A combinatorial construction for two formulas in Slater's List

Kağan Kurşungöz ${ }^{1}$

[kursungoz@sabanciuniv.edu]
${ }^{1}$ Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
Number 19 in Slater's list [4] is

$$
(-q ; q)_{\infty} \sum_{n \geq 0} \frac{(-1)^{n} q^{3 n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}(-q ; q)_{2 n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

where we use the q-Pochhammer symbols

$$
(a, q)_{n}:=\prod_{j=1}^{n}\left(1-a q^{n-1}\right), \quad(a, q)_{\infty}=\lim _{n \rightarrow \infty}(a, q)_{n}
$$

We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain the same series as an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields the aforementioned formula in Slater's list, along with its sister, namely number 15. The same formulas were constructed by Hirschhorn [2]. Similar formulas were obtained by Bringmann, Mahlburg and Nataraj [1]. These are part of the results in [3].

Keywords

integer partition, partition generating function, Rogers-Ramanujan identities, Slater's list

References

[1] K. Bringmann, K. Mahlburg, K. Nataraj, Distinct parts partitions without sequences, The Electronic Journal of Combinatorics, 22(3), (2015), \#P3.3.
[2] M.D. Hirschhorn, Developments in the Theory of Partitions, Ph.D. thesis, University of New South Wales (1979).
[3] K. KURŞUNGÖZ, A combinatorial construction for two formulas in Slater's list. International Journal of Number Theory, 17(03), 655-663 (2021).
[4] L. J. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc. Ser. 2 54, 147-167 (1952).

