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The Problem

The irreducible modules for the symetric groups over C
are labelled by partitions.

Over a field of characteristic p,the irreducible modules are
labelled by p-regular partitions.

For cyclotomic Hecke algebras, the irreducible modules are
labelled by e-regular multipartitions.

The problem: We have only a recursive algorithm for
constructing e-regular multipartitions.
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Affine Lie Algebras of Type A

G - an affine Lie algebra of Type A,

Dynkin diagram a circle,

Λ0,Λ1, . . . ,Λe−1 - fundamental weights,

α0, α1, . . . , αe−1-simple roots,

δ =
∑
αi - the null root.

Q+ = {α =
∑

ciαi}, with content (c0, c1, . . . , ce−1),

def (Λ− α) = (Λ | α)− 1
2 (α | α),

The corank 1 Cartan matrix

A =


2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −1 2 −1
−1 0 . . . 0 −1 2


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Kashiwara crystals

Let ei , fi , hi , i = 0, 1, . . . , e − 1 be a Chevalley basis

Let Λ = a0Λ0 + . . . ae−1Λe−1, ai ∈ Z+

Let V (Λ) be a highest weight representation generated by
the fi from u∅ of weight Λ

Let P(Λ) be the sets of weights of weight spaces of V (Λ)

A Kashiwara crystal B(Λ) is a labeling of the basis of
V (Λ) with operations ei and fi
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Kashiwara crystals of Type A

In Type A, the level r of Λ is a0 + · · ·+ ae−1. There are three
important versions of the Kashwara crystal in type A:

by e-regular multipartions, sets of r partitions with no e
rows repeated,

by Littelmann paths, which we will soon describe in
greater detail,

and by canonical basis elements, which are q-polynomials
in a space called Fock space, coming from physics.

In general all three are generated recursively, using computer
algebra programs. Our general research program concerns the
combinatorial relations among all three, but for this talk, we
focus on the possibility of passing directly between the
e-regular multipartitions and the Littelmann paths.
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The reduced crystal

We get the reduced crystal with vertices P(Λ) by adding edges
whereever there is an edge in the underlying Kashwara crystal,
where we take all i-strings parallel to each other. The weights
in P(Λ) are of the form λ = Λ− α for some α. The
highest-weight representation being integrable, all i-strings are
of finite length. To each vertex of P(Λ) we associate

The content of α

The defect

The hub θ, where θi =< hi , λ >
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Reduced crystal, e = 2,Λ = 2Λ0 + Λ1, with hubs

The reduced crystal for e = 2,Λ = 2Λ0 + |Lambda1, truncated at
degree 17

Ola Amara-Omari, Mary Schaps External Littelmann Paths



External
Littelmann

Paths

Ola
Amara-Omari,
Mary Schaps

Crystals of
Type A

Littelman
paths

The case of
e = 2

The Main
Result

Bibliography

Categorification in Type A

Chuang and Rouquier proved in [CR] that the highest weight
representation V (Λ) has a categorification to a direct sum of
cyclotomic Hecke algebras HΛ

n , where the degree n runs from 0
out toward ∞. The Chevalley generators ei , fi are categorified
to restriction and induction functors Ei ,Fi , the weight spaces
correspond to blocks, simple relections from the Weyl group
correspond to derived equivalences, and the elements in the
Kashwara crystal correspond to simple modules. The simplest
but best known example is for r = 1, Λ = Λ0, over a field of
characteristic e, where the simple modules of the symmetric
groups correspond to e-regular partitions.
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The Littelmann path model for B(Λ)

An LS-path π(t) is a piecewise linear path in the weight space
of the Lie algebra G,

〈 =< Λ0,Λ1 . . . ,Λe−1, δ >

and parameterized by the real interval [0, 1], with π(0) = 0.
Littelmann [L] proved that the set of paths obtained by acting
with various fi , starting with the path from 0 to Λ, is in
one-to-one correspondence with the basis elements of the
highest weight representation V (Λ), and has the structure of a
Kashiwara crystal. The straight segments in the piecewise
linear paths are rational multiples of weight vectors in the orbit
of Λ under the action of the Weyl group W , which we will call
defect zero weight vectors. The corner points are the endpoints
of these straight segments, the final corner point π(1) ∈ P(Λ)
being the weight of the basis element in V (Λ).
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The Littelmann path model for B(Λ)

Littelmann proved in [L] that a Littelman path corresponding
to a crystal base element is integral, in the sense that for each i
the lowest i-coordinate among all the corner points is an
integer.

Definition

A Littelmann path π(t) has an LS-representation if there is a
sequence of defect 0 weights νp, . . . , ν0 and rational number
ap+1 = 0, ap, . . . , a0 = 1 such that for t ∈ [ai+1, ai ], we have

π(t) = π(ai+1) + (t − ai+1)νi
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Example

[(5, 2, 1), (1), ∅]; [(6, 3, 2, 1), (2), ∅]
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Multipartitions

In order to generate the e-regular multipartiitions, we must
choose an ordering of the fundamental weights in Λ,

Λ = Λk1 + · · ·+ Λkr

We will follow Mathas in [M] in requiring k1 ≤ k2 ≤ · · · ≤ kr .
We can then summarize by setting

Λ = a0Λ0 + · · ·+ ae−1Λe−1

The Young diagram of a defect 0 weight λ will be represented
by Y (λ). If the `-th subpartition of λ is nonempty, then we
associate to each node in the Young diagram a residue, where
the node (i , j) is given residue

k` + j − i

This will be called a k`-corner subpartition.
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Multipartitions

There is a recursive algorithm for generating e-regular
multipartitions.

0 1 2 0 1 2 0

2 0 1

We write the signature of addable and removable nodes for a
given residue. For 1 we would get “+-+”. After removing all
“-+”, we take the leftmost “+’. and add it, getting

0 1 2 0 1 2 0

2 0 1

1
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Standard Littelmann paths

A Littelmann path will be called standard if the rational
numbers are of the form

em =
cm
dm
, (1)

where dm was the number of nodes added to a defect 0
multipartion with first row m − 1 to get that for m. Similarly
cm is the number of nodes added of that residue among those
making up the dm in the defect 0 multipartition.
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Computer resouces for crystals

The Littelmann paths for a given G and Λ can be generated in
Sagemath using the function CrystalOfLSPaths() written by
Mark Shimozono and Anne Schilling. In addition, Travis
Scrimshaw recently implemented an algorithm of Matt Fayers
to calculate the canonical basis, named FockSpace().
Our own modification computes the following for basis element
b:

The multipartition

The Littelmann path and optionally, the corner-points

The canonical baisis element

The set of paths in the reduced crystal leading to b
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Residue-homogeneous multipartitions

The following codiiton will ensure that the end points of all the
rows would have the same residue 0 or 1.

Definition

A multipartition will be called residue homogeneous if it
satisfies the following conditions:

each partition has rows of alternating parity,

all zero corner partitions have first rows of the same parity
and the 1-corner of opposite parity,

all non-zero partitions except possible the last end with a
singleton

The length of the first row is less than or equal to the
length of the previous column.
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Reduced crystal, e = 2,Λ = 2Λ0 + Λ1, with
multipartitions

The reduced crystal for e = 2,Λ = 2Λ0 + |Lambda1, truncated at
degree 17
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The Main Result

By a result of Mathas, [M], the first condition, for e = 2,
ensures that the multipartition is e-regular.

Theorem

In the case e = 2, the Littelmann path corresponding to a
residue homogeneous multipartition is standard

The set of all residue homogeneous multipartitons can be
determined non-recursively, and then the corresponding
Littelmann path constructed, which proves that the
multipartitions was e-regular.

Ola Amara-Omari, Mary Schaps External Littelmann Paths



External
Littelmann

Paths

Ola
Amara-Omari,
Mary Schaps

Crystals of
Type A

Littelman
paths

The case of
e = 2

The Main
Result

Bibliography

Bibliography

S. Ariki, V. Kreiman, & S. Tsuchioka, On the tensor product of two
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Thank you.

THE END
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