Quadrant Walks Starting
 Outside the Quadrant

Manuel Kauers • Institute for Algebra • JKU
Joint work with Manfred Buchacher and Amelie Trotignon

A story with three messages

A story with three messages

Yet another variant of quadrant walks

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

$$
a_{i, j, n}
$$

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

$$
\begin{aligned}
& \qquad a_{i, j, n} \\
& \uparrow \\
& \# \text { walks of length } n \\
& \text { ending at }(i, j)
\end{aligned}
$$

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

The principal object of interest is the generating function:

$$
\begin{aligned}
& F(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j \in \mathbb{N}} \frac{a_{i, j, n}}{\uparrow} x^{i} y^{j} t^{n} \\
& \# \# \text { walks of length } n \\
& \text { ending at }(i, j)
\end{aligned}
$$

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

The principal object of interest is the generating function:

$$
\begin{aligned}
& F(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j \in \mathbb{N}} \frac{a_{i, j, n}}{\uparrow} x^{i} y^{j} t^{n} \\
& \# \# \text { walks of length } n \\
& \text { ending at }(i, j)
\end{aligned}
$$

Is it algebraic?

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

The principal object of interest is the generating function:

$$
\begin{aligned}
& F(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j \in \mathbb{N}} \frac{a_{i, j, n}}{\uparrow} x^{i} y^{j} t^{n} \\
& \# \# \text { walks of length } n \\
& \text { ending at }(i, j)
\end{aligned}
$$

Is it algebraic? If not, is it D-finite?

Analyzing such lattice walk models has been a hot topic in combinatorics for the past 10 years.

The principal object of interest is the generating function:

$$
\begin{aligned}
& F(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j \in \mathbb{N}} \frac{a_{i, j, n}}{\uparrow} x^{i} y^{j} t^{n} \\
& \# \# \text { walks of length } n \\
& \text { ending at }(i, j)
\end{aligned}
$$

Is it algebraic? If not, is it D-finite? If not, is it D-algebraic?

Consider the generating function

$$
\begin{aligned}
& F(x, y,t)=\frac{1}{x y} \\
& \quad+\left(\frac{1}{x}+\frac{1}{x y^{2}}+\frac{1}{y}+\frac{1}{x^{2} y}\right) t \\
& \quad+\left(2+2 \frac{1}{x^{2}}+\frac{1}{x y^{3}}+2 \frac{1}{y^{2}}+2 \frac{1}{x^{2} y^{2}}+\frac{1}{x^{3} y}+2 \frac{1}{x y}+\frac{x}{y}+\frac{y}{x}\right) t^{2} \\
& \quad+\cdots \in \mathbb{Q}\left[x, x^{-1}, y, y^{-1}\right][[t]] .
\end{aligned}
$$

Consider the generating function

$$
\begin{aligned}
& F(x, y, t)=\frac{1}{x y} \\
& +\left(\frac{1}{x}+\frac{1}{x y^{2}}+\frac{1}{y}+\frac{1}{x^{2} y}\right) t \\
& +\left(2+2 \frac{1}{x^{2}}+\frac{1}{x y^{3}}+2 \frac{1}{y^{2}}+2 \frac{1}{x^{2} y^{2}}+\frac{1}{x^{3} y}+2 \frac{1}{x y}+\frac{x}{y}+\frac{y}{x}\right) t^{2} \\
& +\cdots \in \mathbb{Q}\left[x, x^{-1}, y, y^{-1}\right][[t]] \text {. } \\
& \text { Let } F_{x}(y, t)=\left[x^{0}\right] F(x, y, t) \text { and } F_{y}(x, t)=\left[y^{0}\right] F(x, y, t) \text {. }
\end{aligned}
$$

We have the functional equation

$$
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) F(x, y, t)=\frac{1}{x y}-\frac{t}{x} F_{x}(y, t)-\frac{t}{y} F_{y}(x, t)
$$

We have the functional equation

$$
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t)
$$

We have the functional equation

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t) & =1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right) & =1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t) & =1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right) & =1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right) & =1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right) & =1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) & \left(x y F(x, y, t)-\frac{1}{x} y F\left(\frac{1}{x}, y, t\right)\right. \\
& \left.+x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)-\frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)\right)=0 .
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right)(& x y F(x, y, t)-\frac{1}{x} y F\left(\frac{1}{x}, y, t\right) \\
& \left.+x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)-\frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)\right)=0
\end{aligned}
$$

"Orbit sum"

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.
The theorem requires $F(x, y, t)$ to be analytic at $x=y=0$.

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.
The theorem requires $F(x, y, t)$ to be analytic at $x=y=0$.
In fact, our $F(x, y, t)$ is not algebraic.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
F_{1} & =\left[x^{<} y^{<}\right] F \\
F_{2} & =\left[x^{\geq} y^{<}\right] F \\
F_{3} & =\left[x^{<} y^{\geq}\right] F \\
F_{4} & =\left[x^{\geq} y^{\geq}\right] F \\
\text { so that } F & =F_{1}+F_{2}+F_{3}+F_{4} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Then:

$$
F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}{1-\left(x+y+x^{-1}+y^{-1}\right) t}
$$

$$
F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{=: T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=: S} t} t
$$

$$
\begin{aligned}
& F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{=T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=S} t} \\
& F_{2}(x, y, t)=t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=:} t} \\
& F_{2}(x, y, t)=t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
& F_{3}(x, y, t)=F_{2}(y, x, t)
\end{aligned}
$$

$$
\begin{aligned}
F_{1}(x, y, t) & =\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=: S}})}{=: T} \\
F_{2}(x, y, t) & =t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
F_{3}(x, y, t) & =F_{2}(y, x, t) \\
F_{4}(x, y, t) & =\frac{1}{x y}\left[y^{>}\right]\left(\left(\left[x^{-1}\right] \frac{\left(y-y^{-1}\right)\left[y^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[x^{>}\right] \frac{x-x^{-1}}{1-S t}\right)\right) \\
& +\frac{1}{x y}\left[x^{>}\right]\left(\left(\left[y^{-1}\right] \frac{\left(x-x^{-1}\right)\left[x^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
F_{1}(x, y, t) & =\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}} t}{=T} \\
F_{2}(x, y, t) & =t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
F_{3}(x, y, t) & =F_{2}(y, x, t) \\
F_{4}(x, y, t) & =\frac{1}{x y}\left[y^{>}\right]\left(\left(\left[x^{-1}\right] \frac{\left(y-y^{-1}\right)\left[y^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[x^{>}\right] \frac{x-x^{-1}}{1-S t}\right)\right) \\
& +\frac{1}{x y}\left[x^{>}\right]\left(\left(\left[y^{-1}\right] \frac{\left(x-x^{-1}\right)\left[x^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\right) .
\end{aligned}
$$

So F is D-finite.

Using computer algebra, we can derive from these expressions that the sequence a_{n} defined by

$$
F(1,1, t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

provably satisfies the recurrence

$$
\begin{aligned}
& (2+n)(4+n)(6+n)\left(-1+2 n+n^{2}\right) a_{n+2} \\
& -4(3+n)\left(-18+4 n+9 n^{2}+2 n^{3}\right) a_{n+1} \\
& -16(1+n)(2+n)(3+n)\left(2+4 n+n^{2}\right) a_{n}=0 .
\end{aligned}
$$

Using computer algebra, we can derive from these expressions that the sequence a_{n} defined by

$$
F(1,1, t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

provably satisfies the recurrence

$$
\begin{aligned}
& (2+n)(4+n)(6+n)\left(-1+2 n+n^{2}\right) a_{n+2} \\
& -4(3+n)\left(-18+4 n+9 n^{2}+2 n^{3}\right) a_{n+1} \\
& -16(1+n)(2+n)(3+n)\left(2+4 n+n^{2}\right) a_{n}=0 .
\end{aligned}
$$

Its only asymptotic solutions are $\frac{4^{n}}{n}$ and $\frac{(-4)^{n}}{n^{3}}$, so $F(1,1, t)$ cannot be algebraic.

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions

Theorem: The generating function $F(x, y, t)$ is also D-finite for this model.

Theorem: The generating function $F(x, y, t)$ is also D-finite for this model.

Guess: $F(1,1, t)$ satisfies a linear differential equation of order 11 and degree 89 .

Theorem: The generating function $F(x, y, t)$ is also D-finite for this model.

Guess: $F(1,1, t)$ satisfies a linear differential equation of order 11 and degree 89 .

A guessed recurrence for the coefficients of $F(1,1, t)$ has the following asymptotic solutions:

$$
\begin{gathered}
\frac{(-4)^{n}}{n^{10 / 3}}, \quad \frac{(-4)^{n}}{n^{3}}, \quad \frac{(-4)^{n}}{n^{8 / 3}}, \quad \frac{(-4)^{n}}{n^{7 / 3}}, \quad \frac{(-4)^{n}}{n^{5 / 3}} \\
\frac{4^{n}}{n^{7 / 2}}, \quad \frac{4^{n}}{n^{13 / 6}}, \quad \frac{4^{n}}{n^{5 / 3}}, \quad \frac{4^{n}}{n^{3 / 2}}, \quad \frac{4^{n}}{n^{1}}, \quad \frac{4^{n}}{n^{5 / 6}}, \quad \frac{4^{n}}{n^{1 / 3}}
\end{gathered}
$$

Theorem: The generating function $F(x, y, t)$ is also D-finite for this model.

Guess: $F(1,1, t)$ satisfies a linear differential equation of order 11 and degree 89 .

A guessed recurrence for the coefficients of $F(1,1, t)$ has the following asymptotic solutions:

$$
\begin{gathered}
\frac{(-4)^{n}}{n^{10 / 3}}, \quad \frac{(-4)^{n}}{n^{3}}, \quad \frac{(-4)^{n}}{n^{8 / 3}}, \quad \frac{(-4)^{n}}{n^{7 / 3}}, \quad \frac{(-4)^{n}}{n^{5 / 3}} \\
\frac{4^{n}}{n^{7 / 2}}, \quad \frac{4^{n}}{n^{13 / 6}}, \quad \frac{4^{n}}{n^{5 / 3}}, \quad \frac{4^{n}}{n^{3 / 2}}, \quad \frac{4^{n}}{n^{1}}, \quad \frac{4^{n}}{n^{5 / 6}}, \quad \frac{4^{n}}{n^{1 / 3}}
\end{gathered}
$$

Theorem: The generating function $F(x, y, t)$ is also D-finite for this model.

Guess: $F(1,1, t)$ satisfies a linear differential equation of order 11 and degree 89 .

A guessed recurrence for the coefficients of $F(1,1, t)$ has the following asymptotic solutions:

$$
\begin{gathered}
\frac{(-4)^{n}}{n^{10 / 3}}, \quad \frac{(-4)^{n}}{n^{3}}, \quad \frac{(-4)^{n}}{n^{8 / 3}}, \quad \frac{(-4)^{n}}{n^{7 / 3}}, \frac{(-4)^{n}}{n^{5 / 3}}, \\
\frac{4^{n}}{n^{7 / 2}}, \quad \frac{4^{n}}{n^{13 / 6}}, \quad \frac{4^{n}}{n^{5 / 3}}, \quad \frac{4^{n}}{n^{3 / 2}}, \quad \frac{4^{n}}{n^{1}}, \quad \frac{4^{n}}{n^{5 / 6}}, \frac{4^{n}}{n^{1 / 3}}
\end{gathered}
$$

Not clear from here whether $\mathrm{F}(1,1, \mathrm{t})$ is algebraic or not.

Recall:

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $\mathrm{V}(\mathrm{L})$ of dimension r .

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $\mathrm{V}(\mathrm{L})$ of dimension r .
- The least common left multiple of two operators L_{1}, L_{2} is defined in such a way that $\mathrm{V}\left(\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right)=\mathrm{V}\left(\mathrm{L}_{1}\right)+\mathrm{V}\left(\mathrm{L}_{2}\right)$.

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $\mathrm{V}(\mathrm{L})$ of dimension r .
- The least common left multiple of two operators L_{1}, L_{2} is defined in such a way that $\mathrm{V}\left(\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right)=\mathrm{V}\left(\mathrm{L}_{1}\right)+\mathrm{V}\left(\mathrm{L}_{2}\right)$.
- L is called irreducible if there is no way to write $L=P Q$ for some operators P, Q.

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $\mathrm{V}(\mathrm{L})$ of dimension r .
- The least common left multiple of two operators L_{1}, L_{2} is defined in such a way that $\mathrm{V}\left(\operatorname{Ic} \operatorname{lm}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right)=\mathrm{V}\left(\mathrm{L}_{1}\right)+\mathrm{V}\left(\mathrm{L}_{2}\right)$.
- L is called irreducible if there is no way to write $L=P Q$ for some operators P, Q.
- If L is irreducible, then either all its solutions are algebraic or all its nonzero solutions are transcendental.

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $V(L)$ of dimension r.
- The least common left multiple of two operators L_{1}, L_{2} is defined in such a way that $\mathrm{V}\left(\operatorname{Ic} \operatorname{lm}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right)=\mathrm{V}\left(\mathrm{L}_{1}\right)+\mathrm{V}\left(\mathrm{L}_{2}\right)$.
- L is called irreducible if there is no way to write $L=P Q$ for some operators P, Q.
- If L is irreducible, then either all its solutions are algebraic or all its nonzero solutions are transcendental.
- In particular, if L is irreducible and has a logarithmic singularity, then L has no algebraic solutions.

Recall:

- To every differential operator $L=p_{0}(t)+\cdots+p_{r}(t) D_{t}^{r}$ of order r we can associate a solution space $V(L)$ of dimension r.
- The least common left multiple of two operators L_{1}, L_{2} is defined in such a way that $\mathrm{V}\left(\operatorname{Ic} \operatorname{lm}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right)=\mathrm{V}\left(\mathrm{L}_{1}\right)+\mathrm{V}\left(\mathrm{L}_{2}\right)$.
- L is called irreducible if there is no way to write $L=P Q$ for some operators P, Q.
- If L is irreducible, then either all its solutions are algebraic or all its nonzero solutions are transcendental.
- In particular, if L is irreducible and has a logarithmic singularity, then L has no algebraic solutions.
- L is called completely reducible if it can be written as Iclm of irreducible operators.

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\begin{array}{r}
\mathrm{L}=\operatorname{lc} \operatorname{lm}\left(\mathrm{L}_{1},\right. \\
\mathrm{L}_{2}, \\
\mathrm{~L}_{3}, \\
\mathrm{~L}_{4}, \\
\mathrm{~L}_{5}, \\
\left.\mathrm{~L}_{6}\right)
\end{array}
$$

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$\mathrm{L}=\operatorname{lc} \operatorname{lm}\left(\mathrm{L}_{1}\right.$,	order 2, degree 10
$\mathrm{~L}_{2}$,	order 2, degree 9
$\mathrm{~L}_{3}$,	order 2, degree 7
L_{4},	order 2, degree 5
$\mathrm{~L}_{5}$,	order 2, degree 5
$\left.\mathrm{L}_{6}\right)$	order 1, degree 1

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\begin{aligned}
\mathrm{L}=\operatorname{IcIm}\left(\mathrm{L}_{1},\right. & \text { algebraic } \\
\mathrm{L}_{2}, & \text { algebraic } \\
\mathrm{L}_{3}, & \text { transcendental } \\
\mathrm{L}_{4}, & \text { algebraic } \\
\mathrm{L}_{5}, & \text { algebraic } \\
\left.\mathrm{L}_{6}\right) & \text { algebraic }
\end{aligned}
$$

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\mathrm{L}=\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}\right)
$$

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\mathrm{L}=\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}\right)
$$

If the guess is correct, then this implies that

$$
F(1,1, t)=f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}
$$

for certain $f_{1} \in V\left(L_{1}\right), \ldots, f_{6} \in V\left(L_{6}\right)$.

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\mathrm{L}=\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}\right)
$$

If the guess is correct, then this implies that

$$
F(1,1, t)=f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}
$$

for certain $f_{1} \in V\left(L_{1}\right), \ldots, f_{6} \in V\left(L_{6}\right)$.
In particular, then $F(1,1, t)$ is transcendental if and only if $f_{3} \neq 0$.

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\mathrm{L}=\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}\right)
$$

If the guess is correct, then this implies that

$$
F(1,1, t)=f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}
$$

for certain $f_{1} \in V\left(L_{1}\right), \ldots, f_{6} \in V\left(L_{6}\right)$.
In particular, then $F(1,1, t)$ is transcendental if and only if $f_{3} \neq 0$.
Indeed, $f_{3} \neq 0$ because for $M=\operatorname{IcIm}\left(L_{1}, L_{2}, L_{4}, L_{5}, L_{6}\right)$ we have

$$
M \cdot F(1,1, t)=M \cdot f_{3} \neq 0
$$

Fact: The guessed operator for $F(1,1, t)$ is completely reducible.

$$
\mathrm{L}=\operatorname{Ic} \operatorname{Im}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}\right)
$$

If the guess is correct, then this implies that

$$
F(1,1, t)=f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}
$$

for certain $f_{1} \in \mathrm{~V}\left(\mathrm{~L}_{1}\right), \ldots, \mathrm{f}_{6} \in \mathrm{~V}\left(\mathrm{~L}_{6}\right)$.
In particular, then $F(1,1, t)$ is transcendental if and only if $f_{3} \neq 0$.
Indeed, $f_{3} \neq 0$ because for $M=\operatorname{IcIm}\left(L_{1}, L_{2}, L_{4}, L_{5}, L_{6}\right)$ we have

$$
M \cdot F(1,1, t)=M \cdot f_{3} \neq 0
$$

This proves that $F(1,1, t)$ is transcendental (if L is correct).

Same game.

For the last case, we do not know if $F(x, y, t)$ is D-finite.

For the last case, we do not know if $F(x, y, t)$ is D-finite.
We believe that $\left[t^{n}\right] F(1,1, t) \sim c 4^{n} n^{-1 / 3}$ for some $c \approx 1.91$.

For the last case, we do not know if $F(x, y, t)$ is D-finite.
We believe that $\left[t^{n}\right] F(1,1, t) \sim c 4^{n} n^{-1 / 3}$ for some $c \approx 1.91$.
We also believe $\left[t^{2 n}\right]\left[x^{-1} y^{-1}\right] F(x, y, t) \sim c 4^{2 n} n^{-5 / 3}$ for a $c \neq 0$.

For the last case, we do not know if $F(x, y, t)$ is D-finite.
We believe that $\left[t^{n}\right] F(1,1, t) \sim c 4^{n} n^{-1 / 3}$ for some $c \approx 1.91$.
We also believe $\left[t^{2 n}\right]\left[x^{-1} y^{-1}\right] F(x, y, t) \sim c 4^{2 n} n^{-5 / 3}$ for a $c \neq 0$.
Guessing with 98000 terms of $\mathrm{F}(1,1, \mathrm{t})$ didn't find anything.

For the last case, we do not know if $F(x, y, t)$ is D-finite.
We believe that $\left[t^{n}\right] F(1,1, t) \sim c 4^{n} n^{-1 / 3}$ for some $c \approx 1.91$.
We also believe $\left[t^{2 n}\right]\left[x^{-1} y^{-1}\right] F(x, y, t) \sim c 4^{2 n} n^{-5 / 3}$ for a $c \neq 0$.
Guessing with 98000 terms of $F(1,1, t)$ didn't find anything.
We are tempted to conjecture that $F(x, y, t)$ is not D-finite.

A story with three messages

Yet another variant of quadrant walks

Oversimplification is dangerous

Proving transcendence of D-finite functions

