Rational Ehrhart Theory

Matthias Beck
San Francisco State University
Freie Universität Berlin

Sophia Elia
Sophie Rehberg
Freie Universität Berlin

Measuring Polytopes

Rational polytope - convex hull of finitely many points in \mathbb{Q}^{d}

- solution set of a system of linear (in-)equalities with integer coefficients

Goal: measuring...

- volume $\operatorname{vol}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{1}{n^{d}}\left|\mathcal{P} \cap \frac{1}{n} \mathbb{Z}^{d}\right|$
- discrete volume $\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|$

Ehrhart function $\operatorname{ehr}_{\mathcal{P}}(n):=\left|\mathcal{P} \cap \frac{1}{n} \mathbb{Z}^{d}\right|=\left|n \mathcal{P} \cap \mathbb{Z}^{d}\right|$ for $n \in \mathbb{Z}_{>0}$

Discrete Volumes \& Ehrhart Quasipolynomials

Rational polytope — convex hull of finitely many points in \mathbb{Q}^{d}
$q(n)=c_{d}(n) n^{d}+\cdots+c_{0}(n)$ is a quasipolynomial if $c_{0}(n), \ldots, c_{d}(n)$ are periodic functions; the Icm of their periods is the period of $q(n)$.

Theorem (Ehrhart 1962) For any rational polytope $\mathcal{P} \subset \mathbb{R}^{d}$, $\operatorname{ehr}_{\mathcal{P}}(n):=\left|n \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial in the integer variable n whose period divides the Icm of the denominators of the vertex coordinates of P (the denominator of P).

Example $\mathcal{P}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{2}$

$$
\operatorname{ehr}_{\mathcal{P}}(n)=\left\{\begin{array}{l}
(t+1)^{2} \text { if } t \text { is even } \\
t^{2} \text { if } t \text { is odd }
\end{array}\right.
$$

Discrete Volumes \& Ehrhart Quasipolynomials

Rational polytope - convex hull of finitely many points in \mathbb{Q}^{d}
$q(n)=c_{d}(n) n^{d}+\cdots+c_{0}(n)$ is a quasipolynomial if $c_{0}(n), \ldots, c_{d}(n)$ are periodic functions; the Icm of their periods is the period of $q(n)$.

Theorem (Ehrhart 1962) For any rational polytope $\mathcal{P} \subset \mathbb{R}^{d}$, $\operatorname{ehr}_{\mathcal{P}}(n):=\left|n \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial in the integer variable n whose period divides the Icm of the denominators of the vertex coordinates of P (the denominator q of P).

Equivalently, the Ehrhart series can be written as

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{n \geq 1} \operatorname{ehr}_{\mathcal{P}}(n) z^{n}=\frac{\mathrm{h}_{\mathcal{P}}^{*}(z)}{\left(1-z^{q}\right)^{\operatorname{dim} \mathcal{P}+1}}
$$

Example (again) $\mathcal{P}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{2} \quad \operatorname{Ehr}(z)=\frac{1+z+6 z^{2}+6 z^{3}+z^{4}+z^{5}}{\left(1-z^{2}\right)^{3}}$

Motivation I: Really?

$\mathcal{P} \subset \mathbb{R}^{d}$ - rational polytope
Ehrhart functions $\operatorname{ehr}_{\mathcal{P}}(n):=\left|\mathcal{P} \cap \frac{1}{n} \mathbb{Z}^{d}\right|=\left|n \mathcal{P} \cap \mathbb{Z}^{d}\right|$ for $n \in \mathbb{Z}_{>0}$

$$
\begin{aligned}
\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda) & :=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right| \text { for } \lambda \in \mathbb{R}_{>0} \\
\operatorname{rehr}_{\mathcal{P}}(\lambda) & :=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right| \text { for } \lambda \in \mathbb{Q}_{>0}
\end{aligned}
$$

Fun Fact (Linke 2011, Baldoni-Berline-Köppe-Vergne 2013, Stapledon 2017). There is an Ehrhart theory for the quasipolynomial $\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)$ in the real variable λ.

Examples $\overline{\operatorname{rehr}}_{[1,2]}(\lambda)=\lfloor 2 \lambda\rfloor-\lceil\lambda\rceil+1=\lambda+1-\{2 \lambda\}-\{-\lambda\}$

$$
\overline{\operatorname{rehr}}_{\left[-1, \frac{2}{3}\right]}(\lambda)=\frac{5}{3} \lambda+1-\left\{\frac{2}{3} \lambda\right\}-\{\lambda\}
$$

Motivation II: Ehrhart Veronese

$\mathcal{P} \subset \mathbb{R}^{d}$ - lattice polytope
Ehrhart function $\operatorname{ehr}_{\mathcal{P}}(n):=\left|\mathcal{P} \cap \frac{1}{n} \mathbb{Z}^{d}\right|=\left|n \mathcal{P} \cap \mathbb{Z}^{d}\right|$ for $n \in \mathbb{Z}_{>0}$
Ehrhart series $\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{n \geq 1} \operatorname{ehr}_{\mathcal{P}}(n) z^{n}=\frac{\mathrm{h}_{\mathcal{P}}^{*}(z)}{(1-z)^{\operatorname{dim} \mathcal{P}+1}}$
Fun Fact (Brenti-Welker 2009, MB-Stapledon 2010, Jochemko 2018). The Ehrhart series of $k \mathcal{P}$ becomes nicer as k increases.

A Bit of Real Ehrhart History

Theorem (Linke 2011) Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a rational polytope. Then $\operatorname{rehr}_{\mathcal{P}}(\lambda)=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial in the rational variable λ whose period divides the smallest rational q such that $q \mathcal{P}$ is a lattice polytope.

Linke also proved rational analogs of the Ehrhart-Macdonald reciprocity theorem and McMullen's theorem about the periods of the coefficient functions when writing

$$
\operatorname{rehr}_{\mathcal{P}}(\lambda)=c_{d}(\lambda) \lambda^{d}+c_{d-1}(\lambda) \lambda^{d-1}+\cdots+c_{0}(\lambda)
$$

She views these coefficient functions as piecewise polynomials and proved a differential equation for them.

Baldoni-Berline-Köppe-Vergne (2013): algorithmic theory of intermediate sums on polyhedra, with $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ as a special case.

A Bit of Real Ehrhart History

Motivated by motivic integration, Stapledon (2008) introduced the weighted h^{*}-polynomial of a lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$, which he later (2017) realizes via

$$
1+\sum_{\lambda \in \mathbb{Q}_{>0}}\left|\partial_{\neq 0}(\lambda \mathcal{P}) \cap \mathbb{Z}^{d}\right| t^{\lambda}=\frac{\tilde{\mathrm{h}}_{\mathcal{P}}(t)}{(1-t)^{\operatorname{dim} \mathcal{P}}}
$$

and uses them to compute Ehrhart polynomials of free sums, generalizing work by Braun (2006) and MB-Jayawant-McAllister (2013).

He realizes that $\widetilde{\mathrm{h}}_{\mathcal{P}}(t)$ is a polynomial in certain fractional powers of t with nonnegative coefficients. In the case that $\mathbf{0} \in \mathcal{P}^{\circ}$ he proves that $\widetilde{\mathrm{h}}_{\mathcal{P}}(t)$ is symmetric.

The Setup

$\mathcal{P} \subset \mathbb{R}^{d}$ - rational polytope $\quad \longrightarrow \quad \mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x} \leq \mathbf{b}\right\}$
The codemoninator of \mathcal{P} is $r:=\operatorname{lcm}(\mathbf{b})$
Lemma (1) $\operatorname{rehr}_{\mathcal{P}}(\lambda)=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is constant for $\lambda \in\left(\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}$
(2) If $\mathbf{0} \in \mathcal{P}$ then $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ is monotone

Examples $\operatorname{rehr}_{[1,2]}(\lambda)=\lambda+1-\{2 \lambda\}-\{-\lambda\}$

$$
\overline{\operatorname{rehr}}_{\left[-1, \frac{2}{3}\right]}(\lambda)=\frac{5}{3} \lambda+1-\left\{\frac{2}{3} \lambda\right\}-\{\lambda\}
$$

The Setup

$\mathcal{P} \subset \mathbb{R}^{d}$ - rational polytope $\quad \longrightarrow \quad \mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A x} \leq \mathbf{b}\right\}$
The codemoninator of \mathcal{P} is $r:=\operatorname{lcm}(\mathbf{b})$
Lemma (1) $\operatorname{rehr}_{\mathcal{P}}(\lambda)=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is constant for $\lambda \in\left(\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z} \geq 0$
(2) If $\mathbf{0} \in \mathcal{P}$ then $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ is monotone

Corollary

$$
\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)= \begin{cases}\operatorname{rehr}_{\mathcal{P}}(\lambda) & \text { if } \lambda \in \frac{1}{r} \mathbb{Z}_{\geq 0} \\ \operatorname{rehr}_{\mathcal{P}}(\lfloor\lambda\rceil) & \text { if } \lambda \notin \frac{1}{r} \mathbb{Z}_{\geq 0}\end{cases}
$$

where $\lfloor\lambda\rceil:=\frac{2 j+1}{2 r}$ for $\left|\lambda-\frac{2 j+1}{2 r}\right|<\frac{1}{2 r}$

If $\mathbf{0} \in \mathcal{P}$ then $\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)=\operatorname{rehr}_{\mathcal{P}}\left(\frac{\lfloor r \lambda\rfloor}{r}\right)$

The Setup

$\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}$ with codemoninator $r:=\operatorname{lcm}(\mathbf{b})$
If $\mathbf{0} \in \mathcal{P}$ then $\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)=\left|\lambda \mathcal{P} \cap \mathbb{Z}^{d}\right|=\operatorname{rehr}_{\mathcal{P}}\left(\frac{\lfloor r \lambda\rfloor}{r}\right)$
If $0 \notin \mathcal{P}$ then

$$
\overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)= \begin{cases}\operatorname{rehr}_{\mathcal{P}}(\lambda) & \text { if } \lambda \in \frac{1}{r} \mathbb{Z}_{\geq 0} \\ \operatorname{rehr}_{\mathcal{P}}(\lfloor\lambda\rceil) & \text { if } \lambda \notin \frac{1}{r} \mathbb{Z}_{\geq 0}\end{cases}
$$

where $\lfloor\lambda\rceil:=\frac{2 j+1}{2 r}$ for $\left|\lambda-\frac{2 j+1}{2 r}\right|<\frac{1}{2 r}$

The Upshot $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ is determined by $\left\{\operatorname{rehr}_{\mathcal{P}}(\lambda): \lambda \in \frac{1}{2 r} \mathbb{Z}_{\geq 0}\right\}$
If $\mathbf{0} \in \mathcal{P}$ then $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ is determined by $\left\{\operatorname{rehr}_{\mathcal{P}}(\lambda): \lambda \in \frac{1}{r} \mathbb{Z}_{\geq 0}\right\}$

Rational Ehrhart Series

$\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}$ with codemoninator $r:=\operatorname{lcm}(\mathbf{b})$
(Refined) rational Ehrhart series

$$
\begin{aligned}
\operatorname{REhr}_{\mathcal{P}}(t) & :=1+\sum_{\lambda \in \frac{1}{\bar{T}} \mathbb{Z}_{>0}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda} \\
\operatorname{RREhr}_{\mathcal{P}}(t) & :=1+\sum_{\lambda \in \frac{1}{2 r} \mathbb{Z}_{>0}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \operatorname{REhr}_{\left[-1, \frac{2}{3}\right]}(t)=\frac{1+t^{\frac{1}{2}}+t+t^{\frac{3}{2}}+t^{2}}{(1-t)\left(1-t^{\frac{3}{2}}\right)} \\
& \operatorname{RREhr}_{[1,2]}(t)=\frac{1+t^{\frac{1}{2}}+t^{\frac{3}{4}}+t^{\frac{5}{4}}}{(1-t)^{2}}
\end{aligned}
$$

Rational Ehrhart Series

$\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}$ with codemoninator $r:=\operatorname{lcm}(\mathbf{b})$
(Refined) rational Ehrhart series

$$
\begin{aligned}
\operatorname{REhr}_{\mathcal{P}}(t) & :=1+\sum_{\lambda \in \frac{1}{\pi} \mathbb{Z}_{>0}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda} \\
\operatorname{RREhr}_{\mathcal{P}}(t) & :=1+\sum_{\lambda \in \frac{1}{2 r} \mathbb{Z}_{>0}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}
\end{aligned}
$$

Theorem Let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r} \mathcal{P}$ is a lattice polytope. Then

$$
\operatorname{REhr}_{\mathcal{P}}(t)=\frac{\operatorname{rh}_{\mathcal{P}}^{*}(t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

where $\operatorname{rh}_{\mathcal{P}}^{*}(t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.

Rational Ehrhart Series

$\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}$ with codemoninator $r:=\operatorname{lcm}(\mathbf{b})$
Theorem Let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r} \mathcal{P}$ is a lattice polytope. Then

$$
\operatorname{REhr}_{\mathcal{P}}(t)=1+\sum_{\lambda \in \in \mathbb{T}_{\mathbb{Z}_{>0}}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}=\frac{\operatorname{rh}_{\mathcal{P}}^{*}(t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

where $\operatorname{rh}_{\mathcal{P}}^{*}(t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.
Corollary The period of the quasipolynomial $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ divides $\frac{m}{r}$.
Similar results hold for $\operatorname{RREhr}_{\mathcal{P}}(t)$, with r replaced by $2 r$.
Corollary (Linke 2011) Let \mathcal{P} be a lattice polytope. Then $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ and $\operatorname{rehr}_{\mathcal{P}}(\lambda)$ are quasipolynomials of period 1.

Rational Ehrhart Series

$\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}$ with codemoninator $r:=\operatorname{lcm}(\mathbf{b})$
Theorem Let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r} \mathcal{P}$ is a lattice polytope. Then

$$
\operatorname{REhr}_{\mathcal{P}}(t)=1+\sum_{\lambda \in \in \mathbb{T}_{\mathbb{Z}_{>0}}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}=\frac{\operatorname{rh}_{\mathcal{P}}^{*}(t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

where $\operatorname{rh}_{\mathcal{P}}^{*}(t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.
Corollary (Linke 2011) For a rational polytope $\mathcal{P},(-1)^{\operatorname{dim} \mathcal{P}} \overline{\operatorname{rehr}}_{\mathcal{P}}(-\lambda)$ equals the number of interior lattice points in $\lambda \mathcal{P}$, for any $\lambda>0$.

Remark If $\frac{m}{r} \in \mathbb{Z}$ then $\mathrm{h}_{\mathcal{P}}^{*}(t)=\operatorname{Int}\left[\operatorname{rh}_{\mathcal{P}}^{*}(t)\right]$.

Gorenstein Musings

Theorem (Hibi 1991, Fiset-Kasprzyk 2008) Let \mathcal{P} be a rational polytope with $\mathbf{0} \in \mathcal{P}^{\circ}$. If the polar dual of \mathcal{P} is a lattice polytope then $\mathrm{h}_{\mathcal{P}}^{*}(t)$ is symmetric.
(This fits, more generally, with Stanley's theory of Gorenstein rings.)
Theorem Let \mathcal{P} be a rational polytope with $\mathbf{0} \in \mathcal{P}^{\circ}$. Then $\operatorname{rh}_{\mathcal{P}}^{*}(t)$ is symmetric.

Corollary Let \mathcal{P} be a rational polytope with $\mathbf{0} \in \mathcal{P}^{\circ}$. Then $\mathrm{h}_{\mathcal{P}}^{*}(t)$ is the Veronese of a symmetric polynomial.

Example $\operatorname{REhr}_{\left[-1, \frac{2}{3}\right]}(t)=$

$$
\frac{1+t^{\frac{1}{2}}+2 t+3 t^{\frac{3}{2}}+4 t^{2}+4 t^{\frac{5}{2}}+4 t^{3}+4 t^{\frac{7}{2}}+3 t^{4}+2 t^{\frac{9}{2}}+t^{5}+t^{\frac{11}{2}}}{\left(1-t^{3}\right)^{2}}
$$

Symmetric Decompositions

Theorem Let \mathcal{P} be a rational polytope with $\mathbf{0} \in \mathcal{P}^{\circ}$. Then $\operatorname{rh}_{\mathcal{P}}^{*}(t)$ is symmetric.

Corollary (Betke-McMullen 1985, MB-Braun-Vindas-Meléndez 2021+) Let \mathcal{P} be a rational polytope with denominator k and $\mathbf{0} \in \mathcal{P}^{\circ}$. Then there exist polynomials $a(t)$ and $b(t)$ with nonnegative coefficients such that

$$
\mathrm{h}_{\mathcal{P}}^{*}(t)=a(t)+t b(t), \quad t^{k(d+1)-1} a\left(\frac{1}{t}\right)=a(t), \quad t^{k(d+1)-2} b\left(\frac{1}{t}\right)=b(t) .
$$

Proof Idea $(k=1)$:

$$
\operatorname{REhr}_{\mathcal{P}}(t)=\frac{\mathrm{h}_{\partial\left(\frac{1}{r} \mathcal{P}\right)}^{*}\left(t^{\frac{1}{r}}\right)}{\left(1-t^{\frac{1}{r}}\right)(1-t)^{d}}
$$

Note that $\mathrm{h}_{\partial\left(\frac{1}{r} \mathcal{P}\right)}^{*}(t)$ is symmetric and nonnegative, and

$$
\begin{aligned}
\operatorname{rh}_{\mathcal{P}}^{*}(t) & =\operatorname{Int}\left[\left(1+t^{\frac{1}{r}}+\cdots+t^{\frac{r-1}{r}}\right) \mathrm{h}_{\partial\left(\frac{1}{r} \mathcal{P}\right)}^{*}\left(t^{\frac{1}{r}}\right)\right] \\
& =\operatorname{Int}\left[\mathrm{h}_{\partial\left(\frac{1}{r} \mathcal{P}\right)}^{*}\left(t^{\frac{1}{r}}\right)\right]+\operatorname{Int}\left[\left(t^{\frac{1}{r}}+t^{\frac{2}{r}}+\cdots+t^{\frac{r-1}{r}}\right) \mathrm{h}_{\partial\left(\frac{1}{r} \mathcal{P}\right)}^{*}\left(t^{\frac{1}{r}}\right)\right]
\end{aligned}
$$

A Remark on Complexity

$\mathcal{P} \subset \mathbb{R}^{d}$ - rational polytope with codemoninator r

To capture $\operatorname{rehr}_{\mathcal{P}}(\lambda)\left(\operatorname{or} \overline{\operatorname{rehr}}_{\mathcal{P}}(\lambda)\right)$, we need to compute...
$\mathbf{0} \notin \mathcal{P} \quad \longrightarrow \quad \operatorname{RREhr}_{\mathcal{P}}(t)=1+\sum_{\lambda \in \frac{1}{2 r} \mathbb{Z}_{>0}} \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}=\frac{\operatorname{rrh}_{\mathcal{P}}^{*}(t)}{\left(1-t^{q}\right)^{d+1}}$
$\left.\mathbf{0} \in \partial \mathcal{P} \quad \longrightarrow \quad \operatorname{REhr}_{\mathcal{P}}(t)=1+\sum_{\lambda \in \frac{1}{r} \mathbb{Z}}^{>0} \right\rvert\, \operatorname{rehr}_{\mathcal{P}}(\lambda) t^{\lambda}=\frac{\operatorname{rh}_{\mathcal{P}}^{*}(t)}{\left(1-t^{q}\right)^{d+1}}$
$\mathbf{0} \in \mathcal{P}^{\circ} \quad \longrightarrow \quad \operatorname{rh}_{\mathcal{P}}^{*}(t)$ symmetric

