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The density at which fixed patterns occur in large permutations has received
much attention in Combinatorics. Pattern densities give rise to extremal questions,
and play a role in the construction of limiting objects for permutations, and in
permutation property testing. The case where some patterns are avoided is studied
extensively.

We report on the study of pattern densities in random permutations. Our work
extends the discussion by Janson, Nakamura and Zeilberger in Section 4 of [1].
In particular, we address the question in its closing paragraph, on the emerging
general structure. To this end, we analyze the distribution of pattern densities using
representations of the symmetric group.

This viewpoint of pattern densities provides a unified framework for several
measures from non-parametric statistics, such as Kendall’s τ , Spearman’s ρ and
some two-sample independence tests. It is also related to the spectral analysis of
statistical data on nonabelian groups, as introduced by Diaconis [2].

We present some definitions before stating the main questions and results. Let
π ∈ Sn and let k≤ n. Consider all

(n
k

)
restrictions of π to k entries πa1 . . .πak where

a1 < a2 < .. . < ak. The relative ordering of such k values induces a pattern σ ∈ Sk.
For example, the restriction of π = 41253 to the marked entries induces the 3-
pattern σ = 213.

Let the density of σ ∈ Sk be Pσ (π) := Nσ (π)/
(n

k

)
, where Nσ (π) is the number

of times σ occurs as a k-pattern in π . The k-profile of π is the k!-dimensional
vector of all k-pattern densities Pk(π) := (Pσ (π))σ∈Sk . When π ∈ Sn is sampled
uniformly at random, we denote its k-profile by Pkn.

A first observation is that Pkn→ Uk :=
( 1

k! , . . . ,
1
k!

)
in probability as n→ ∞. It

is hence interesting to understand how the k-profile deviates from this limit. What
is the order of magnitude of (Pkn−Uk) as n grows? What directions in the k!-
dimensional space are typical of this vector? Does it have a natural decomposition
into lower-dimensional components? What is the shape of the distribution when
properly normalized?

It turns out that linear representations of Sk provide some answers to these
questions. Recall that each simple representation Rλ corresponds to an integer
partition k = λ1 + . . .+λ` where λ1 is the largest. Consider the subspace spanned
by the matrix elements (Rλ

i j(σ))σ∈Sk viewed as k!-dimensional vectors.
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Orthogonal projections on these subspaces provide an initial decomposition of
the k-profile. We show that the component that corresponds to Rλ has order of
magnitude n(λ1−k)/2 asymptotically as n grows. One can use this decomposition to
normalize the distribution of the profile, multiplying the different components by
the appropriate powers of n.

We also show that components of different orders are asymptotically uncorre-
lated, in the sense that the cross-covariance matrix of the two normalized vectors
converges to zero. This indicates that representations of the symmetric group may
also help to diagonalize the profile’s distribution.

Indeed, for k≤ 6 we found specific unitary matrix representations of Sk, whose
matrix elements diagonalize the normalized distribution of the k-profile. This
means that its covariance matrix, with respect to that basis, converges to a diag-
onal with positive entries. We hope to extend this result to every k in future work.

The above results were discovered by computer exploration. Our starting point
was the interpolation of the profile’s covariance matrix, symbolically as rational
functions of n. This allowed us to extract several leading coefficients that deter-
mined the asymptotic behavior, and to look at their diagonal forms.

The full analysis and verification of the cases k = 3,4,5,6 were undertaken
by explicit computation of appropriate unitary representations, that seem to have
interesting properties by their own.
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