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Let s(n)n≥0 be a sequence whose terms are elements of a finite field Fq . A major theorem
of Christol [2, 3] states that s(n)n≥0 is algebraic if and only if it is q-automatic. That is,
there exists a nonzero polynomial P (x, y) ∈ Fq[x, y] such that P (x,

∑
n≥0 s(n)x

n) = 0 if
and only if there is a finite automaton that outputs s(n) when fed the base-q digits of n (say,
starting with the least significant digit).

We therefore have two quite different ways of representing q-automatic sequences — poly-
nomials and automata. A natural question is how the size of the minimal polynomial for a
sequence (measured by its x-degree and y-degree) relates to the size of the minimal automa-
ton for the sequence (measured by the number of states), and vice versa.

Given an algebraic series
∑

n≥0 s(n)x
n specified by a polynomial P (x, y) with x-degree h,

y-degree d, and genus g, Bridy [1] used algebraic geometry techniques to obtain the upper
bound (1 + o(1))qh+d+g−1 on the number of states in the minimal automaton generating
s(n)n≥0, where o(1) tends to 0 as any of q, h, d, g gets large.

We show that progress can be made toward this bound without using tools from algebraic
geometry, by analyzing orbits of certain linear operators on a finite-dimensional vector space
of bivariate polynomials.
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