotic solutions are 4n

n and (−4)n

n3 , so F(1, 1, t) cannot
be algebraic.
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Theorem: The generating function F(x, y, t) is also D-finite for
this model.

Guess: F(1, 1, t) satisfies a linear differential equation of order 11
and degree 89.

A guessed recurrence for the coefficients of F(1, 1, t) has the
following asymptotic solutions:

(−4)n

n10/3
,

(−4)n

n3
,

(−4)n

n8/3
,

(−4)n

n7/3
,

(−4)n

n5/3
,

4n

n7/2
,

4n

n13/6
,

4n

n5/3
,

4n

n3/2
,

4n

n1
,

4n

n5/6
,

4n

n1/3

Not clear from here whether F(1, 1, t) is algebraic or not.
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Guess: F(1, 1, t) satisfies a linear differential equation of order 11
and degree 89.
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Recall:

• To every differential operator L = p0(t) + · · ·+ pr(t)D
r
t of

order r we can associate a solution space V(L) of dimension r.

• The least common left multiple of two operators L1, L2 is
defined in such a way that V(lclm(L1, L2)) = V(L1) + V(L2).

• L is called irreducible if there is no way to write L = PQ for
some operators P,Q.

• If L is irreducible, then either all its solutions are algebraic or
all its nonzero solutions are transcendental.

• In particular, if L is irreducible and has a logarithmic
singularity, then L has no algebraic solutions.

• L is called completely reducible if it can be written as lclm of
irreducible operators.
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Fact: The guessed operator for F(1, 1, t) is completely reducible.

L = lclm
(
L1,

order 2, degree 10

L2,

order 2, degree 9

L3,

order 2, degree 7

L4,

order 2, degree 5

L5,

order 2, degree 5

L6
)

order 1, degree 1

If the guess is correct, then this implies that

F(1, 1, t) = f1 + f2 + f3 + f4 + f5 + f6

for certain f1 ∈ V(L1), . . . , f6 ∈ V(L6).

In particular, then F(1, 1, t) is transcendental if and only if f3 6= 0.

Indeed, f3 6= 0 because for M = lclm(L1, L2, L4, L5, L6) we have

M · F(1, 1, t) = M · f3 6= 0

This proves that F(1, 1, t) is transcendental (if L is correct).
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Same game.
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For the last case, we do not know if F(x, y, t) is D-finite.

We believe that [tn]F(1, 1, t) ∼ c 4nn−1/3 for some c ≈ 1.91.

We also believe [t2n][x−1y−1]F(x, y, t) ∼ c 42nn−5/3 for a c 6= 0.

Guessing with 98000 terms of F(1, 1, t) didn’t find anything.

We are tempted to conjecture that F(x, y, t) is not D-finite.
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A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions
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