Rational Ehrhart Theory

Abstract

Matthias Beck ${ }^{1,2}$, Sophia Elia ${ }^{1}$ and Sophie Rehberg ${ }^{1} \quad$ [mattbeck@sfsu.edu] ${ }^{1}$ Mathematisches Institut, Freie Universität Berlin, Germany ${ }^{2}$ Department of Mathematics, San Francisco State University, U.S.A. The Ehrhart quasipolynomial of a rational polytope P encodes fundamental arithmetic data of P, namely, the number of integer lattice points in positive integral dilates of P. Ehrhart quasipolynomials were introduced in the 1960s, satisfy several fundamental structural results and have applications in many areas of mathematics and beyond. The enumerative theory of lattice points in rational (equivalently, real) dilates of rational polytopes is much younger, starting with work by Linke [1], Baldoni-Berline-Koeppe-Vergne [2], and Stapledon [3]. We introduce a generating-function ansatz for rational Ehrhart quasipolynomials, which unifies several known results with classical Ehrhart quasipolynomials, as well as generalized reflexive polytopes studied by Fiset-Kasprzyk [4] and Kasprzyk-Nill [5].

Keywords

rational polytope, lattice point enumeration, rational Ehrhart quasipolynomial

References

[1] Eva Linke, Rational Ehrhart quasi-polynomials. J. Combin. Theory Ser. A 118(7), 1966-1978 (2011).
[2] Velleda Baldoni, Nicole Berline, Matthias Köppe, and Michèle Vergne, Intermediate sums on polyhedra: computation and real Ehrhart theory. Mathematika $\mathbf{5 9}(1)$, 1-22 (2013).
[3] Alan Stapledon, Counting lattice points in free sums of polytopes. J. Combin. Theory Ser. A 151, 51-60 (2017).
[4] Matthew H. J. Fiset and Alexander M. Kasprzyk, A note on palindromic δ vectors for certain rational polytopes. Electron. J. Combin. 15(1), Note 18, 4 pp. (2008).
[5] Alexander M. Kasprzyk and Benjamin Nill, Reflexive polytopes of higher index and the number 12. Electron. J. Combin. 19(3), Paper 9, 18 pp. (2012).

